中国大学生数学建模竞赛历年试题

合集下载

数学建模国赛历年题目

数学建模国赛历年题目

数学建模国赛历年题目
以下是数学建模国赛历年题目的一部分:
1. 2018年题目:某公司想要投资一个新的项目,该项目有一
定的风险,但可能会带来高额的回报。

你被要求通过建立一个数学模型来评估该项目的可行性和预测可能的回报。

2. 2017年题目:某城市的交通拥堵问题日益严重,政府希望
通过优化信号灯的调节策略来缓解交通压力。

你需要建立一个数学模型来确定最佳的信号灯时间调节方案,以最大程度地减少交通拥堵。

3. 2016年题目:在某个城市,政府计划在两个特定的区域之
间修建一个新的道路,并需要确定最佳的路线以及道路的设计参数。

你需要建立一个数学模型来分析各种因素,如交通流量、土地利用等,以确定最佳的道路路线和设计。

4. 2015年题目:某公司生产的产品在市场上的销售量一直在
下降,他们希望通过改变产品的包装和定价策略来提振销售。

你需要建立一个数学模型来分析不同包装和定价方案对销售量的影响,并提出最佳的包装和定价策略。

以上题目只是数学建模国赛历年题目的一小部分,每年的具体题目会有所变化。

完成这些题目需要的技巧包括数学建模、数据分析和优化方法等。

如果你对数学建模感兴趣,建议多参加相关的竞赛和训练,积累经验和提高自己的能力。

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览!CUMCM历年赛题一览!!CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览1992年A)施肥效果分析问题(北京理工大学:叶其孝)(B)实验数据分解问题(复旦大学:谭永基)1993年A)非线性交调的频率设计问题(北京大学:谢衷洁)(B)足球排名次问题(清华大学:蔡大用)1994年A)逢山开路问题(西安电子科技大学:何大可)(B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福)(B)节水洗衣机问题(重庆大学:付鹂)1997年:(A)零件参数设计问题(清华大学:姜启源)(B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年:(A)投资的收益和风险问题(浙江大学:陈淑平)(B)灾情巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化车床管理问题(北京大学:孙山泽)(B)钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)(D)钻井布局问题(郑州大学:林诒勋)2000年:(A)DNA序列分类问题(北京工业大学:孟大志)(B)钢管订购和运输问题(武汉大学:费甫生)(C)飞越北极问题(复旦大学:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)血管的三维重建问题(浙江大学:汪国昭)(B)公交车调度问题(清华大学:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)(D)公交车调度问题(清华大学:谭泽光)2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B)彩票中的数学问题(解放军信息工程大学:韩中庚)(C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))(D)赛程安排问题(清华大学:姜启源)2003年:(A)SARS的传播问题(组委会)(B)露天矿生产的车辆安排问题(吉林大学:方沛辰)(C)SARS的传播问题(组委会)(D)抢渡长江问题(华中农业大学:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北京工业大学:孟大志)(B)电力市场的输电阻塞管理问题(浙江大学:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)招聘公务员问题(解放军信息工程大学:韩中庚)2005年: (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) 同(B)2006年:(A)出版社的资源配置问题(北京工业大学:孟大志)(B)艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C)易拉罐的优化设计问题(北京理工大学:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)乘公交,看奥运问题(吉林大学:方沛辰,国防科大:吴孟达)(C)手机“套餐”优惠几何问题(解放军信息工程大学:韩中庚)(D)体能测试时间安排问题(全国组委会)。

历年全国大学生数学建模竞赛-题目(1994-2009)

历年全国大学生数学建模竞赛-题目(1994-2009)
B 题 节水洗衣机
我国淡水资源有限,节约用水人人有责。洗衣机在家庭用水中占有相当大的 份额,目前洗衣机已非常普及,节约洗衣机用水十分重要。假设在放入衣物和洗 涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂水-脱水-…-加水-漂水脱水(称“加水-漂水-脱水”为运行一轮)。请为洗衣机设计一种程序(包括运 行多少轮、每轮加多少水等),使得在满足一定洗涤效果的条件下,总用水量最 少。选用合理的数据进行计算。对照目前常用的洗衣机的运行情况,对你的模型 和结果作出评价。
1)建立数学模型分析如何可持续捕获(即每年开始捕捞时渔场中各年龄组 鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
2)某渔业公司承包这种鱼的捕捞业务5年,合同要求鱼群的生产能力不能 受到太大的破坏。已知承包时各年龄组鱼群的数量分别为: 122,29.7,10.1,3.29(×109 条),如果仍用固定努力量的捕捞方式,该公司采取 怎样的策略才能使总收获量最高。
1996 年全国大学生数学建模竞赛
A 题:最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开 发必须适度。一种合理、简化的策略是,在实现可持续收获的前提下,追求最大 产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:
假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。各年龄组每条鱼的平 均重量分别为 5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为 0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为 1.109 ×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和 孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产 卵总是 n 之比)为 1.22×1011/(1.22×1011+n).

数学建模国赛题目

数学建模国赛题目

数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。

这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。

可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。

- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。

有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。

通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。

二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。

这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。

我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。

- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。

但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。

我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。

三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。

如果定价太高,同学们就不买了;定价太低,又赚不到钱。

这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。

通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。

- 逻辑:现在有很多网红店,门口总是排着长长的队伍。

这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题1.1992年A题:施肥效果分析;B题:试验数据分析;2.1993年A题:非线性交调的频率设计;B题:足球队拍名次;3.1994年A题:逢山开路;B题:锁具开箱;4.1995年A题:一个飞行管理问题;B题:天车与冶炼炉的作业调度;5.1996年A题:最优捕鱼策略;B题:节水洗衣机;6.1997年A题:零件的参数设计;B题:截断切割;7.1998年A题:投资的收益和风险B题:灾情巡视路线8.1999年A题:自动化车床管理B题:钻井布局C题:煤矸石堆积D题:钻井布局9.2000年A题:DNA序列分类B题:钢管订购和运输C题:飞越北极D题:空洞探测10.2001年A题:血管的三维重建B题:公交车调度C题:基金使用计划D题:公交车调度11.2002年A题:车灯线光源的优化设计B题:彩票中的数学C题:车灯线光源的计算D题:赛程安排12.2003年A题:SARS的传播B题:露天矿生产的车辆安排C题:SARS的传播D题:抢渡长江13.2004年A题:奥运会临时超市网点设计B题:电力市场的输电阻塞管理C题:饮酒驾车D题:公务员招聘14.2005年A题:长江水质的评价和预测B题:DVD在线租赁C题:雨量预报方法的评价D题:DVD在线租赁15.2006年A题:出版社的资源配置B题:艾滋病疗法的评价及疗效的预测C题:易拉罐形状和尺寸的最优设计D题:煤矿瓦斯和煤尘的监测与控制16.2007A题:中国人口增长预测;B题:乘公交,看奥运;C题:手机“套餐”优惠几何;D题:体能测试时间安排17.2008A题数码相机定位;B题高等教育学费标准探讨;C题地面搜索;D题NBA赛程的分析与评价.18.2009A题制动器试验台的控制方法分析B题眼科病床的合理安排C题卫星和飞船的跟踪测控D题会议筹备19.2010A题储油罐的变位识别与罐容表标定B题2010年上海世博会影响力的定量评估C题输油管的布置D题对学生宿舍设计方案的评价19.2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度C题企业退休职工养老金制度的改革D题天然肠衣搭配问题20.2012A题葡萄酒的评价B题太阳能小屋的设计C题脑卒中发病环境因素分析及干预D题机器人避障问题21.2013 A题车道被占用对城市道路通行能力的影响B题碎纸片的拼接复原C题古塔的变形D题公共自行车服务系统。

数学建模历年竞赛试题

数学建模历年竞赛试题

目录前言................................................................................................. 错误!未定义书签。

目录........................................................................................................................... - 0 - 一、什么是数学模型............................................................................................... - 3 -2001年B题……公交车调度......................................................................... - 4 - 2001年C题……基金使用计划..................................................................... - 9 - 2002年A题……车灯线光源的优化设计................................................... - 10 - 2002年B题……彩票中的数学................................................................... - 11 - 2003年A题……SARS的传播.................................................................... - 15 - 2003年B题……露天矿生产的车辆安排................................................... - 26 - 2003年D题……抢渡长江........................................................................... - 29 - 2004年C题……饮酒驾车........................................................................... - 32 - 2004年B题……电力市场的输电阻塞管理............................................... - 34 - 电力市场交易规则:............................................................................. - 35 -输电阻塞管理原则:............................................................................. - 36 -表1各机组出力方案(单位:兆瓦,记作MW) ............................ - 39 -表2各线路的潮流值(各方案与表1相对应,单位:MW) ......... - 41 -表3各机组的段容量(单位:MW) ................................................. - 42 -表4各机组的段价(单位:元/兆瓦小时,记作元/MWh)............. - 42 -表5各机组的爬坡速率(单位:MW/分钟) .................................... - 43 -表6各线路的潮流限值(单位:MW)和相对安全裕度 ................. - 43 -2008年B题……高等教育学费标准探讨................................................... - 43 - 2008年D题……NBA赛程的分析与评价 ................................................. - 45 - 2009年A题……制动器试验台的控制方法分析....................................... - 47 - 2009年B题……眼科病床的合理安排....................................................... - 50 - 【附录】2008-07-13到2008-09-11的病人信息 ................................ - 51 - 2009年D题……会议筹备........................................................................... - 77 - 附表1……10家备选宾馆的有关数据................................................. - 78 -附表2……本届会议的代表回执中有关住房要求的信息(单位:人)- 79 -附表3……以往几届会议代表回执和与会情况.................................. - 80 -附图(其中500等数字是两宾馆间距,单位为米)......................... - 81 -二、为什么要学习数学模型................................................................................. - 83 -1、数学模型无处不在,我们的生活、工作、学习都离不开它............... - 83 -例1买房贷款问题................................................................................. - 83 -例2物体冷却过程的数学模型............................................................. - 84 -2、是学好数学用好数学的必经之路........................................................... - 86 -3、是数学教学改革的重要手段和有效路径............................................... - 88 -4、数学建模竞赛所提唱的团队精神是现代大学生必须具备素质........... - 91 -5、数学建模竞赛鼓励学生用跳跃式的、发散式的形象思维方法,这有利于培养学生的创新意识。

历年全国赛数学建模题目

历年全国赛数学建模题目

目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题:出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索 (57)2009高教社杯全国大学生数学建模竞赛题目 (59)A题制动器试验台的控制方法分析 (59)B题眼科病床的合理安排 (60)C题卫星和飞船的跟踪测控 (61)D题会议筹备 (61)2010全国高教社杯数学建模题目 (65)A题储油罐的变位识别与罐容表标定 (65)B题 2010年上海世博会影响力的定量评估 (66)A题最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度.一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益.考虑对某种鱼(鳀鱼)的最优捕捞策略:假设这种鱼分四个年龄组,称1龄鱼,…,4龄鱼,各年龄组每条鱼的平均重量分别为 5.07,11.55,17.86,22.99(g),各年龄组鱼的自然死亡率为0.8(1/年),这种鱼为季节性集产卵繁殖,平均每条4龄鱼的产卵量为1.109× (个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22× /(1.22× +n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业.如果每年投入的捕捞能力(如渔船数﹑下网次数等)固定不变,这时单位时间捕捞量与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数.通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时鱼场中各年龄组鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量).2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏. 已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×条),如果任用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高.(北京师范大学刘来福提供)B题节水洗衣机我国淡水资源有限,节约用水人人又责,洗衣在家庭用水中占有相当大的份额,目前洗衣机已相当普及,节约洗衣机用水十分重要.假设在放入衣服和洗涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂洗-脱水-…-加水-漂洗-脱水(称"加水-漂洗-脱水"为运行一轮).请为洗衣机设计一种程序(包括运行多少轮﹑每轮加水量等),使得在满足一定洗涤效果的条件下,总用水量最少.选用合理的数据进行计算,对照目前常用的洗衣机的运行情况,对你的模型和结果做出评价.A题零件的参数设计一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

全国大学生数学建模竞赛赛题综合评析

全国大学生数学建模竞赛赛题综合评析
B题:高等教育学费标准探讨
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11

全国大学生数学建模竞赛92年到2000年题目

全国大学生数学建模竞赛92年到2000年题目
个数(单位略)中任取一数。由于工艺及其它原因,制造锁具时对 5 个槽的高度还有两个限制: 至少有 3 个不同的数;相邻两槽的高度之差不能为 5。满足以上条件制造出来的所有互不相同的 锁具称为一批。
从顾客的利益出发,自然希望在每批锁具中“一把钥匙开一把锁”。但是在当前工艺条件下, 对于同一批中两个锁是否能够互开,有以下试验结果:若二者相对应的 5 个槽的高度中有 4 个相 同,另一个槽的高度差为 1,则可能互开;在其它情形下,不可能互开。
为 fi的信号的振幅,Cn是某一频率为 fn的交调的振幅。若 fn出现在 fn = fi ± 6 处(i = 1,2,3),
则对应的 SNR 应大于 10 分贝(参看下图)。
Bi (信号振幅)
Cn (交调振幅)
f n = f i -6 f i -5
fi
接收带
f i +5 f i +6
4) fi 不得出现在 f j 的接收带内( i, j = 1,2,3,i ≠ j )。
f1、f2 ,而且还会出现 2f1、f1 ± f2 等新的频率成分,这些新的频率称为交调。如果交调出现在
原有频率 f1、f2 的附近,就会形成噪声干扰,因此工程设计中对交调的出现有一定的要求。
现有—SCS(非线性)系统,其输入输出关系由如下一组数据给出:
输入 u 0
5
10
20
30
40
50
60
80
输出 y 0
1994 年赛题
A 题 逢山开路 要在一山区修建公路,首先测得一地点的高程,数据见表 1(平面区域 0≤x≤5600, 0≤y≤
4800,表中数据为坐标点的高程,单位:米)。数据显示:在 y = 3200 处有一东西走向的山峰 ; 从坐标(2400,2400)到(4800,0)有一西北 — 东南走向的山谷;在(2000, 2800)附近有 一山口湖,其最高水位略高于 1350 米,雨季在山谷中形成一溪流。经调查知,雨量最大时溪流

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1992A 施肥效果分析1992B 实验数据分解1993A 非线性交调的频率设计1993B 足球队排名次1994A 逢山开路1994B 锁具装箱1995A 一个飞行管理问题1995B 天车与冶炼炉的作业调度1996A 最优捕鱼策略1996B 节水洗衣机1997A 零件参数1997B 截断切割1998A 投资的收益和风险1998B 灾情巡视路线1999A 自动化车床管理1999B 钻井布局1999C 煤矸石堆积1999D 钻井布局2000A DNA序列分类2000B 钢管购运2000C 飞越北极2000D 空洞探测2001A 血管三维重建2001B 公交车调度2001C 基金使用2001D 公交车调度2002A 车灯线光源2002B 彩票中数学2002C 车灯线光源2002D 赛程安排2003A SARS的传播2003B 露天矿生产2003C SARS的传播2003D 抢渡长江2004A 奥运会临时超市网点设计2004A 赛题使用数据2004B 电力市场的输电阻塞管理2004C 饮酒驾车2004D 公务员招聘2005A 长江水质的评价和预测2005B DVD在线租赁2005C 雨量预报方法的评价2005D DVD在线租赁2005D 数据2006A 出版社的资源配置2006A 数据2006B 艾滋病疗法的评价及疗效的预测2006B 数据2006C 易拉罐形状和尺寸的最优设计2006D 煤矿瓦斯和煤尘的监测与控制2006D 数据2007A 中国人口增长预测2007A 数据2007B 乘公交,看奥运2007B 数据2007C 手机“套餐”优惠几何2007C 数据2007D 体能测试时间安排2008A 数码相机定位2008B 高等教育学费标准探讨2008C 地面搜索2008D NBA赛程的分析与评价2008D 数据2009A 制动器试验台的控制方法分析2009A 数据2009B 眼科病床的合理安排2009C 卫星和飞船的跟踪测控2009D 会议筹备2010A 储油罐的变位识别与罐容表标定2010B 2010年上海世博会影响力的定量评估2010C 输油管的布置2010D 对学生宿舍设计方案的评价。

2023年历年全国数学建模试题及解法归纳

2023年历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳赛题93A非线性交调的频率设计93B足球队排名94A逢山开路94B锁具装箱问题95A飞行管理问题95B天车与冶炼炉的作业调度96A最优捕鱼策略96B节水洗衣机97A零件的参数设计97B截断切割的最优排列98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局OOA DNA序列分类00B钢管订购和运送01A血管三维重建解法拟合、规划图论、层次分析、整数规划图论、插值、动态规划图论、组合数学非线性规划、线性规划动态规划、排队论、图论微分方程、优化非线性规划非线性规划随机模拟、图论多目的优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式辨认、Fisher判别、人工神经网络组合优化、运送问题曲线拟合、曲面重建赛题01B 公交车调度问题02A 车灯线光源的优化02B 彩票问题03A SARS 的传播03B 露天矿生产的车辆安排04A 奥运会临时超市网点设计04B 电力市场的输电阻塞管理05A 长江水质的评价和预测05B DVD 在线租赁06A 出版社书号问题06B Hiv 病毒问题07A 人口问题07B 公交车问题08A 照相机问题08B 大学学费问题2023年A 题制动器实验台的控制方法分析2023年B 题眼科病床的合理安排2023年C 题卫星监控 解法多目的规划非线性规划单目的决策微分方程、差分方程整数规划、运送问题记录分析、数据解决、优化数据拟合、优化预测评价、数据解决随机规划、整数规划整数规划、数据解决、优化线性规划、回归分析微分方程、数据解决、优化 多目的规划、动态规划、图论、0-1规划非线性方程组、优化数据收集和解决、记录分析、回归分析工程控制排队论,优化,仿真,综合评价几何问题,搜集数据2023年D题会议筹备优化赛题发展的特点:1.对选手的计算机能力提出了更高的规定:赛题的解决依赖计算机,题目的数据较多,手工计算不能完毕,如03B,某些问题需要使用计算机软件,01A。

数学建模知识竞赛题库完整

数学建模知识竞赛题库完整

数学建模知识竞赛题库1.请问计算机中的二进制源于我国古代的哪部经典? DA.《墨经》B.《诗经》C.《周书》D.《周易》2.世界上面积最大的高原是?DA.青藏高原B.帕米尔高原C.黄土高原D.巴西高原3.我国海洋国土面积约有多少万平方公里? BA.200B.300C.280D.3404.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是BA.猫B.飞鸽C.海鸥D.鹰5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?BA.红色B.蓝色C.灰色D.绿色6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D )A. [1 0 1]B. [1 1 1]C. [0 0 1]D. [00 0]7.秦始皇之后,有几个朝代对长城进行了修葺? AA.7个B.8个C.9个D.10个8.中国历史上历时最长的朝代是?AA.周朝B.汉朝C.唐朝D.宋朝9我国第一个获得世界冠军的是谁?CA 吴传玉B 郑凤荣C 荣国团D 陈镜开10.我国最早在奥运会上获得金牌的是哪位运动员?BA.李宁B.许海峰C.高凤莲D.吴佳怩11.围棋共有多少个棋子?BA.360B.361C.362D.36512下列属于物理模型的是:AA水箱中的舰艇B分子结构图C火箭模型D电路图13名言:生命在于运动是谁说的?CA.车尔尼夫斯基B.普希金C.伏尔泰D.契诃夫14.饱食后不宜剧烈运动是因为BA.会得阑尾炎B.有障消化C.导致神经衰弱D.呕吐15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。

A.行B.列C.对角线D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役17色盲患者最普遍的不易分辨的颜色是什么?AA.红绿B.蓝绿C.红蓝D.绿蓝18下列哪种症状是没有理由遗传的?A.精神分裂症B.近视C.糖尿病D.口吃19下面哪个变量是正无穷大变量?(A )A. InfB. NaNC. realmaxD. realmin20泼水节是我国哪个少数民族的节日?DA.彝族B.回族C.壮族D.傣族21被称为画圣的是古代哪位画家?AA吴道子B.顾恺之C.韩干D.张择端22我国第一部有声影片是AA四郎探母B.定军山C.林则徐D.玉人何处23奔驰原产于哪国?CA美国B.日本C.德国D.英国24.菲利浦电器是哪一国家的产品?BA.日本B.美国C.德国D.英国25奥运会每四年举办一次,为期不超过多少天?BA.14天B.16天C.20天D.21天26.看鱼鳞能识鱼鳞,鱼鳞上的一圈代表?AA.半岁B.一岁C.一岁半D.两岁27.世界上最长的动物是哪一种?BA.鲸鱼B.水母C.恐龙D.大象28.山东山西中的山是指?BA.泰山B.太行山C.沂蒙山D.恒山29坦克是哪个国家发明的?AA英国B.德国C.美国D.法国30我军三大纪律,八项注意中三大纪律不包括?A不贪污受贿B.一切听从指挥C.不拿群众一针一线D.一切缴获要归公31雨后彩虹,美丽可目,但在1928年1月7日,由马德拉岛到开普敦的海面上,出现了一道奇特的彩虹,在能见度很差的雾霭中有一光晕,晕环下部似乎能触及船侧,你知道这道彩虹成什么颜色吗?DA.红色B.蓝白色C.蓝色D.白色32.“牛郎织女”的故事是众口皆碑的神话传说,你知道牛郎星属于什么星座吗?BA.天琴座B.天鹰座C.金牛座D.狮子座33世界上曾有六次截流,中国就有三次,都在长江上,其中有两次是长江三峡截流,另一次是哪项工程?CA.都江堰B.黄河C.葛洲坝D.钱塘江34唐代诗人有称“诗圣”的杜甫“诗仙”的李白等,你可知道被人颂称“诗魔”的是谁?AA.白居易B.王维C.刘禹锡D.李商隐35“君子之交淡如水,小人之交甘若醴”出自下列哪部作品?BA.老子B.庄子C.论语D.史记36.在Word2003文档中,对图片设置下列哪种环绕方式后,可以形成水印效果。

99创维杯全国大学生数学建模竞赛题目

99创维杯全国大学生数学建模竞赛题目

'9创维杯全国大学生数学建模竞赛题目A题自动化车床管理一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%, 其它故障仅占5%。

工序出现故障是完全随机的, 假定在生产任一零件时出现故障的机会均相同。

工作人员通过检查零件来确定工序是否出现故障。

现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附表。

现计划在刀具加工一定件数后定期更换新刀具。

已知生产工序的费用参数如下:故障时产出的零件损失费用f=200元/件;进行检查的费用t=10元/次;发现故障进行调节使恢复正常的平均费用d=3000元/次(包括刀具费);未发现故障时更换一把新刀具的费用k=1000元/次。

1)假定工序故障时产出的零件均为不合格品,正常时产出的零件均为合格品, 试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。

2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。

工序正常而误认有故障仃机产生的损失费用为1500元/次。

对该工序设计效益最好的检查间隔和刀具更换策略。

3)在2)的情况, 可否改进检查方式获得更高的效益。

附:100次刀具故障记录(完成的零件数)459362624542509584433748815505 612452434982640742565706593680 9266531644877346084281153593844 527552513781474388824538862659 775859755649697515628954771609 402960885610292837473677358638 699634555570844166061062484120 447654564339280246687539790581 621724531512577496468499544645 764558378765666763217715310851B题钻井布局勘探部门在某地区找矿。

历年高教杯全国大学生数学建模题目

历年高教杯全国大学生数学建模题目
1.6 近几年全国大学生数学建模竞赛题
A 1992 B A 1993 B A 1994 B 锁具装箱 锁具装箱 足球比赛的排名问题 逢山开路 实验数据分解 交调频率设计 农作物施肥效果分析
A 1995 B A 1996 B A 1997 B
一个飞行管理问题 天车与冶炼炉的作业调度 节水洗衣机问题 最优捕鱼问题 零件的参数设计 最优截断切割问题
长江水质的评价和预测 DVD 在线租赁 在线租赁
2006
2007
出版社的资源配置 艾滋病疗法的评价及疗效 B 的预测 A 中国人口增长预测 A B A 乘公交, 乘公交,看奥运 数码相机定位
2008 B 2009
高等教育学费标准探讨 制动器试验台的控制方法 A 分析 B 眼科病床的合理安排
A 1998 B A 1999 B A 2000 B A 2001 B
投资的收益和风险 灾情巡视路线 自动化车床管理 钻井布局 DNA 序列分类 钢管订购和运输
血管的三维重建 公交车调度
A 2002 B A 2003 B A 2004 B A 2005 B
车灯线光源的优化设计 彩票中的数学 SARS 的传播 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理

数学建模10年竞赛题及参考答案

数学建模10年竞赛题及参考答案

第七届数学建模竞赛与第一届数学竞赛赛题2010-5-16系部 班级 学号 姓名 成绩2010桂林理工大学第一届数学竞赛赛题1、请叙述高等数学的主要内容。

(10分)2、将累次积分rdr r r f d ⎰⎰2cos 0)sin ,cos (πθθθθ化成直角坐标下的累次积分。

(5分) 3、已知正项级数∑∞=1n n a 发散,判定级数∑∞=+11n nna a 的敛散性。

(5分) 4、设)(t x x =由方程0sin 12=-⎰--t x u du et 所确定,请计算022=t dtxd 。

(10分)5、求0)1(22222=--++dy x y y x ydx x ,10==x y 的特解。

(10分) 6、设)(x f 具有二阶导数,在0=x 的某去心邻域内0)(≠x f ,且0)(lim=→xx f x , 4)0(''=f ,请计算xx x x f 10)(1lim ⎥⎦⎤⎢⎣⎡+→。

(10分) 7、设00,21,2,)21ln()(=≠->⎪⎩⎪⎨⎧+=x x x x x x f 且,请计算)0()100(f 。

(10分) 8、设)(lim 1x f x →存在,)(x f 在]1,0[上可积,且恒有)(lim 3)(243)(112x f dx x f x x x f x →--+=⎰,求)(x f 。

(10分)9、设)(x f 在),(+∞-∞内可导,且)(lim )(lim x f x f x x +∞→-∞→=,证明存在),(+∞-∞∈c 使0)('=c f 。

(10分) 10、计算dS zx ⎰⎰∑2,其中∑是柱面az z x 222=+被锥面22y x z +=所截下的部分。

(10分)11、设)(x ϕ二阶连续可导,L 为不过y 轴的任一闭曲线,且曲线积分0)('])()('[2=--+⎰dy x dx x yx x x x Lϕϕϕ,求函数)(x ϕ。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目
全国数学建模大赛的题目通常涉及现实生活中的复杂问题,需要参赛者运用数学建模和数据分析的知识来解决。

以下是一些历年的题目:
2019年高教社杯全国大学生数学建模竞赛赛题:“金融风险量化分析”、“光伏发电单元对配电网影响分析”、“基于大数据的快递服务问题”
2018年高教社杯全国大学生数学建模竞赛赛题:“移动通信网络优化”、“城市共享单车调度优化”、“基于随机森林算法的信用卡违约预测”
2017年高教社杯全国大学生数学建模竞赛赛题:“电力市场的输电阻塞管理”、“移动支付用户行为分析”、“城市道路交通状态预测”
2016年高教社杯全国大学生数学建模竞赛赛题:“光伏发电功率预测”、“智能制造中机器人路径规划”、“互联网+时代下的出租车资源配置” 2015年高教社杯全国大学生数学建模竞赛赛题:“电动汽车充电设施规划”、“全球气候变化对人类健康的影响”、“互联网电影推荐系统”
2014年高教社杯全国大学生数学建模竞赛赛题:“快递服务满意度调查分析”、“基金定投策略分析”、“电力市场的输电阻塞管理”
以上只是部分题目,具体每年的题目可能会因实际情况而有所变化。

如果需要更详细的信息,建议查阅全国数学建模大赛的官方网站或相关资料。

历年全国大学生数学建模竞赛题目

历年全国大学生数学建模竞赛题目

武汉理工大学队员比赛论文mcm2003_A_王蝉娟_唐兵_隗勇mcm2003_A_万丽军_唐涛_陈正旭mcm2003_A王鹏_邓科_刘文慧mcm2003_B_王雨春_钟原_李霜icm2003_C_刘旺_董显_吴辉icm2003_C_夏立_成浩_易科mcm2004_b 厉化金_谷雨_曾祥智mcm2004_b_夏立_赵明杰_高婷全国比赛优秀论文1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题 DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度中国科大老师对美国赛题目的讲解(题目可从往届试题处下载) MCM 1985 A题(王树禾教授)MCM 1985 B题(侯定丕教授)MCM 1986 A题(常庚哲教授,丁友东老师)MCM 1986 B题(李尚志教授)MCM 1988 A题(苏淳教授)MCM 1988 B题(侯定丕教授)MCM 1989 A题(赵林城老师)MCM 1989 B题(侯定丕教授)MCM 1990 A题(王树禾教授)MCM 1990 B题(王树禾教授)MCM 1991 A题(常庚哲教授,丁友东老师)MCM 1992 B题(侯定丕教授)MCM 1993 A题(苏淳教授)MCM 1993 B题(万战勇老师)MCM 1994 B题(程继新老师)美国赛优秀论文MCM 2001 UMAP MCM 2002 UMAPMCM 2003 UMAP MCM 2004 (Quick Pass)。

历届中国大学生数学建模竞赛赛题题目汇总

历届中国大学生数学建模竞赛赛题题目汇总

历届中国大学生数学建模竞赛赛题题目汇总
1992:(A)施肥效果分析;(B)实验数据分析
1993:(A)非线性交调的频率设计;(B)足球队排名次
1994: (A)逢山开路;(B)锁具装箱
1995: (A)一个飞行管理问题;(B)天车与冶炼炉的作业调度
1996: (A)最优捕鱼策略;(B)节水洗衣机
1997: (A)零件的参数设计;(B)截断切割
1998: (A)投资的收益与风险;(B)灾情巡视路线
1999: (A)自动化车床管理;(B)钻井布局;(C)煤矸石堆积;(D)钻井布局
2000: (A)DNA序列分类;(B)钢管订购和运输;(C)飞越北极;(D)空洞探测
2001: (A)血管的三维重建;(B)公交车调度;(C)基金使用计划;(D)公交车调度
2002: (A)车灯线光源的优化设计;(B)彩票中的数学;(C)车灯线光源的计算;(D)赛程安排2003: (AC)SARS的传播;(B)露天矿生产的车辆安排;(D)抢渡长江
2004: (A)奥运会临时超市网点设计;(B)电力市场的输电阻塞管理;
(C)饮酒驾车;(D)公务员招聘
2005: (A)长江水质的评价和预测;(BD)DVD在线租赁;(C)雨量预报方法的评价
2006: (A)出版社的资源配置;(B)艾滋病疗法的评价及疗效的预测;
(C)易拉罐形状和尺寸的最优设计;(D)煤矿瓦斯和煤尘的监测与控制。

数学建模知识竞赛试题及答案

数学建模知识竞赛试题及答案

数学建模知识竞赛1._______是研究现实世界数量关系和空间形式的科学。

2._______是数学研究的最基本的对象,自然界无不可以用数和形以及它们的发展和变化形态及规律加以描述的,因此数学是无时不在,无处不在的。

3._______是生产力”,而数学是生产力发展的基石和源泉。

4.当今信息时代的一个重要特点是数学的应用向一切领域渗透,_______与_______的关系关系日益密切,产生了许多与数学相结合的新科学,如数学化学、数学生物学、数学地质学、数学社会学等。

5.“信息时代高科技的竞争本质上是数学的竞争”,“当今如此受到称颂的‘高科技’本质上是一种_______”。

6._______是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

7.数学模型具有_______、_______、_______三大作用,其中预测功能是数学模型价值的最重要的体现。

8.数学模型的预测功能就是用数学模型的_______和_______预测未来的发展,为人们的行为提供指导。

9.数学模型的判别功能就是用数学模型来判断_______、_______的可靠性。

10.数学模型的解释功能就是________________________。

11.一般来说,数学建模时为了构建数学模型而进行的_______、_______、_______、_______、_______、_______和的全过程。

12.数学建模的基本方法有:1)机理分析法2)__________ 3)__________ 4)__________5)__________13.建立数学模型的主要步骤是:(1)______(2)_______(3)_______(4)_______(5)_______(6)_______(7)_______14.鉴别所建立数学模型好坏的方法就是让它____________________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国大学生数学建模竞赛(CUMCM)历年赛题一览!
CUMCM历年赛题一览!!
CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览
1992年A)施肥效果分析问题(北京理工大学:叶其孝)
(B)实验数据分解问题(复旦大学:谭永基)
1993年A)非线性交调的频率设计问题(北京大学:谢衷洁)
(B)足球排名次问题(清华大学:蔡大用)
1994年A)逢山开路问题(西安电子科技大学:何大可)
(B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)
(B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福)
(B)节水洗衣机问题(重庆大学:付鹂)
1997年:(A)零件参数设计问题(清华大学:姜启源)
(B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年:(A)投资的收益和风险问题(浙江大学:陈淑平)
(B)灾情巡视路线问题(上海海运学院:丁颂康)
1999年:(A)自动化车床管理问题(北京大学:孙山泽)
(B)钻井布局问题(郑州大学:林诒勋)
(C)煤矸石堆积问题(太原理工大学:贾晓峰)
(D)钻井布局问题(郑州大学:林诒勋)
2000年:(A)DNA序列分类问题(北京工业大学:孟大志)
(B)钢管订购和运输问题(武汉大学:费甫生)
(C)飞越北极问题(复旦大学:谭永基)
(D)空洞探测问题(东北电力学院:关信)
2001年:(A)血管的三维重建问题(浙江大学:汪国昭)
(B)公交车调度问题(清华大学:谭泽光)
(C)基金使用计划问题(东南大学:陈恩水)
(D)公交车调度问题(清华大学:谭泽光)
2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(B)彩票中的数学问题(解放军信息工程大学:韩中庚)
(C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))
(D)赛程安排问题(清华大学:姜启源)
2003年:(A)SARS的传播问题(组委会)
(B)露天矿生产的车辆安排问题(吉林大学:方沛辰)
(C)SARS的传播问题(组委会)
(D)抢渡长江问题(华中农业大学:殷建肃)
2004年:(A)奥运会临时超市网点设计问题(北京工业大学:孟大志)
(B)电力市场的输电阻塞管理问题(浙江大学:刘康生)
(C)酒后开车问题(清华大学:姜启源)
(D)招聘公务员问题(解放军信息工程大学:韩中庚)
2005年: (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)
(B) DVD在线租赁问题(清华大学:谢金星等)
(C) 雨量预报方法的评价问题(复旦大学:谭永基)
(D) 同(B)
2006年:(A)出版社的资源配置问题(北京工业大学:孟大志)
(B)艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)
(C)易拉罐的优化设计问题(北京理工大学:叶其孝)
(D)煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)
2007年:(A)中国人口增长预测问题(清华大学:唐云)
(B)乘公交,看奥运问题(吉林大学:方沛辰,国防科大:吴孟达)
(C)手机“套餐”优惠几何问题(解放军信息工程大学:韩中庚)
(D)体能测试时间安排问题(全国组委会)。

相关文档
最新文档