江苏省无锡市2020届高三数学第一次模拟考试试题

合集下载

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案

南通市、泰州市2020届高三上学期期末联考数学试卷2020.1.14一、填空题1.已知集合 A = {-1,0,2}, B = {-1,1,2}, 则 A ∩B =________.2.已知复数 z 满足(1+ i ) z = 2i , 其中i 是虚数单位,则 z 的模为_______.3.某校高三数学组有 5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为 35,35,41,38,51,则这5 名党员教师学习积分的平均值为_______.4.根据如图所示的伪代码,输出的 a 的值为_______.5.已知等差数列{a n } 的公差 d 不为 0 ,且 a 1,a 2,a 4 成等比数列,则1a d的值为_____. 6.将一枚质地均匀的硬币先后抛掷 3 次,则恰好出现 2 次正面向上的概率为______.7.在正三棱柱 ABC - A 1B 1C 1 中, AA 1=AB =2 ,则三枝锥 A 1 - BB 1C 1 的体积为______.8.已如函数.若当 x =6π时,函数 f (x ) 取得最大值,则ω 的最小值为______.9. 已 知 函 数 f (x ) = (m - 2)x 2 + (m - 8)x (m ∈R ) 是 奇 函 数 . 若 对 于 任 意 的 x ∈ R , 关 于 x 的 不 等 式f ( x 2 +1) < f (a ) 恒成立,则实数 a 的取值范围是______.10.在平面直角坐标系 xOy 中, 已知点 A ,B 分别在双曲线C : x 2 - y 2 =1 的两条渐近线上, 且双曲线C 经过线段 AB 的中点.若点 A 的横坐标为 2 ,则点 B 的横坐标为______.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为 lgE = 4.8 +1.5M . 2008 年 5 月汶川发生里氏8.0 级地震,它释放出来的能量是 2019 年 6 月四川长宁发生里氏 6.0 级地震释放出来能量的______倍.12. 已知△ABC 的面积为 3 ,且 AB = AC .若2CD DA =,则 BD 的最小值为______.13.在平面直角坐标系 xOy 中, 已知圆C 1 : x 2 + y 2 = 8 与圆C 2 : x 2 + y 2 + 2x + y -a = 0 相交于 A ,B 两点.若圆C 1 上存在点 P ,使得△ABP 为等腰直角三角形,则实数 a 的值组成的集合为______. 14.已知函数若关于 x 的方程 f 2 ( x ) + 2af (x )+1- a 2 = 0 有五个不相等的实数根,则实数a 的取值范围是______.二、解答题15. (本小题满分14 分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,PC ⊥AB ,D,E 分别为BC,AC 的中点。

江苏省无锡市2024届高三上学期期终教学质量调研测试数学试题

江苏省无锡市2024届高三上学期期终教学质量调研测试数学试题
(2)若 sin B A 3 7 ,求 tan A .
32 19.如图,在四棱锥 A BCDE 中,平面 ABC 平面 BCDE ,CD DE 2BE ,BC CD ,
BE//CD , F 是线段 AD 的中点.
(1)若 BA BC ,求证: EF 平面 ACD ; (2)若 BE 1,ABC 60 ,且平面 ABC 与平面 ADE 夹角的正切值为 2 3 ,求线段 AC
排队方法数为
.(用数字作答)
15.已知函数
f
x
sin
3x
在区间,上的值域为
2 2
,1
,则
的值为
.
16.已知函数
f
x
ex , x x2 ,
0 x
0
,若函数
f
x
的图象在点
A
x1,
f
x1
x1
0
和点
B x2 , f x2 x2 0 处的两条切线相互平行且分别交 y 轴于 M 、 N 两点,则
分别是侧棱 CC1 ,BB1 上的点,且 MC 2 ,NB 1 ,则四棱锥 A BCMN 的体积为( )
A. 3
B.2
C. 3 3
D.6
7.已知 Sn 是等比数列an 的前 n 项和,且存在 k N ,使得 Sk3 , Sk9 , Sk6 成等差数
列.若对于任意的 m N ,满足 am2 am5 32 ,则 am8 ( )
p ,则当 k
取不小于
r
1 的最小正整数时,
p
PX
k 最大
三、填空题 13.已知直线 l : 3x y 6 0 与圆 C : x2 y 2 2x 4y 0 相交于 A, B 两点,则
| AB |

江苏无锡2024届高三上学期期终教学质量调研测试数学试题(解析版)

江苏无锡2024届高三上学期期终教学质量调研测试数学试题(解析版)

无锡市2023年秋学期高三期终教学质量调研测试数学2024.11. 已如集合{}1,0,1,2,3,4A 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.=−,集合{}2230B x xx =−−≤,则A B = ( )A. {}1,0,1,2,3−B. {}1,0,1−C. {}0,1,2D. {}1,0−【答案】A 【解析】【分析】根据一元二次不等式求得集合B ,结合交集运算,可得答案. 【详解】由题意集合()(){}{}31013B x x x x x =−+≤=−≤≤,{}1,0,1,2,3A B ∩=−.故选:A. 2. 复数12i3i−+在复平面内对应的点所在的象限为( ) A. 第一象限 B. 第二象限 C. 笵三象限 D. 第四象限【答案】D 【解析】【分析】利用复数的运算将12i3i−+化简,从而可求对应的点的位置. 【详解】因为()()()()12i 3i 12i17i 17i 3i3i 3i 101010−⋅−−−===−++⋅−, 所以复数12i 3i −+在复平面内对应的点为17,1010 −,易得该点在第四象限.故选:D3. 已知a ,b 是两个不共线的向量,命题甲:向量ta b + 与2a b − 共线;命题乙:12t =−,则甲是乙的.( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】利用向量共线定理即可判断.【详解】向量ta b + 与2a b −共线等价于()2ta ba b λ+=− .因为a ,b 是两个不共线的非零向量,所以12t λλ= =− ,解得:12t =−.所以甲是乙的充要条件. 故选:C.4. 从甲地到乙地的距离约为240km ,经多次实验得到一辆汽车每小时托油量Q (单位:L )与速度v (单位:km/h (0120v ≤≤)的下列数据:v0 40 60 80 120 Q0.0006.6678.12510.00020.000为描述汽车每小时枆油量与速度的关系,则下列四个函数模型中,最符合实际情况的函数模型是( )A. Qav b =+ B. 32Q av bv cv =++C. 0.5v Q a =+D. log a Q k v b =+【答案】B 【解析】【分析】根据题意以及表中数据可知,函数在定义域[]0,120上单调递增,且函数的图象经过坐标原点,即可判断出最符合实际的函数模型.【详解】依题意可知,该函数必须满足三个条件:第一,定义域为[]0,120;第二,在定义域上单调递增;第三,函数经过坐标原点.对于A 选项: Qav b =+不经过坐标原点,故A 不符合; 对于B 选项: 32Q av bv cv =++满足以上三个条件,故B 符合; 对于C 选项: 0.5v Q a =+在定义域内单调递减,故C 不符合;对于D 选项:当0v =时,log a Q k v b =+无意义,故D 不符合; 故选:B.5. 已知0a b >>,设椭圆1C :22221x y a b +=与双曲线2C :22221x ya b−=的离心率分别为1e ,2e .若213e e =,则双曲线2C 的渐近线方程为( )A. y x =B. 45y x =±C. y x =D. y x = 【答案】A 【解析】【分析】根据题意及椭圆和双曲线的离心率公式求得ba的值,写出双曲线的渐近线即可. 【详解】因为213e e ==,解得b a =,所以双曲线2C的渐近线方程为y x =. 故选:A.6. 已知直四棱柱1111ABCD A B C D −底面是边长为2的菱形,且120DAB ∠=°.若M ,N 分别是侧棱1CC ,1BB 上的点,且2MC =,1NB =,则四棱锥A BCMN −的体积为( )A.B. 2C. D. 6【答案】A 【解析】【分析】通过分析得到AH 为四棱锥A BCMN −的高,计算体积即可. 【详解】取BC 的中点H ,连接AH ,由直四棱柱1111ABCD A B C D −的底面是边长为2的菱形,且120DAB ∠=°,所以60,ABC ∠=°易得AB BC AC ==,所以AH BC ⊥,又因为1BB ⊥面ABCD ,且AH ⊂面ABCD ,的所以1BB AH ⊥,又因为1,BB BC B ∩=且1,BB BC ⊂面11BB CC , 所以AH ⊥面11BB CC ,故AH 为四棱锥A BCMN −的高.易得到AH =,四边形BCMN 的面积为()112232S =×+×=,所以四棱锥A BCMN −的体积为11333V S AH =⋅=×=,故选:A.7. 已知n S 是等比数列{}n a 的前n 项和,且存在k ∈N ,使得3k S +,9k S +,6k S +成等差数列.若对于任意的N m ∈,满足2532m m a a +++=,则8m a +=( ) A. 32m + B. 16m + C. 32 D. 16【答案】D 【解析】【分析】借助等比数列知识,利用3k S +,9k S +,6k S +成等差数列,求出312q =−,再利用2532m m a a +++=,求出2m a ,再计算8m a +即可.【详解】因为3k S +,9k S +,6k S +成等差数列,所以9362k k k S S S +++=+ 即96930k k k k S S S S ++++−+−=, 即9879876540k k k k k k k k k a a a a a a a a a +++++++++++++++++=, 所以()98765420k k k k k k a a a a a a +++++++++++=, 因为数列{}n a 是等比数列,且0n a ≠,所以()543244444420k k k k k k a q a q a qaq a q a ++++++⋅+⋅+⋅+⋅+⋅+=, ()32242110k a q q q q q + +++++=,所以()3222110qqq q q +++++=,即()()322110q q q +++=, 所以210q q ++=(无解)或3210q +=,即312q =− 又因为2532m m a a +++=,所以()33222132m m m a a q a q ++++⋅=+=, 所以264m a +=,所以2682164162m m a a q ++ =⋅=×−=,故选:D.8. 已知函数()f x 的定义域为R ,且()2f x x +为奇函数,()2f x x −为偶函数.令函数()()(),0,,0.f x xg x f x x ≥ = −< 若存在唯一的整数0x ,使得不等式()()2000g x a g x +⋅<成立,则实数a 的取值范围为( ) A. [)(]8,31,3−− B. [)(]3,13,8−−∪ C. [)(]3,03,8− D. [)(]8,30,3−−【答案】B 【解析】【分析】先根据函数奇偶性定义求出()f x ,表示出()g x ,画出图象,分类讨论即可.【详解】令()()2h x f x x =+,()()2m x f x x =−,因为()2f x x +为奇函数,()2f x x −为偶函数.所以()()()2h x h x f x x −=−=−+,()()()2m x m x f x x −==−+, 所以()()()()22,h x f x x h x f x x =+ −=−+ 可得()()22f x f x x +−=− ①, 同理()()()()2,2mx f x x m x f x x =−=−+可得()()4f x f x x −−= ②, 由+①②得()22f x x x =−+,所以()222,02,0x x x g x x x x −+≥= −< ,要满足存在唯一的整数0x ,使得不等式()()2000g x a g x +⋅< 成立, 而()()()()200000g x a g x g x g x a +⋅=+< , 当0a =时,()200g x < ,显然不成立, 当a<0时,要使()()00,g x a ∈−只有一个整数解,因为()()111,3,g g =−= 所以13a <−≤,即31a −≤<−.当0a >时,要使()()0,0g x a ∈−只有一个整数解,因为()()()0,332,48g g g ==−=−, 所以83a −≤−<−,即38a <≤.综上所述:实数a 的取值范围为[)(]3,13,8−−∪. 故选: B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 第一组样本数据12,,,n x x x ,第二组样本数据1y ,2y ,…,n y ,其中21i i y x =−(1,2,,i n =⋅⋅⋅),则( )A. 第二组样本数据的样本平均数是第一组样本数据的样本平均数的2倍B. 第二组样本数据的中位数是第一组样本数据的中位数的2倍C. 第二组样本数据的样本标准差是第一组样本数据的样本标准差的2倍D. 第二组样本数据的样本极差是第一组样本数据的样本极差的2倍 【答案】CD 【解析】【分析】根据平均数和标准差的性质以及中位数和极差的概念可得答案.【详解】设样本数据12,,,n x x x ,的样本平均数为x ,样本中位数为m ,样本标准差为s ,极差为max min x x −,对于A,C 选项:由21i i y x =−,根据平均数和标准差的性质可知, 样本数据1y ,2y ,…,n y 的样本平均数为21x −,故A 错误;样本数据1y ,2y ,…,n y 的样本方差为2224a s s =,所以第二组数据的样本标准差2s ,故C 正确; 对于B 选项:根据中位数的概念可知,样本数据1y ,2y ,…,n y 的中位数为21m −,故B 错误; 对于D 选项:根据极差的概念可知, 样本数据1y ,2y ,…,n y 的极差为()()()max minmax min max min 21212y y x x x x −=−−−=−,故D 正确.故选:CD.10. 已知函数()πsin 23f x x=+,()πcos 26g x x=+,则下列说法正确的是( ) A. ()y f x =的图象关于点π,012对称 B. ()g x 在区间π5π,26上单调递增 C. 将()g x 图象上的所有点向右平移π6个单位长度即可得到()f x 的图象 D.函数()()()h x f x g x =+【答案】BCD 【解析】【分析】对于A 选项::将π12x =代入()f x 验证即可;对于B 选项:换元后结合三角函数图象与性质判断即可;对于C 选项:利用三角函数得图象变换化简整理即可;对于D 选项:借助和差角公式计算即可.【详解】对于A 选项:将π12x =代入()f x ,得ππππsin 2sin 1121232f=×+==,故()y f x =的图象不关于点π,012对称,故选项A 错误; 对于B 选项:在()πcos 26g x x =+,令π26t x =+,则cos y t =, 因为π5π,26x∈ ,所以π7π11π2,666t x =+∈, 根据余弦函数图象可知cos y t =在7π11π,66单调递增,故选项B 正确; 对于C 选项:将()g x 图象上的所有点向右平移π6个单位长度, 可得到πππππππcos 2cos 2cos 2sin 2(),6666233g x x x x x f x −−+−−+++故选项C 正确;对于D 选项:()()()ππsin 2cos 236h x f x g x x x=+=+++,()π11sin 2cos 2sin 222sin 22,322h x x x x x x x x∴=+++=+−结合余弦函数的性质可知:()2h x x =≤,故选项D 正确.故选:BCD.11. 已知过点()0,t 的直线1l 与抛物线C :24x y =相交于A 、B 两点,直线2l :4y kx =+是线段AB 的中垂线,且1l 与2l 的交点为(),Q m n ,则下列说法正确的是( ) A. m 为定值 B. n 为定值C. k −<<且0k ≠ D. 22t −<<【答案】BD 【解析】【分析】由两直线位置关系设出直线1l 的方程,联立直线与抛物线方程,求出点Q 的坐标,代入4y kx =+即可判断选项A 和B ,利用已知条件找出k 与t 的关系,结合0∆>即可判断选项C 和D.【详解】由题意可知,直线1l 的斜率存在且不为0,因为直线1l 过点()0,t 且与抛物线C :24x y =相交于A 、B 两点,直线2l :4y kx =+是线段AB 的中垂线,所以设直线1l :1,0y x t k k=−+≠, 联立方程214y x t kx y=−+ = ,可得2440x x t k +−=, 所以216160t k ∆=+>,121244x x k x x t+=−=− , 所以AB 的中点坐标222,t k k−+, 由题意可知,点(),Q m n 是AB 的中点,所以2m k =−,22n t k =+, 因为(),Q m n 在直线2l :4y kx =+上,所以4n km =+,因为2m k =−,所以242n k k=−×+=,所以n 为定值,故选项B 正确; 因为k 是变量,所以m 不是定值,故选项A 错误;因为22n t k =+,2n =,所以222t k +=,即222t k =−, 又因为216160t k ∆=+>,所以221621620k k+−>,即216320k −>,解得k >k <C 错误; 对选项D ,由选项C 可得212k >,222t k=−, 所以22122k t =>−,解得22t −<<,故选项D 正确. 故选:BD.12. 已知在伯努利试验中,事件A 发生的概率为()01p p <<,我们称将试验进行至事件A 发生r 次为止,试验进行的次数X 服从负二项分布,记作(),X NB r p ∼,则下列说法正确的是( )A. 若11,2X NB ∼ ,则()12kP X k ==,1,2,3,k =⋅⋅⋅ B. 若(),X NB r p ∼,则()()1k rr P X k p p −==−,,1,2,k r r r =++⋅⋅⋅ C 若(),X NB r p ∼,(),Y B n p ∼,则()()P X n P Y r ≤=≥ D. 若(),X NB r p ∼,则当k 取不小于1r p−的最小正整数时,()P X k =最大 【答案】ACD 【解析】【分析】利用负二项分布的概念可判断AB 选项;利用二项分布和负二项分布的概率公式可判断C 选项;分析可得()()()()11P X k P X k P X k P X k =≥≥− =≥≥+,结合负二项分布的概率公式可判断D 选项. 【详解】对于A 选项,因为11,2X NB ∼,则()11111111122222kk P X k − ==−−−⋅=  个,A对;对于B 选项,因为(),X NB r p ∼,则()()()11111C 1C 1k rk rr r r rk k P X k pp p p p −−−−−−−==−=−,,1,2,k r r r =++⋅⋅⋅,B 错; 对于C 选项,因为从{}1,2,,n 中取出()0r j j n r +≤≤−个数12r j a a a +<<< 的取法有C r jn +种,.这些取法可按r a 的值分类,即()0r a r i i n r j =+≤≤−−时的取法有11C C r ir i n r i −−+−−种,所以,110CC C n r jr i r jr i n r i n i −−−+−+−−==∑,因为(),X NB r p ∼,(),Y B n p ∼,设1q p =−,则1p q +=, 所以,()()111100C C n rn rn r ir r ir r ir ir i i i P X n p q p q p q −−−−−−−+−+==≤==+∑∑11110000CCC C n rn r i n r i n rr r ijj n r i jr j r j n r jr in r ir i n r i i j j i p q p qp q −−−−−−−−−−−+−−−+−−−+−−=====⋅=∑∑∑∑ ()0Cn rr jr j n r jnj p q P Y r −++−−==≥∑,C 对;对于D 选项,因为(),X NB r p ∼,()P X k =最大,则()()()()11P X k P X k P X k P X k =≥≥−=≥≥+, 所以,()()()()111121111C 1C 1C 1C 1k r k r r r r r k k k r k r r r r r k k p p p p p p p p −−−−−−−−−+−−− −≥− −≥− ,解得111k r k p p −−≤≤+, 所以,当k 取不小于1r p−的最小正整数时,()P X k =最大,D 对. 故选:ACD.【点睛】关键点点睛:本题考查负二项分布的问题,解决本题的关键在于正确理解负二项分布的定义,知晓负二项分布的概率公式,结合负二项分布的概率公式求解.三、填空题:本题共4小题,每小题5分,共20分.13. 已知直线6:30l x y −−=与圆222:40C x y x y +−−=相交于,A B 两点,则||AB =______.【解析】【分析】首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可. 【详解】圆222:40C x y x y +−−=,22(1)(2)5x y −+−=,圆心(1,2),半径r =.圆心到直线的距离dAB =【点睛】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题. 14. 随着杭州亚运会的举办,吉祥物“琮琮”、“莲莲”、“宸宸”火遍全国.现有甲、乙、丙3位运动员要与“琮琮”、“莲莲”、“宸宸”站成一排拍照留念,则这3个吉祥物互不相邻的排队方法数为______.(用数字作答) 【答案】144 【解析】【分析】先将甲、乙、丙3位运动员排序,然后将“琮琮”、“莲莲”、“宸宸”三个吉祥物插入3位运动员形成的4个空位中,利用插空法可得出不同的排队方法种数. 【详解】先将甲、乙、丙3位运动员排序,然后将“琮琮”、“莲莲”、“宸宸”三个吉祥物插入3位运动员形成的4个空位的3个空位中,所以,不同的排队方法种数为3334A A 624144=×=种. 故答案为:144.15. 已知函数()()sin 3f x x ϕ=+在区间[],ϕϕ−上的值域为,则ϕ的值为______.【答案】π8【解析】【分析】先得到0ϕ>,根据[],x ϕϕ∈−得到[]32,4x ϕϕϕ+∈−,根据值域得到方程,检验后求出答案. 【详解】由题意得0ϕ>,当[],x ϕϕ∈−时,[]32,4x ϕϕϕ+∈−,由于()()sin 3f x x ϕ=+在区间[],ϕϕ−上的值域为, 故①π24π5π424ϕϕ −=− ≤≤ 或②5π44π204ϕϕ= −≤−< ,解①得π8ϕ=,满足π5π816ϕ≤≤解②得5π16ϕ=,不满足π08ϕ<≤,舍去, 综上,ϕ的值为π8. 故答案为:π816. 已知函数()2e ,0,0x x f x x x ≥= −< ,若函数()f x 的图象在点()()()111,0A x f x x <和点()()()222,0B x f x x >处的两条切线相互平行且分别交y 轴于M 、N 两点,则AM BN的取值范围为______.【答案】e,2 +∞【解析】【分析】由()()12f x f x =′′可得出21e 2x x =−,利用弦长公式得出22e 2x AM BN x =,利用导数求出函数()e 2xg x x=在()0,∞+上的值域,即可为所求. 【详解】当0x <时,()2f x x =−,()2f x x ′=−,则()112f x x =−′,当0x >时,()e xf x =,()e xf x ′=,则()22e xf x ′=,因为函数()f x 的图象在点()()()111,0A x f x x<和点()()()222,0B x f x x >处的两条切线相互平行,则()()12f x f x =′′,即212e x x −=,则21e2x x =−,AM =BN = 所以,2122e 2x AMx BN x x ==−=, 令()e 2xg x x =,其中0x >,则()()2e 12x x g x x′−=, 当01x <<时,()0g x ′<,此时函数()g x 在()0,1上单调递减, 当1x >时,()0g x ′>,此时函数()g x 在()1,∞+上单调递增,所以,()()e12g x g ≥=,因此,AM BN的取值范围是e ,2∞ +.故答案为:e ,2∞ +.【点睛】关键点点睛:解决本题的关键在于利用切线斜率相等得出2x 、1x 所满足的关系式,然后将AM BN转化为含2x 的函数,转化为函数的值域问题求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设数列{}n a 满足11a =,22a =,214363n n n a a a n ++=−+−. (1)证明:数列{}13n n a a n +−+为等比数列; (2)求数列{}n a 通项公式. 【答案】(1)证明见解析 (2)()131232n n n n a −−=−−【解析】【分析】(1)整理题目中的等式,根据等比数列的定义,可得答案; (2. 【小问1详解】由214363n n n a a a n ++=−+−,则()21131339n n n n a a n a a n +++−++=−+, 所以()2113133n n n n a a n a a n+++−++=−+,由11a =,22a =,则21321340a a −+=−+=≠ 故数列{}13n n a a n +−+为等比数列. 【小问2详解】由(1)可知数列{}13n n a a n +−+是以4为首项,以3为公比,故11343n n n a a n −+−+=×,11433n n n a a n −+−=×−,的则0214331a a −=×−×;324332a a −=×−×;()214331n n n a a n −−−=×−×−.由累加法可得:()()()()1114133311312321322n n nn n n n a a −−×− +−×−−−=−=×−−−,由11a =,则()1312312n n n n a −−=×−−.18. 在ABC 中,角,,A B C 的对边分别为a ,b ,c ,已知ABC)222a b c +−. (1)求sin C ;(2)若()sin B A −,求tan A .【答案】(1(2. 【解析】【分析】(1.(2)借助三角函数的相关知识求出()()tan ,tan B A A B −+,利用配凑角及二倍角公式计算即可. 【小问1详解】结合题意:ABC的面积为)2221sin 2Sab C a b c ==+−, sin C =结合余弦定理可得:sin 0C C =>,所以22sin sin cos 1C C C C = +=,解得sin 1cos 8C C = =,所以sin C =【小问2详解】 因为()sin 0B A −=>,所以B A >,易得A 为锐角, 所以()31cos 32B A −==,所以()()()sin tan cos B A B A B A −−==−,由上问可知()sin sin C A B =+=,()1cos cos 8A B C +=−=−, 所以()()()sin tan cos A B A B A B ++=−+ ()()()()()()tan tan tan 2tan 1tan tan A B B A A A B B A A B B A +−−=+−−== ++−所以22tan tan 21tan AA A==−,整理得2tan 2tan 0A A +−=,即)(tan 33tan 0A A+=,解得tan A =,或tan A =19. 如图,在四棱锥A BCDE −中,平面ABC ⊥平面BCDE ,2CD DE BE ==,BC CD ⊥,//BE CD ,F 是线段AD 的中点.(1)若BA BC =,求证:EF ⊥平面ACD ;(2)若1BE =,60ABC ∠=°,且平面ABC 与平面ADE AC 的长. 【答案】(1)证明见详解 (2【解析】【分析】(1)首先证BG ⊥平面ACD ,通过证明四边形BGFE 是平行四边形,得EF BG ,进而得证; (2)利用空间向量法求解即可 【小问1详解】取AC 的中点G ,连接BG 、FG ,因为BA BC =,所以BG AC ⊥, 又因为 平面ABC⊥平面BCDE ,平面ABC 平面BCDE BC =,BC CD ⊥,所以CD ⊥平面ABC ,BG ⊂平面ABC ,所以CD BG ⊥,因为AC CD C = ,,AC CD ⊂平面ACD , 所以BG ⊥平面ACD ,又因为F 是线段AD 的中点, 所以FG CD ∥且12FG CD =,BE CD 且12BE CD =,所以FG BE 且FG BE =, 四边形BGFE 平行四边形,所以EF BG ,所以EF ⊥平面ACD 【小问2详解】 如图建系因为1BE =,又2CD DE BE ==,所以22CD DE BE ===, 又因为BC CD ⊥,//BE CD ,所以四边形BCDE 是直角梯形, 所以BC =设ABm =,所以),,0Am ,()2D ,()0,0,1E ,所以),,1EAm =−,()ED =,设平面ADE 的一个法向量()1,,n x y z=,是所以11my znz+−=⇒=+=,平面ABC的法向量()20,0,1n=,设平面ABC与平面ADE夹角为θ,所以tanθ=,cosθ,所以m=,所以32A,()C,所以AC=20. 为考察药物M对预防疾病A以及药物N对治疗疾病A的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)(1)依据0.1α=的独立性检验,分析药物M对预防疾病A的有效性;(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物N进行治疗.已知药物N的治愈率如下:对未服用过药物M的动物治愈率为12,对服用过药物M的动物治愈率为34.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为X,求X的分布列和数学期望.附:()()()()22()n ad bca b c d a c b dχ−=++++,n a b c d=+++α0.100 0.050 0.010 0.001xα2.7063.841 6.635 10.828【答案】20. 药物M对预防疾病A有效果. 21. 答案见解析.【解析】【分析】(1)根据公式算出卡方,与表格中的数据比较即可.(2)结合全概率公式先求概率,每名志愿者用药互不影响,且实验成功概率相同,X 服从二项分布求分布列和数学期望即可. 【小问1详解】零假设为0H :药物M 对预防疾病A 无效果, 根据列联表中的数据,经计算得到()()()()22()n ad bc a b c d a c b d χ−=++++2100(30101545)75254555××−×=×××100 3.030 2.70633=≈>, 根据小概率值0.1α=的独立性检验,我们推断零假设不成立, 即认为药物M 对预防疾病A 有效果. 【小问2详解】设A 表示药物N 的治愈率,1B 表示对未服用过药物M , 2B 表示服用过药物M 由题,()1150.625P B ==,()2100.425P B ==, 且()10.5P A B =,()20.75P A B =,()()()()()1122P A P B P A B P B P A B =×+×0.60.50.40.750.6=×+×=.药物N 的治愈率30.65P ==, 则3~3,5X B ,所以()303280C 5125P X === , ()121332361C 55125P X ===, ()212332542C 55125P X ===, ()3333273C 5125P X ===, X 的分布列如下表所示 X123()8365427901231251251251255E X =×+×+×+×=. 21. 在直角坐标系xOy 中,动点(),P x y 与定点()1,0F 的距离和P 到定直线l :4x =的距离的比是常数12,记动点P 的轨迹为W .(1)求W 的方程;(2)过动点()0,T t (0t <)的直线交x 轴于点H ,交W 于点,A M (点M 在第一象限),且2AT TH =.作点A 关于x 轴的对称点B ,连接BT 并延长交W 于点N .证明:直线MN .【答案】(1)22143x y +=;(2)证明见解析. 【解析】【分析】(1)根据题意列出关于动点P 的轨迹表达式,化简整理即可.(2)设直线AM 的方程为(),0y kx t k =+>,借助2AT TH =及韦达定理,求出,M N 的坐标,表示并化简直线MN 斜率,利用基本不等式计算即可. 【小问1详解】结合题意:设点P 到定直线l :4x =的距离为d ,则12PF d =,12=,化简得22143xy +=. 故W 的方程为22143x y +=.【小问2详解】由题意可知:直线AM 的斜率存在,故可设直线AM 的方程为(),0y kx t k =+>, 设()()1122,,,,A x y M x y ,所以()11,B x y −,,0t H k− ,因为2AT TH =,所以()11,2,t x t y t k−−=−−,且()0,T t 在椭圆内部.所以22,3,,3,t t A t B t k k −联立2234120y kx t x y =+ +−=,()2223484120k x ktx t +++−=, 所以122228,34t kt x x x k k −+=+=+所以()22216634k t t x k k −−=+,22212334k t t y k−−=+, 即点()2222166123,3434k t t k t t M k k k −−−− ++ , 因为2,3t B t k − ,()0,T t ,所以422BT t k k t k−==−, 所以直线BT 的方程可设为2y kx t =−+,设()33,,N x y 联立22234120y kx t x y =−+ +−=,()222316164120k x ktx t +−+−=, 所以()2133322216166,316316t kt k t t x x x x k k k k −−+=+==++, ()223322166481522316316k t t k t t y kx t k t k k k −−+=−+=−+=++, 故()22221664815,316316k t t k t t N k k k −−+ ++, 所以直线MN 斜率为 ()()224222232224242322248151233842885414454316342,166166192721927231634MN k t t k t t y y k k k k k k k k k t t k t t x x k k k k k k k k+−−− −+++++===×=+ −−−−−++ −++ 结合题意可知0k >,即()2223833224483MN k k k k k k k + +×+≥+当且仅当324k k =,即k =时,直线MN . 故直线MN .22. 已知函数()4ln f x x ax x =+(R a ∈),()f x ′为()f x 的导函数,()()g x f x ′=. (1)若12a =−,求()y f x =在 上的最大值;(2)设()()11,P x g x ,()()22,Q x g x ,其中211x x ≤<.若直线PQ 的斜率为k ,且()()122g x g x k ′′+<,求实数a 的取值范围. 【答案】(1)1(2)[12,)−+∞【解析】【分析】(1)若12a =−,求得()3412ln 12f x x x =−′−,得到()2(1)(1)12x x x g x x ′−++=×,结合()g x ′的符号,得到()0g x <,即()0f x ′<,进而求得函数()f x 的最大值;(2)根据题意,转化为任意12,[1,)x x ∈+∞,都有()()121212()()2g x g x g x g x x x +−<−′′,令12x t x =,得出314(1)(2ln )0t a t t t−+−−>对于(1,)t ∀∈+∞恒成立,记()314(1)(2ln )t t a t t t ϕ=−+−−,求得()22212(1)t a t t t ϕ+=−⋅′,分类讨论,求得函数的函数()t ϕ与最值,即可求解. 【小问1详解】解:若12a =−,可得()412ln f x x x x =−,则()3412ln 12f x x x =−′−, 即()()3412ln 12g x f x x x ==−−′,可得()2212(1)(1)1212x x x g x x x x −++=−=×′,当x ∈ 时,()0g x ′>,所以()y g x =在 上单调递增,又由4e 160g −=<,所以()0g x <,即()0f x ′<,所以函数()y f x =在 上单调递减,所以()()max11f x f ==,即函数()f x 的最大值为1.【小问2详解】 解:由()()()()1122,,,P x g x Q x g x ,可得1212()()g x g x k x x −=−, 因为()()122g x g x k +′′<,所以对任意12,[1,)x x ∈+∞且21x x <,都有()()121212()()2g x g x g x g x x x +−<−′′, 因为()4ln f x x ax x =+,可得()()34ln g x f x x a x a =+′=+,则()212a g x x x=′+, 对任意12,[1,)x x ∈+∞且21x x <,令12(1)xt t x =>, 则()()()()()()1212122x x g x g x g x g x −+−⋅−′′ ()()2233121211221121224ln 4ln a x x x x x a x x a x x =−++−+−− 3322121121212212441212()2ln x x x x x x x x x a a x x x =−−++−− 332214(331)(2ln )0x t t t a t t t−+−+−−>对于2[1,),(1,)x t ∀∈+∞∀∈+∞恒成立, 由332332224(331)(1)(1)x t t t x t t −+−=−≥−则314(1)(2ln )0t a t t t −+−−>对于(1,)t ∀∈+∞恒成立,记()314(1)(2ln )t t a t t tϕ=−+−−, 可得()222222(1)1212(1)(1)t t a t t a t t t ϕ−+−+⋅′⋅=−, ①若12a ≥−,则()0t ϕ′>,()t ϕ在(1,)+∞单调递增,所以()()10t ϕϕ>=,符合题意;②若12a <−,则()212(1)t t ϕ′−,当t ∈时,()0t ϕ′<,()t ϕ在(1,)+∞单调递减;当)t ∈+∞时,()0t ϕ′>,()t ϕ在(1,)+∞单调递增,所以,当t ∈时,()()10t ϕϕ<=,不符合题意(舍去), 综上可得,12a ≥−,即实数a 的取值范围为[12,)−+∞【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。

江苏省无锡市锡东高级中学2024届高三下学期4月月考数学试题

江苏省无锡市锡东高级中学2024届高三下学期4月月考数学试题

å ( ) ( ) å ( ) 2n
(2) Tn = éë ak4 + ak2 k =1
(-1)k ùû n Î N*
n
,求
1
T k =1 k
n Î N*

18.已知椭圆 C
:
x2 a2
+
y2 b2
= 1(a
>b
>
0) 的上顶点为 D (0, 2) ,直线 l :
y
=
kx 与椭圆 C
交于
A, B
两点,且直线
试卷第61 页,共33 页
1.D
参考答案:
【分析】化简出 z1 = 3 - i ,则可计算出 z - z1 = -3 - i ,再由模长公式计算出答案.
【详解】 z1 = (1+ i)(1- 2i) = 1- 2i + i - 2i2 = 3 - i ,
z - z1 = -2i - 3 + i = -3 - i = (-3)2 + (-1)2 = 10 .
ex f ( x +1) > e4 f (2x - 3) ”的( )
A.充分不必要条件 C.既不充分又不必要条件
B.必要不充分条件 D.充要条件
二、多选题
9.已知函数 f ( x) = Asin (wx + j )(w > 0) 是偶函数,将 y = f ( x) 的图象向左平移 π 个单位长
6
度,再将图象上各点的横坐标变为原来的 2 倍(纵坐标不变),得到 y = g ( x) 的图象.若
+
y02
=
x02
+
(
x02 a2
-1)b2

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。

2020届江苏高三高考数学全真模拟试卷07(解析版)

2020届江苏高三高考数学全真模拟试卷07(解析版)

直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11

a

- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B

(全国卷)高三数学第一次大联考试题理

(全国卷)高三数学第一次大联考试题理

(全国卷)2020届高三数学第一次大联考试题 理考生注意:1.本试卷共150分,考试时间120分钟。

2.请将试卷答案填在试卷后面的答题卷上。

3.本试卷主要考试内容:集合与常用逻辑用语、函数与导数。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

{}{}223,,1A x x x N B x x =-<<∈=> ,则集合A∩B=A.{2}B.{-1,0,1)C.{-2,2}D.{-1,0,1,2}2.命题“∀x>0,x(x +1)>(x -1)2”的否定为;A.20,(1)(1)x x x x ∀>+≤-B.20,(1)(1)x x x x ∀≤+≤-C.20,(1)(1)x x x x ∃>+≤-D.20,(1)(1)x x x x ∃≤+≤- 3.21232x dx x -+=+⎰ A.2+ln2 B.3-ln2 C.6-ln2 D.6-ln44.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“U AB φ= ”的2,0()0x x f x x -⎧≤⎪=> ,若f(x 0)<2,则x 0的取值范围是A.(-∞,-1)B.(-1,0]C.(-1,+∞)D.(-∞,0)01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是 A.p∨q 是假命题 B.p∧q 是真命题 C.p∨(⌝q)是真命题 D.p∧(⌝q)是假命题 {}{}12,15A x x B x x =-<≤=≤-≤, 定义集合{},,A B z z x y x A y B *==+∈∈,则()B A B **等于 A.{}61x x -<≤ B.{}112x x <≤ C.{}110x x -<≤ D.{}56x x -<≤8.已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x - a -x +2(a>0且a≠1),若g(2)=a ,则函数f(x 2+2x)的单调递增区间为A(-1.1) B.(-∞,1) C.(1,+∞) D.(-1,+∞)9.如图是二次函数f(x)=x 2-bx +a 的部分图象,则函数g(x)=alnx + f’(x)的零点所在的区间是 A.(14,12) B.(12,1) C.(1,2) D.(2,3) ∈R ,函数f(x)满足f(2-x)=-f(x),且当x≧1时,函数f(x)=1x -。

_数学丨江苏省无锡市普通高中2023届高三期终调研考数学试卷及答案

_数学丨江苏省无锡市普通高中2023届高三期终调研考数学试卷及答案

无锡市普通高中2023届高三期终调研考试卷数学2023.02注意事项与说明:本卷考试时间为120分钟,全卷满分150分.一、单选题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合要求的.1.设集合A ={x |x =2k -1,k ∈Z },B ={x |0≤x +1<6},则A ∩B =(▲)A .{1,3}B .{-1,1,3}C .{1,3,5}D .{-1,1,3,5}2.“a =1”是“复数a 2+i1-i(a ∈R )为纯虚数”的(▲)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若tan α>sin α>sin2α,α∈(-π2,π2),则α∈(▲)A .(-π2,-π6)B .(-π2,-π3)C .(π6,π2)D .(π3,π2)4.函数f (x )=2x ln x 24x +1的部分图象大致为(▲)A B C D5.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β.则下列说法正确的是(▲)A .α∥β,l ∥αB .α⊥β,l ⊥βC .α与β相交,且交线平行于lD .α与β相交,且交线垂直于l6.在平行四边形ABCD 中,已知→DE =12→EC ,→BF =12→FC ,|→AE |=2,|→AF |=23,则→AC ·→BD=(▲)A .-9B .-6C .6D .97.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线左、右两支分别交于点P ,Q ,若→PQ =-4→PF 1,M 为PQ 的中点,且→PQ ·→MF 2=0,则双曲线的离心率为(▲)A .52B .72C .142D .28.设a =27,b =ln1.4,c =e 0.4-1.32,则下列关系正确的是(▲)A .a >b >cB .c >a >bC .c >b >aD .b >a >c二、多选题:本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知由样本数据(x i ,y i )(i =1,2,3,…,10)组成的一个样本,得到经验回归方程为ŷ=2x -0.4,且―x =2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为ŷ=3x+bˆ.在余下的8个样本数据和新的经验回归方程中(▲)A .相关变量x ,y 具有正相关关系B .新的经验回归方程为ŷ=3x -3C .随着自变量x 值增加,因变量y 值增加速度变小D .样本(4,8.9)的残差为-0.110.已知F 1,F 2为曲线C :x 24+y 2m=1的焦点,则下列说法正确的是(▲)A .若曲线C 的离心率e =12,则m =3B .若m =-12,则曲线C 的两条渐近线夹角为π3C .若m =3,曲线C 上存在四个不同点P ,使得∠F 1PF 2=90°D .若m <0,曲线C 上存在四个不同点P ,使得∠F 1PF 2=90°11.已知正三棱柱ABC -A 1B 1C 1,底面边长为2,D 是AC 中点,若该正三棱柱恰有一内切球,下列说法正确的是(▲)A .平面BDC 1⊥平面ACC 1A 1B .B 1D ⊥平面BDC 1C .该正三棱柱体积为2D .该正三棱柱外接球的表面积为10π312.已知函数f (x )=sin(ωx +φ)+2(ω>0,φ∈R )满足f (3π2-x )+f (x )=4.下列说法正确的是(▲)A .f (3π4)=2B .当|x 2-x 1|≤π2,都有|f (x 2)-f (x 1)|≤1,函数f (x )的最小正周期为πC .若函数f (x )在(7π12,π)上单调递增,则方程f (x )=52在[0,2π)上最多有4个不相等的实数根D .设g (x )=f (x -φω),存在m ,n (π2≤m <n ≤π),g (m )+g (n )=6,则ω∈[92,5]∪[132,+ )三、填空题;本大题共4小题,每小题5分,共计20分.13.若(2x2-1x)n的展开式中第5项为常数项,则该常数项为▲.(用数字表示) 14.请写出一个与x轴和直线y=3x都相切的圆的方程▲.15.函数f(x)=x ln x-ax2+x(a∈R)的图象在点(1,f(1))处的切线l恒过定点,则该定点坐标为▲.16.已知向量a1=(1,1),b n=(1n,0),a n-a n+1=(a n·b n+1)b n+1(n∈N*),则a3 a4=▲,a1·b3 2+a2·b43+…+a n·b n+2n+1=▲.四、解答题:本大题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等差数列{a n}的前n项和为S n,公差d≠0,a3是a1,a13的等比中项,S5=25.(1)求{a n}的通项公式;(2)若数列{b n}满足b1=-1,b n+b n+1=S n,求b20.▲▲▲18.(本小题满分12分)在①a cos B-b cos A=c-b,②tan A+tan B+tan C-3tan B tan C=0,③△ABC的面积为12a(b sin B+c sin C-a sin A),这三个条件中任选一个,补充在下面问题中,并加以解答.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A;(2)若a=8,△ABC的内切圆半径为3,求△ABC的面积.▲▲▲19.(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,E,F分别为CD,PB的中点,AD=PD=2,AB=4.(1)求证:EF∥平面PAD;(2)在线段AP上求点M,使得平面MEF与平面AEF夹角的余弦值为33.▲▲▲20.(本小题满分12分)体育比赛既是运动员展示个人实力的舞台,也是教练团队排兵布阵的战场.在某团体比赛项目中,教练组想研究主力队员甲、乙对运动队得奖牌的贡献,根据以往的比赛数据得到如下统计:运动队赢得奖牌运动队未得奖牌总计甲参加40b70甲未参加c40f总计50e n(1)根据小概率值α=0.001的独立性检验,能否认为该运动队赢得奖牌与甲参赛有关联?(2)根据以往比赛的数据统计,乙队员安排在1号,2号,3号三个位置出场比赛,且出场率分别为0.3,0.5,0.2,同时运动队赢得奖牌的概率依次为:0.6,0.7,0.5.则①当乙队员参加比赛时,求该运动队比赛赢得奖牌的概率;②当乙队员参加比赛时,在运动队赢得比赛奖牌的条件下,求乙在2号位置出场的概率.附表及公式:α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).▲▲▲21.(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和抛物线C 1:y 2=2px (p >0)焦点重合,且C 1和C 2的一个公共点是(23,263).(1)求C 1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使得1|AB |-λ|PQ |为定值?若存在,求出λ的值;若不存在,说明理由.▲▲▲22.(本小题满分12分)已知函数f (x )=a ln(x +π4)+cos x ,其中a 为实数.(1)若f (x )在区间(-π4,π4)上单调递增,求a 的取值范围;(2)若0<a <1,试判断关于x 的方程f (x )=sin x 在区间(-π4,3π4)上解的个数,并给出证明.(参考数据:lnπ≈1.14)▲▲▲无锡市普通高中2023届高三期终调研考试卷数学2023.02注意事项与说明:本卷考试时间为120分钟,全卷满分150分.一、单选题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合要求的.1.设集合A ={x |x =2k -1,k ∈Z },B ={x |0≤x +1<6},则A ∩B =(▲)A .{1,3}B .{-1,1,3}C .{1,3,5}D .{-1,1,3,5}2.“a =1”是“复数a 2+i1-i(a ∈R )为纯虚数”的(▲)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若tan α>sin α>sin2α,α∈(-π2,π2),则α∈(▲)A .(-π2,-π6)B .(-π2,-π3)C .(π6,π2)D .(π3,π2)4.函数f (x )=2x ln x 24x +1的部分图象大致为(▲)A B C D5.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β.则下列说法正确的是(▲)A .α∥β,l ∥αB .α⊥β,l ⊥βC .α与β相交,且交线平行于lD .α与β相交,且交线垂直于l6.在平行四边形ABCD 中,已知→DE =12→EC ,→BF =12→FC ,|→AE |=2,|→AF |=23,则→AC ·→BD=(▲)A .-9B .-6C .6D .97.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线左、右两支分别交于点P ,Q ,若→PQ =-4→PF 1,M 为PQ 的中点,且→PQ ·→MF 2=0,则双曲线的离心率为(▲)A .52B .72C .142D .28.设a =27,b =ln1.4,c =e 0.4-1.32,则下列关系正确的是(▲)A .a >b >cB .c >a >bC .c >b >aD .b >a >c二、多选题:本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知由样本数据(x i ,y i )(i =1,2,3,…,10)组成的一个样本,得到经验回归方程为ŷ=2x -0.4,且―x =2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为ŷ=3x+bˆ.在余下的8个样本数据和新的经验回归方程中(▲)A .相关变量x ,y 具有正相关关系B .新的经验回归方程为ŷ=3x -3C .随着自变量x 值增加,因变量y 值增加速度变小D .样本(4,8.9)的残差为-0.110.已知F 1,F 2为曲线C :x 24+y 2m=1的焦点,则下列说法正确的是(▲)A .若曲线C 的离心率e =12,则m =3B .若m =-12,则曲线C 的两条渐近线夹角为π3C .若m =3,曲线C 上存在四个不同点P ,使得∠F 1PF 2=90°D .若m <0,曲线C 上存在四个不同点P ,使得∠F 1PF 2=90°11.已知正三棱柱ABC-A1B1C1,底面边长为2,D是AC中点,若该正三棱柱恰有一内切球,下列说法正确的是(▲) A.平面BDC1⊥平面ACC1A1B.B1D⊥平面BDC1C.该正三棱柱体积为2D.该正三棱柱外接球的表面积为10π312.已知函数f(x)=sin(ωx+φ)+2(ω>0,φ∈R)满足f(3π2-x)+f(x)=4.下列说法正确的是(▲)A.f(3π4)=2B.当|x2-x1|≤π2,都有|f(x2)-f(x1)|≤1,函数f(x)的最小正周期为πC.若函数f(x)在(7π12,π)上单调递增,则方程f(x)=52在[0,2π)上最多有4个不相等的实数根D.设g(x)=f(x-φω),存在m,n(π2≤m<n≤π),g(m)+g(n)=6,则ω∈[92,5]∪[132,+ )三、填空题;本大题共4小题,每小题5分,共计20分.)n的展开式中第5项为常数项,则该常数项为▲.(用数字表示) 13.若(2x2-1x14.请写出一个与x轴和直线y=3x都相切的圆的方程▲.15.函数f (x )=x ln x -ax 2+x (a ∈R )的图象在点(1,f (1))处的切线l 恒过定点,则该定点坐标为▲.16.已知向量a 1=(1,1),b n =(1n,0),a n -a n +1=(a n ·b n +1)b n +1(n ∈N *),则a 3 a 4=▲,a 1·b 32+a 2·b 43+…+a n ·b n +2n +1=▲.四、解答题:本大题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等差数列{a n}的前n项和为S n,公差d≠0,a3是a1,a13的等比中项,S5=25.(1)求{a n}的通项公式;(2)若数列{b n}满足b1=-1,b n+b n+1=S n,求b20.▲▲▲【解析】18.(本小题满分12分)在①a cos B-b cos A=c-b,②tan A+tan B+tan C-3tan B tan C=0,③△ABC的面积为1a(b sin B+c sin C-a sin A),这三个条件中任选一个,补充在下面问题中,并加以解答.2在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A;(2)若a=8,△ABC的内切圆半径为3,求△ABC的面积.▲▲▲【解析】19.(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,E,F分别为CD,PB的中点,AD=PD=2,AB=4.(1)求证:EF∥平面PAD;(2)在线段AP上求点M,使得平面MEF与平面AEF夹角的余弦值为33.▲▲▲【解析】20.(本小题满分12分)体育比赛既是运动员展示个人实力的舞台,也是教练团队排兵布阵的战场.在某团体比赛项目中,教练组想研究主力队员甲、乙对运动队得奖牌的贡献,根据以往的比赛数据得到如下统计:运动队赢得奖牌运动队未得奖牌总计甲参加40b70甲未参加c40f总计50e n(1)根据小概率值α=0.001的独立性检验,能否认为该运动队赢得奖牌与甲参赛有关联?(2)根据以往比赛的数据统计,乙队员安排在1号,2号,3号三个位置出场比赛,且出场率分别为0.3,0.5,0.2,同时运动队赢得奖牌的概率依次为:0.6,0.7,0.5.则①当乙队员参加比赛时,求该运动队比赛赢得奖牌的概率;②当乙队员参加比赛时,在运动队赢得比赛奖牌的条件下,求乙在2号位置出场的概率.附表及公式:α0.150.100.050.0250.0100.0050.001x α2.0722.7063.8415.0246.6357.87910.828χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).▲▲▲【解析】21.(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和抛物线C 1:y 2=2px (p >0)焦点重合,且C 1和C 2的一个公共点是(23,263).(1)求C 1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使得1|AB |-λ|PQ |为定值?若存在,求出λ的值;若不存在,说明理由.▲▲▲【解析】22.(本小题满分12分)已知函数f (x )=a ln(x +π4)+cos x ,其中a 为实数.(1)若f (x )在区间(-π4,π4)上单调递增,求a 的取值范围;(2)若0<a <1,试判断关于x 的方程f (x )=sin x 在区间(-π4,3π4)上解的个数,并给出证明.(参考数据:lnπ≈1.14)▲▲▲【解析】高三数学试卷第16页(共16页)。

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案1.已知集合U={-1.0.1.2.3.23},A={2.3},则U-A={-1.0.1.4.5.23}。

2.已知复数z=a+bi是纯虚数,则a=0.3.若输出y的值为4,则输入x的值为-1.4.该组数据的方差为 9.5.2只球都是白球的概率为 3/10.6.不等式f(x)>f(-x)的解集为x2.7.S3的值为 61/8.8.该双曲线的离心率为 sqrt(3)/2.9.该几何体的体积为27π/2.10.sin2α的值为 1/2.11.λ+μ的值为 1/2.12.离墙距离为 3.5m时,视角θ最大。

13.实数a的值为 2.14.CD的最小值为 3/2.15.在△ABC中,已知$a$,$b$,$c$分别为角$A$,$B$,$C$所对边的长度,且$a(\sin A-\sin B)=(c-b)(\sin B+\sin C)$。

1)求角$C$的值;2)若$a=4b$,求$\sin B$的值。

16.如图,在四棱锥$P-ABCD$中,底面$ABCD$是平行四边形,平面$BPC$⊥平面$DPC$,$BP=BC$,$E$,$F$分别是$PC$,$AD$的中点。

证明:(1)$BE\perp CD$;(2)$EF\parallel$平面$PAB$。

17.如图,在平面直角坐标系$xOy$中,已知椭圆$C$:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,经过点$M(0,1)$。

1)求椭圆$C$的方程;2)过点$M$作直线$l_1$交椭圆$C$于$P$,$Q$两点,过点$M$作直线$l_1$的垂线$l_2$交圆$N(x_0,0)$于另一点$N$。

若$\triangle PQN$的面积为$3$,求直线$l_1$的斜率。

18.南通风筝是江苏传统手工艺品之一。

现用一张长$2$米,宽$1.5$米的长方形牛皮纸$ABCD$裁剪风筝面,裁剪方法如下:分别在边$AB$,$AD$上取点$E$,$F$,将三角形$AEF$沿直线$EF$翻折到$A'EF$处,点$A'$落在牛皮纸上,沿$A'E$,$A'F$裁剪并展开,得到风筝面$AEA'F$,如图$1$。

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
5.已知 是定义在R上的奇函数.当 时, ,若 ,则实数t的值为_____________.
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

专题01 集合及其运算【母题来源一】【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =__▲___.【答案】{}0,2【解析】根据集合的交集即可计算.∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =,故答案为:{}0,2.【名师点睛】本题考查了交集及其运算,是基础题型.【母题来源二】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则 A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源三】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B = ▲ .【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}A B x x A x B =∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系;③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.(2020届江苏省苏州市吴江区高三下学期五月统考数学试题)已知集合{}1,2,3,4A =,集合{}4,5B =,则AB =______.【答案】{}4【解析】因为集合{}1,2,3,4A =,集合{}4,5B =,所以{}4A B ⋂=.故答案为:{}4.【点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.2.(江苏省无锡市、常州市2019-2020学年高三下学期5月联考数学试题)已知集合{}012M =,,,集合{}0,2,4N =,则M N ⋃=__________.【答案】{}0,1,2,4 【解析】集合{}012M =,,,集合{}0,2,4N =, ∴{}0,1,2,4M N ⋃=.故答案为:{}0,1,2,4.【点睛】本题考查并集及其运算,属于基础题.3.(江苏省盐城中学2020届高三下学期第一次模拟数学试题)已知集合{}13A x =-<<,{}|2=≤B x x ,则A B =_________ .【答案】(-1,2]【解析】由题意{|12}A B x x =-<≤故答案为:(1,2]-.【点睛】本题考查集合的交集运算,掌握交集概念是解题关键.4.(2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第二次调研考试数学试题)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______.【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.5.(江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题)已知集合{}{}02,1,0,1,2M x x N =≤<=-,则MN =__________.【答案】{}0,1 【解析】因为{}{}02,1,0,1,2M x x N =≤<=-,所以{}0,1M N ⋂=. 6.(2020届江苏省高三高考全真模拟(六)数学试题)已知集合{1,0,2}A =-,{}0,1,2,3B =,则A B =______.【答案】{1,0,1,2,3}-【解析】由题意1,0,1{,2,}3A B =-.故答案为:{1,0,1,2,3}-.【点睛】本题考查集合的并集运算,属于简单题.7.(江苏省泰州市姜堰区、南通市如东县2020届高三下学期适应性考试数学试题)已知集合{1,3,}A a =,{4,5}B =.若{4}A B ⋂=,则实数a 的值为______.【答案】4【解析】{}4A B ⋂=4A ∴∈且4B ∈4a ∴=【点睛】本题考查了交集的定义,意在考查学生对交集定义的理解,属于基础题.8.(江苏省扬州中学2020届高三下学期6月模拟考试数学试题)集合{}0,3x A =,{}2,0,1B =-,若A B B ⋃=,则x =_________________.【答案】0【解析】∵A B B ⋃=,∴A B ⊆,又{}0,3x A =,{}2,0,1B =-,∴31x =,∴0x =,故答案为:0.【点睛】本题主要考查集合的并集运算的应用,属于基础题.9.(江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题)已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______【答案】{|12}x x <<【解析】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.10.(江苏省扬州市2020届高三下学期6月最后一卷数学试题)已知集合2{1,0,}A a =-,{1,1}B =-,则A B B =,则实数a 的值是_______.【答案】±1【解析】因为AB B =,所以B A ⊆,又2{1,0,}A a =-,{1,1}B =-,所以21a =,解得1a =±.故答案为:±1【点睛】本题主要考查集合间的基本关系,属于基础题.11.(2020届江苏省苏州市三校高三下学期5月联考数学试题)设集合{2,0,1,2}=-A ,{}|10B x x =-<,则A B =___________.【答案】{}2,0-【解析】由已知,{}|1B x x =<,所以AB ={}2,0-. 故答案为:{}2,0-【点睛】本题考查集合的交集运算,考查学生的基本计算能力,是一道基础题.12.(江苏省盐城市2020届高三下学期第四次模拟数学试题)若集合{}A x x m =≤,{}1B x x =≥-,且{}A B m =,则实数m 的值为_______.【答案】1- 【解析】∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =,∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.13.(江苏省苏州市2019-2020学年高三上学期期中数学试题)已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.【答案】{1,2} 【解析】集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}.【点睛】本题考查集合交集的运算,是基础题.14.(江苏省淮安市清浦中学2019-2020学年高三下学期5月阶段性检测数学试题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.15.(江苏省盐城市第一中学2020届高三下学期第一次调研考试数学试题)设全集{}0,1,2U =,集合{}0,1A =,则U C A =________.【答案】{}2【解析】{}{}0,1,2,0,1U A =={}2U C A ∴=故答案为:{}2【点睛】本题考查了补集的运算,属于基础题.16.(2020届江苏省苏州市常熟市高三阶段性抽测三数学试题)已知集合{}2A x x =≤,(){}40B x x x =-≤,则()A B =R ________.【答案】(]2,4 【解析】集合(){}{}4004B x x x x x =-≤=≤≤ 因为集合{}2A x x =≤ 所以{}2R A x x => 所以(){}(]242,4R A B x x ⋂=<≤=.故答案为:(]2,4.【点睛】本题考查解一元二次不等式,集合的补集、交集运算,属于简单题.17.(2020届江苏省南通市高三下学期5月模拟考试数学试题)已知集合{}1,2,3,4A =,{}2|log (1)2B x x =-<,则A B =____.【答案】{}2,3,4【解析】由题意可得:{}{}|014|15B x x x x =<-<=<< ,则{}2,3,4A B⋂=.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。

江苏南通徐州宿迁淮安泰州镇江六市联考2020-2021学年下高三第一次调研考试数学试题(全解析)

江苏南通徐州宿迁淮安泰州镇江六市联考2020-2021学年下高三第一次调研考试数学试题(全解析)

江苏省南通、徐州、宿迁、淮安、泰州、镇江六市联考2021届高三第一次调研测试数 学2021.02注意事项:1. 答卷前,考生务必将自己的姓名、考生号,考场号、座位号填写在答题卡上。

2.回答选择题时, 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题 5分,共 40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={}26x N x ∈<<,B ={}2log (1)2x x -<,则A B =A .{}35x x ≤<B .{}25x x <<C .{3,4}D .{3,4,5} 2.已知2+i 是关于x 的方程250x ax ++=的根,则实数a =A .2-iB .-4C .2D .4 3.哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为A .11B .13C .15D .174.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述,在该模型中,人体内药物含量x (单位:mg )与给药时间t (单位:h )近似满足函数关系式0(1e )kt k x k-=-,其中0k ,k 分别称为给药速率和药物消除速率(单位:mg /h ).经测试发现,当t =23时,02k x k=,则该药物的消除速率k 的值约为(ln2≈0.69) A .3100 B .310 C .103 D .10035.(12)n x -的二项展开式中,奇数项的系数和为 A .2nB .12n - C .(1)32n n -+ D .(1)32n n--6.函数sin 21xy x π=-的图象大致为A BC D 7.已知点P 是△ABC 所在平面内一点,有下列四个等式: 甲:PA PB PC ++=0; 乙:()()PA PA PB PC PA PB ⋅-=⋅-; 丙:PA PB PC ==; 丁:PA PB PB PC PC PA ⋅=⋅=⋅. 如果只有一个等式不成立,则该等式为A .甲B .乙C .丙D .丁8.已知曲线ln y x =在A (1x ,1y ),B (2x ,2y )两点处的切线分别与曲线e x y =相切于C (3x ,3y ),D (4x ,4y ),则1234x x y y +的值为A .1B .2C .52D .174二、 选择题:本大题共4小题,每小题5分, 共计20分.在每小题给出的选项中,有多项符合题目要求。

2020届江苏高三高考数学全真模拟试卷06(原卷版)

2020届江苏高三高考数学全真模拟试卷06(原卷版)

2020届江苏高三高考数学全真模拟试卷06数学试题I一、填空题:本大题共14小题,每小题5分,共70分.1. 设集合M={-1,0,1},N={x|x2+x≤0},则M∩N=____________.2. 命题“∃x>1,使得x2≥2”的否定是“____________”.3. 已知i是虚数单位,复数z的共轭复数为z.若2z=z+2-3i,则z=____________.4. 现有4名学生A,B,C,D平均分乘两辆车,则“A,B两人恰好乘坐在同一辆车”的概率为________.5. 曲线y=e x在x=0处的切线方程是____________.6. 如图是一个输出一列数的算法流程图,则这列数的第三项是__________.7. 定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(0)+f(-1)=______________.8. 已知等差数列{a n}的公差为d,若a1,a2,a3,a4,a5的方差为8,则d的值为____________.9. 如图,在长方体ABCDA1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则三棱锥AB1D1D的体积为________ cm3.(第9题)10. 已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,cos α=13,sin(α+β)=-35,则cos β=__________. 11. 已知函数f(x)=⎩⎪⎨⎪⎧1x ,x >1,x 3,-1≤x≤1.若关于x 的方程f(x)=k(x +1)有两个不同的实数根,则实数k 的取值范围是__________.12. 圆心在抛物线y =12x 2上,并且和该抛物线的准线及y 轴都相切的圆的标准方程为____________.13. 已知点P 是△ABC 内一点(不包括边界),且AP →=mAB →+nAC →,m ,n ∈R ,则(m -2)2+(n -2)2的取值范围是____________.14. 已知a +b =2,b >0,当12|a|+|a|b取最小值时,实数的a 值是____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知bcos C +ccos B =2acos A. (1) 求A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积.16.(本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD.若E ,F分别为PC ,BD 的中点.求证:(1) EF ∥平面PAD ; (2) EF ⊥平面PDC.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P(3,1)在椭圆上,△PF 1F 2的面积为22,点Q 是PF 2的延长线与椭圆的交点. (1) ① 求椭圆C 的标准方程;② 若∠PQF 1=π3,求QF 1·QF 2的值;(2) 直线y =x +k 与椭圆C 相交于A ,B 两点.若以AB 为直径的圆经过坐标原点,求实数k 的值.18. (本小题满分16分)如图,某城市小区有一个矩形休闲广场,AB =20 m ,广场的一角是半径为16 m 的扇形BCE 绿化区域.为了使小区居民能够更好地在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN(宽度不计),点M 在线段AD 上(不与端点重合),并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN(宽度不计)摆放.已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角∠NBE =θ,总造价为W 元.(1) 试将W 表示为θ的函数W(θ),并写出cos θ的取值范围; (2) 如何选取点M 的位置,能使总造价W 最小.19. (本小题满分16分)在数列{a n }中,已知a 1=2,a n +1=3a n +2n -1. (1) 求证:数列{a n +n}为等比数列;(2) 记b n =a n +(1-λ)n ,且数列{b n }的前n 项和为T n .若T 3为数列{T n }中的最小项,求λ的取值范围.20. (本小题满分16分)已知函数f(x)=x -ln x ,g(x)=x 2-ax.(1) 求函数f(x)在区间[t ,t +1](t >0)上的最小值m(t);(2) 令h(x)=g(x)-f(x),A(x 1,h(x 1)),B(x 2,h(x 2))(x 1≠x 2)是函数h(x)图象上任意两点,且满足h (x 1)-h (x 2)x 1-x 2>1,求实数a 的取值范围;(3) 若存在x ∈(0,1],使f(x)≥a -g (x )x成立,求实数a 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修42:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2 -21 -3,B =⎣⎢⎡⎦⎥⎤1 00 -1,设M =AB .(1) 求矩阵M ;(2) 求矩阵M 的特征值.B .[选修44:坐标系与参数方程](本小题满分10分)已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=m.若直线l 与曲线C 有且只有一个公共点,求实数m 的值.C .[选修45:不等式选讲](本小题满分10分)解不等式:|x -1|+2|x|≤4x.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在底面为正方形的四棱锥PABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,点E 是线段PC 的中点.(1) 求异面直线AP 与BE 所成角的大小;(2) 若点F 在线段PB 上,使得二面角FDEB 的正弦值为33,求PFPB的值.23.(本小题满分10分)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1) 求甲获胜的概率;(2) 求投篮结束时甲的投篮次数X 的分布列与期望.。

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷一、填空题 (共14题;共14分)1.(1分)设全集 U ={1,2,3,4,5} ,若集合 A ={3,4,5} ,则 C U A = . 2.(1分)已知复数 z =21+i+2i ( i 是虚数单位),则 z 的共轭复数为 . 3.(1分)函数f (x ) =1√x−1的定义域为 . 4.(1分)根据如图所示的伪代码可知,输出的结果为 .5.(1分)某班要选一名学生做代表,每个学生当选是等可能的,若“选出代表是男生”的概率是“选出代表是女生”的概率的 13,则这个班的女生人数占全班人数的百分比是 .6.(1分)若双曲线 x 2a 2−y 2b2=1(a >0,b >0) 的渐近线方程为 y =±x ,则双曲线的离心率为 .7.(1分)已知某正四棱锥的底面边长和侧棱长均为 2cm ,则该棱锥的体积为 cm 3 .8.(1分)函数 f(x)={x 2−3x +2,x ≤012x ,x >0 ,则f (f (0))= . 9.(1分)在平面直角坐标系xOy 中,圆C 的半径为 √13 ,圆心在y 轴上,且圆C 与直线2x+3y ﹣10=0相切于点P (2,2),则圆C 的标准方程是 .10.(1分)设D ,E 分别是△ABC 的边AB ,BC 上的点, AD =12AB ,BE =23BC ,若 DE ⃗⃗⃗⃗⃗⃗ =λ1CB⃗⃗⃗⃗⃗ +λ2CA ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2= . 11.(1分)已知e 为自然对数的底数.若不等式(e x ﹣1﹣1)(x ﹣a )≥0恒成立,则实数a 的值是 .12.(1分)在等差数列{a n }中,已知公差d≠0,a 22=a 1a 4,若 a 1,a 3,a k 1,a k 2,⋯,a k n ,…成等比数列,则k n = .13.(1分)在平面直角坐标系xOy 中,直线l 是曲线M :y =sinx (x ∈[0,π])在点A 处的一条切线,且l ∥OP ,其中P 为曲线M 的最高点,l 与x 轴交于点B ,过A 作x 轴的垂线,垂足为C ,则BA⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ = . 14.(1分)在锐角三角形ABC 中,已知4sin 2A+sin 2B =4sin 2C ,则1tanA +1tanB +1tanC的最小值为 .二、解答题 (共6题;共65分)15.(10分)如图,在△ABC 中,已知B =π4 ,AB =3,AD 为边BC 上的中线,设∠BAD =α,若cosα =2√55.(1)(5分)求AD 的长; (2)(5分)求sinC 的值.16.(10分)在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形,PD ⊥平面ABCD ,BD =CD ,E ,F 分别为BC ,PD 的中点.(1)(5分)求证:EF ∥平面PAB ; (2)(5分)求证:平面PBC ⊥平面EFD .17.(10分)如图,在平面直角坐标系xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为12,右焦点F 到右准线的距离为3.(1)(5分)求椭圆C的标准方程;(2)(5分)设过F的直线l与椭圆C相交于P,Q两点.已知l被圆O:x2+y2=a2截得的弦长为√14,求△OPQ的面积.18.(10分)如图,OM,ON是某景区的两条道路(宽度忽略不计,OM为东西方向),Q为景区内一景点,A为道路OM上一游客休息区,已知tan∠MON=−3,OA=6(百米),Q到直线OM,ON的距离分别为3(百米),6√105(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路ON于点B,并在B处修建一游客休息区.(1)(5分)求有轨观光直路AB的长;(2)(5分)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,r=2√at(百米)(0≤t≤9,0<a<1).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道BA以√2(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.19.(15分)在数列{a n}中,a1=3,且对任意的正整数n,都有a n+1=λa n+2×3n,其中常数λ>0.(1)(5分)设b n=a n3n,n∈N∗.当λ=3时,求数列{b n}的通项公式;(2)(5分)若λ≠1且λ≠3,设c n=a n+2λ−3×3n,n∈N∗,证明:数列{c n}为等比数列;(3)(5分)当λ=4时,对任意的n∈N*,都有a n≥M,求实数M的最大值.20.(10分)已知函数g(x)=e x﹣ax2﹣ax,h(x)=e x﹣2x﹣lnx.其中e为自然对数的底数.(1)(5分)若f(x)=h(x)﹣g(x).①讨论f(x)的单调性;②若函数f(x)有两个不同的零点,求实数a的取值范围.(2)(5分)已知a>0,函数g(x)恰有两个不同的极值点x1,x2,证明:x1+x2< ln(4a2).答案解析部分1.【答案】{1,2}【解析】【解答】∵全集U={1,2,3,4,5},集合A={3,4,5},∴C U A=={1,2},故答案为:{1,2}.【分析】利用补集定义直接求解即可2.【答案】1−i【解析】【解答】∴z=21+i+2i=2(1−i)(1+i)(1−i)+2i=1−i+2i=1+i∴z̅=1−i.故答案为1−i【分析】利用复数代数形式的乘除运算化简得z,再由共轭复数的定义得答案.3.【答案】(1,+∞)【解析】【解答】由题,若函数有意义,则x−1>0,解得x>1,所以定义域为(1,+∞), 故答案为: (1,+∞)【分析】若函数有意义,则x−1>0,求解即可.4.【答案】65【解析】【解答】由题, i=1, S=2,i=1+3=4, S=3×4+2=14,i=4+3=7, S=3×7+14=35,i=7+3=10, S=3×10+35=65,此时输出,故答案为:65【分析】根据程序伪代码列出程序的每一步,进而可得输出结果.5.【答案】75%【解析】【解答】设“选出代表是女生”的概率为a,则“选出代表是男生”的概率为13a,因为a+13a=1,所以a=34,所以这个班的女生人数占全班人数的百分比为75%,故答案为: 75%【分析】设“选出代表是女生”的概率为a,则“选出代表是男生”的概率为13a ,则a+13a=1,进而求解即可.6.【答案】√2【解析】【解答】双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,根据题意知±ba=±1,所以b a=1.双曲线的离心率e=ca =√c2a2=√a2+b2a2=√1+b2a2=√2.故答案为:√2.【分析】利用双曲线求渐近线方程的公式结合已知条件求出a,b的关系式,再利用双曲线中a,b,c三者的关系式结合双曲线的离心率公式变形,从而求出双曲线的离心率。

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题 (共14题;共14分)1.(1分)已知i 为虚数单位,复数 z =11+i,则 |z| = . 2.(1分)已知集合A = {x|0≤x ≤1} ,B = {x|a −1≤x ≤3} ,若A ∩B 中有且只有一个元素,则实数a 的值为 .3.(1分)已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.(1分)在平面直角坐标系xOy 中,已知双曲线 x 2a2−y 24=1 (a >0)的一条渐近线方程为 y =23x ,则a = . 5.(1分)甲、乙两人下棋,两人下成和棋的概率是 12 ,乙获胜的概率是 13,则乙不输的概率是 .6.(1分)下图是一个算法的流程图,则输出的x 的值为 .7.(1分)“直线l 1: ax +y +1=0 与直线l 2: 4x +ay +3=0 平行”是“a =2”的条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.(1分)已知等差数列 {a n } 的前n 项和为 S n , a 1=9 , S99−S 55=−4 ,则 a n= .9.(1分)已知点M 是曲线y =2lnx +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.(1分)已知 3cos2α=4sin(π4−α) , α∈ ( π4 , π ),则 sin2α = .11.(1分)如图,在矩形ABCD 中,E 为边AD 的中点, AB =1 , BC =2 ,分别以 A 、 D 为圆心, 1 为半径作圆弧 EB 、 EC ( 在线段 AD 上).由两圆弧 EB 、 EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.(1分)在△ABC 中,( AB ⃗⃗⃗⃗⃗⃗ −λAC ⃗⃗⃗⃗⃗ )⊥ BC ⃗⃗⃗⃗⃗ ( λ >1),若角A 的最大值为 π6 ,则实数 λ 的值是 .13.(1分)若函数 f(x)=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 .14.(1分)如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB = √2OC ,则△ABC 面积的最大值为 .二、解答题 (共11题;共100分)15.(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosA ﹣ √3 asinB =0.(1)(5分)求A ;(2)(5分)已知a =2 √3 ,B = π3 ,求△ABC 的面积.16.(10分)如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)(5分)证明:AP∥平面EBD;(2)(5分)证明:BE⊥PC.17.(10分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)(5分)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)(5分)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.(10分)如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为1 2.且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)(5分)求椭圆C的标准方程;(2)(5分)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(10分)已知函数f(x)=23x3−mx2+m2x(m∈R)的导函数为f′(x).(1)(5分)若函数g(x)=f(x)−f′(x)存在极值,求m的取值范围;(2)(5分)设函数ℎ(x)=f′(e x)+f′(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式ℎ(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.20.(10分)已知数列{a n},{b n},数列{c n}满足c n={a n,n为奇数b n,n为偶数,n∈N∗.(1)(5分)若a n=n,b n=2n,求数列{c n}的前2n项和T2n;(2)(5分)若数列{a n}为等差数列,且对任意n∈N∗,c n+1>c n恒成立.①当数列{b n}为等差数列时,求证:数列{a n},{b n}的公差相等;②数列{b n}能否为等比数列?若能,请写出所有满足条件的数列{b n};若不能,请说明理由.21.(5分)已知矩阵A=[1321],B=[−2311],且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.(10分)在平面直角坐标系xOy中,曲线l的参数方程为{x=2+cosθy=√3+2√3cos2θ2(θ为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinθ.(1)(5分)求曲线C的普通方程;(2)(5分)求曲线l和曲线C的公共点的极坐标.23.(5分)已知正数x,y,z满足x+y+z=t(t为常数),且x24+y29+z2的最小值为87,求实数t的值.24.(10分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)(5分)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)(5分)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.(10分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)(5分)求点G的轨迹方程;(2)(5分)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分1.【答案】√22【解析】【解答】z=11+i =12−12i⇒|z|=√22.故答案为:√22.【分析】先把复数进行化简,然后利用求模公式可得结果.2.【答案】2【解析】【解答】由题意A∩B中有且只有一个元素,所以a−1=1,即a=2. 故答案为:2.【分析】利用A∩B中有且只有一个元素,可得a−1=1,可求实数a的值. 3.【答案】0.08【解析】【解答】首先求得x̅=15(1.6+1.8+2+2.2+2.4)=2,S2=15[(1.6−2)2+(1.8−2)2+(2−2)2+(2.2−2)2+(2.4−2)2]=0.08.故答案为:0.08.【分析】先求解这组数据的平均数,然后利用方差的公式可得结果.4.【答案】3【解析】【解答】因为双曲线x 2a2−y24=1(a>0)的渐近线为y=±2ax,且一条渐近线方程为y=23x,所以a=3.故答案为:3.【分析】双曲线的焦点在x轴上,渐近线为y=±2a x,结合渐近线方程为y=23x可求a .5.【答案】56【解析】【解答】乙不输的概率为12+13=56,故答案为:56.【分析】利用互斥事件概率加法公式列式,即可求出乙不输的概率。

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习典型题精选精练统计与概率一、填空题1、(南京市2018高三9月学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为▲.2、(南京市2019高三9月学情调研)已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为▲.3、(南京市2019高三9月学情调研)不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是▲.4、(南京市六校联合体2019届高三12月联考)若一组样本数据3,4,8,9,a的平均数为6,则该组数据的方差s2=▲.5、(南京市六校联合体2019届高三12月联考)从1,2,3,4这四个数中一次性随机地取出2个数,则所取2个数的乘积为奇数的概率是____▲__.6、(南京市13校2019届高三12月联合调研)已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是▲.7、(南京市13校2019届高三12月联合调研)如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在[6,10)内的频数为▲.8、(南师附中2019届高三年级5月模拟)某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是.9、(南师附中2019届高三年级5月模拟)3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是.10、(苏州市2018高三上期初调研)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2: 3,第2小组的频数为12,则报考飞行员的学生人数是.11、(徐州市2019届高三上学期期中)某水产养殖场利用100个网箱养殖水产品,收获时测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50 kg.12、(海安市2019届高三上学期期中)已知某民营车企生产A,B,C三种型号的新能源汽车,库存台数依次为120,210,150,某安检单位欲从中用分层抽样的方法随机抽取16台车进行安全测试,则应抽取B型号的新能源汽车的台数为.13、(海安市2019届高三上学期期中)有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是.14、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)如图是某次青年歌手大奖赛上5位评委给某位选手打分的茎叶图,则这组数据的方差为▲15、(如皋市2019届高三上学期期末)为了解某地区的中小学生视力情况,从该地区的中小学生中用分层抽样的方法抽取300位学生进行调查,该地区小学、初中、高中三个学段学生人数分别为1200、1000、800,则从高中抽取的学生人数为▲16、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为.17、(南京市、盐城市2019届高三上学期期末)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型号产品有16件,那么此样本的容量n=▲18、(泰州市2019届高三上学期期末)从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为19、(无锡市2019届高三上学期期末)史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,先从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为.20、(宿迁市2019届高三上学期期末)春节将至,三个小朋友每人自制1张贺卡,然后将3张贺卡装在一盒子中,再由三人依次任意抽取1张,则三人都没抽到自己制作的贺卡的概率为▲.21、(南京市、盐城市2019届高三第二次模拟)某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组、,第二组,……,第五组,右图市根据实验数据制成的频率分布直方图,已知第一组于第二组共有20人,则第三组钟人数为.22、(南京市2019届高三第三次模拟)已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为▲.23、(南通、如皋市2019届高三下学期语数英学科模拟(二))随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为__24、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为▲.25、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.26、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为▲.27、(苏锡常镇四市2019届高三教学情况调查(二))口装中有形状大小完全相同的四个球,球的编号分别为1,2,3,4.若从袋中随机抽取两个球,则取出的两个球的编号之积大于6的概率为.28、(苏锡常镇四市2019届高三教学情况调查(一))箱子中有形状、大小都相同的3只红球、1只白球,一次摸出2只球,则摸到的2只球颜色相同的概率为.29、(盐城市2019届高三第三次模拟)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.30、(江苏省2019年百校大联考)某路口一红绿灯东西方向的红灯时间为45s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为.二、解答题1、(南京市2018高三9月学情调研)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.2、(南京市六校联合体2019届高三上学期12月联考)将4名大学生随机安排到A,B,C,D四个公司实习.(1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).3、(南京市13校2019届高三12月联合调研)在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;ξ=-,求随机变量ξ的分布列及数学(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y期望.4、(徐州市2018高三上期中考试)某同学在上学路上要经过A 、B 、C 三个带有红绿灯的路口.已知他在A 、B 、C 三个路口遇到红灯的概率依次是13、14、34,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.6、(镇江市2018届高三第一次模拟(期末)考试)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值。

江苏省无锡市天一中学2023届高三考前最后一模数学试题

江苏省无锡市天一中学2023届高三考前最后一模数学试题

江苏省无锡市天一中学2023届高三考前最后一模数学试题学校:___________姓名:___________班级:___________考号:___________.1016000.2mm k kL -=´三、填空题13.设A,B,C,D是四个命题,A是B的必要不充分条件,A是C的充分不必要条件,D是B的充分必要条件,那么D是C的______条件.(充分不必要、必要不充分、19.佛山顺德双皮奶是一种粤式甜品,上层奶皮甘香,下层奶皮香滑润口,吃起来,香气浓郁,入口嫩滑,让人唇齿留香.双皮奶起源于清朝末期,是用水牛奶做原料,辅以鸡蛋和白糖制成.水牛奶中含有丰富的蛋白质,包括酪蛋白和少量的乳清蛋白,及大量人体生长发育所需的氨基酸和微量元素.不过新鲜的水牛奶保质期较短.某超市为了保证顾客能购买到新鲜的水牛奶又不用过多存货,于是统计了50天销售水牛奶的情况,获得如下数据:当2a >时,令()0f x ¢=得:1x =,或11x a =->.若()0,1x Î,()0f x ¢>,所以()f x 为增函数;若()1,1x a Î-,()0f x ¢<,所以()f x 为减函数;若()1,x a Î-+¥,()0f x ¢>,所以()f x 为增函数.所以()f x 的极大值为()120f a =-<,极小值为()()1ln 120f a a a a -=--+-<.此时0x ®时,()f x ®-¥,x ®+¥时,()f x ®+¥,所以()f x 有1个零点.综上所述:当1a £时,()f x 没有零点;当1a >时,()f x 有1个零点.【点睛】判断函数零点的个数,就是利用导数研究函数的单调性,极值最值,取极限从而分析函数零点的个数.含参要注意进行分类讨论.。

江苏省苏锡常镇四市2020届高三教学情况调研数学试题(一)

江苏省苏锡常镇四市2020届高三教学情况调研数学试题(一)

江苏省苏锡常镇四市2020届高三教学情况调研(一)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把[答案]直接填写在答题卡相应位置上。

1.已知i为虚数单位,复数11zi=+,则|z|=2.已知集合A={x|0≤x≤1},B={x|a-1≤x≤3},若A⋂B中有且只有一个元素,则实数a的值为3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是4.在平面直角坐标系xOy中,已知双曲线2221(0)4x yaa-=>的一条渐近线方程为23y x=,则a=5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是6.右图是一个算法的流程图,则输出的x的值为7.“直线l1:ax+y+1=0与直线l2:4x+ay+3=0平行”是“a=2”的条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n}的前n项和为Sn,a1=9,9595S S-=-4,则a n=9.已知点M是曲线y=2ln x+x2-3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α=11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为12.在∆ABC 中,,若角A 的最大值为6π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB ,则∆ABC 面积的最大值为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省无锡市2020届高三第一次模拟考试数 学注意事项:1. 本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =________.2. 设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3. 有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.错误!4. 史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x 的值为________.6. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7. 在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________. 10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.11. 已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎪⎫θ+π4cos (2θ-6π)的值为________.12. 已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________. 13. 已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则PA →·PB →的最小值是________.14. 在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C 的最小值为________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量m=(a,sin C-sin B),n=(b+c,sin A+sin B),且m∥n.(1) 求角C的大小;(2) 若c=3,求△ABC周长的取值范围.16. (本小题满分14分)在四棱锥PABCD中,锐角三角形PAD所在平面垂直于平面PAB,AB⊥AD,AB⊥BC.(1) 求证:BC∥平面PAD;(2) 求证:平面PAD⊥平面ABCD.(第16题)17. (本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2020年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2020年初开始,若该村抽出5x户(x∈Z,1≤x≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728)(1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2020年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎪⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,PA 交y 轴于点C ,PB 交x 轴于点D .(1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19. (本小题满分16分)已知函数f(x)=e x-a 2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立;(2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20. (本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n+12t 为等比数列?请说明理由; (3) 设c n =1b n +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列?若存在,求出l ,m (用k 表示);若不存在,请说明理由.江苏省无锡市2020届高三第一次模拟考试数学附加题 注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21. (本小题满分10分)选修4­2:矩阵与变换设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤ab 12·A =⎣⎢⎡⎦⎥⎤34cd ,求ad -bc 的值.22. (本小题满分10分)选修4­4: 坐标系与参数方程 自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP=12,若Q 为曲线⎩⎪⎨⎪⎧x =-1+22t ,y =2+22t (t 为参数)上一点,求PQ 的最小值.23. (本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1.(1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24. (本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2 )设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln .(这是边文,请据需要手工删加)江苏省无锡市2020届高三第一次模拟考试数学参考答案及评分标准 1. {x|0<x<1} 2. -1 3. 36 4. 315. 256. [0,3]7. 梯形8. y 2=12x 9. 3π 10. 21 11. 142 12. -2 13. 19-12 14. 21315. (1) 由m ∥n 及m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ), 得a (sin A +sin B )-(b +c )(sin C -sin B )=0,(2分) 由正弦定理,得a 2R b -(b +c )2R b=0,所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab ,由余弦定理,得c 2=a 2+b 2-2ab cos C ,所以a 2+b 2+ab =a 2+b 2-2ab cos C , 所以ab =-2ab cos C ,(5分) 因为ab >0,所以cos C =-21,又因为C ∈(0,π),所以C =32π.(7分)(2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2-2ab cos 32π=9,即(a +b )2-ab =9,(9分) 所以ab =(a +b )2-9≤2a +b ,所以43(a +b )2≤9,即(a +b )2≤12,所以a +b ≤2,(12分)又因为a +b >c ,所以6<a +b +c ≤2+3,即周长l 满足6<l ≤3+2, 所以△ABC 周长的取值范围是(6,3+2].(14分)16. (1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分) 17. (1) 由题意得1×20x≥1.6,因为5x<100-5x ,所以x<10且x ∈Z .(2分) 因为y =20x在x ∈[1,9]上单调递增,由数据知,1.153≈1.521<1.6,1.23=1.728>1.6, 所以20x≥0.2,得x ≥4.(5分)又x <10且x ∈Z ,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1001[5x x 1+20x(100-5x )]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分)所以-315≤x -5≤315.(11分)因为3<<4,且x ∈Z ,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2020年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18. (1) 由题意得a2=b2+c2,2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为4x2+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-21<k<0,所以C(0,2k),由+y2=1,x2消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =1+4k216k2-4,由x A =-2得x P =1+4k22-8k2,故y P =k(x P +2)=1+4k24k,所以P1+4k24k,(8分)设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故-x01=1+4k22-8k2,解得x D =1-2k 2(1+2k ),得D ,02(1+2k ),(10分)所以S △PCD =S △PAD -S △CAD =21×AD ×|y P -y C |=21+22(1+2k )-2k 4k =1+4k24|k (1+2k )|,(12分) 因为-21<k<0,所以S △PCD =1+4k2-8k2-4k =-2+2×1+4k21-2k,令t =1-2k ,1<t<2,所以2k =1-t ,所以g(t)=-2+1+(1-t )22t =-2+t2-2t +22t =-2+-22≤-2+-22=-1,(14分) 当且仅当t =时取等号,此时k =22,所以△PCD 面积的最大值为-1.(16分) 19. (1) 由f(x)=e x -21x 2-x ,则f′(x)=e x-x -1,令g(x)=f′(x),则g′(x)=e x-1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增,故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分) 进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分)(2) f′(x)=e x-ax -a ,因为x 1,x 2为f(x)的两个极值点, 所以f ′(x2)=0,f ′(x1)=0,即ex2-ax2-a =0.ex1-ax1-a =0, 两式相减,得a =x1-x2ex1-ex2,(8分)则所证不等式等价于2x1+x2<ln x1-x2ex1-ex2,即e 2x1+x2<x1-x2ex1-ex2,(10分) 不妨设x 1>x 2,两边同时除以e x 2可得:e 2x1-x2<x1-x2ex1-x2-1,(12分)令t =x 1-x 2,t>0,所证不等式只需证明:e 2t <t et -1⇔t e 2t-e t +1<0.(14分)设φ(t)=t e 2t -e t +1,则φ′(t)=-e 2t ·+1t ,因为e x ≥x +1,令x =2t ,可得e 2t -+1t ≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0,所以2x1+x2<ln a .(16分)20. (1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3,所以a 1=2q ,所以a n =2q q n -1=21q n .(2分)因为2T n =n(b n -1),n ∈N *,①所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *,所以2b n +1=(n +1)b n +1-nb n -(n +1)+n ,所以(n -1)b n +1=nb n +1,n ∈N *,③(4分)所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *,所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1,所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列.因为n =1时b 1=-1,又b 2=1,所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =1-q (1-qn ),所以S n +2t 1=1-q (1-qn )+2t 1=2(q -1)qn +t +2(1-q )q +2t 1,要使得2t 1为等比数列,则通项必须满足指数型函数,即2(1-q )q +2t 1=0,解得t =q q -1.(9分)此时2t 1=2(q -1)qn +1=q ,所以存在t =q q -1,使得2t 1为等比数列.(10分)(3) c n =bn +41=2n +11,设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列,所以2c l =c k +c m ,所以2l +12=2k +11+2m +11.所以2m +11=2l +12-2k +11=(2l +1)(2k +1)4k -2l +1.所以m =4k -2l +12kl -k +2l=4k -2l +1(-4k +2l -1)(k +1)+(2k +1)2=-k -1+4k -2l +1(2k +1)2.所以m +k +1=4k -2l +1(2k +1)2.因为给定正整数k (k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0,所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k >0,满足(k <l <m );若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去).综上,任意给定的正整数k (k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)江苏省无锡市2020届高三第一次模拟考试数学附加题参考答案及评分标准21. 因为A =0,所以20=d ,得-1=d ,2=c ,(6分)即a =-4,b =3,c =2,d =-1,(8分)所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22. 以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ),因为OM·OP=12,所以ρρ′=12.因为ρ′cos θ=3,所以ρ12cos θ=3,即ρ=4cos θ,(3分)化为直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.(5分)由2(t 为参数)得普通方程为x -y +3=0,(7分)所以PQ 的最小值为圆上的点到直线距离的最小值,即PQ min =d -r =2|2-0+3|-2=22-2.(10分)23. (1) 由题意得-|x +1|=1,(2分)即=|x +1|+1.因为x>0,所以x +1>0,所以=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立y =kx +2,y2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分)由k FA +k FB =x1-2y1+x2-2y2=x1-2k (x1+2)+x2-2k (x2+2)=(x1-2)(x2-2)k (x1+2)(x2-2)+k (x1-2)(x2+2)=(x1-2)(x2-2)2k (x1x2-4).(8分)将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分)24. (1) 因为n ≥2,由an -11=an -1-12-an -1,得an -11=an -1-11-an -1+an -1-11,所以an -11-an -1-11=-1,(1分)所以an -11是首项为-3,公差为-1的等差数列,且an -11=-n -2,所以a n =n +2n +1.(3分)(2) 下面用数学归纳法证明:S n <n -ln 2n +3+21.①当n =1时,左边=S 1=a 1=32,右边=23-ln 2,因为e 3>16⇔3ln e >4ln 2⇔ln 2<43,23-ln 2>23-43=43>32,所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立,即S k <k -ln 2k +3+21,则当n =k +1,S k +1=S k +a k +1<k -ln 2k +3+21+k +3k +2,要证S k +1<(k +1)-ln 2(k +1)+3+21,只要证k -ln 2k +3+21+k +3k +2<(k +1)-ln 2(k +1)+3+21,只要证lnk +3k +4<k +31,即证lnk +31<k +31.(8分)考查函数F (x )=ln(1+x )-x (x >0),因为x >0,所以F ′(x )=1+x 1-1=1+x -x <0,所以函数F (x )在(0,+∞)上为减函数,所以F (x )<F (0)=0,即ln(1+x )<x ,所以lnk +31<k +31,也就是说,当n =k +1时命题也成立.综上所述,S n <n -ln 2n +3+21.(10分)。

相关文档
最新文档