立方根的定义及性质

合集下载

立方根的概念

立方根的概念

立方根的概念立方根是数学中一个重要的概念,在代数学和数值计算中都有广泛的应用。

它是指一个数的立方等于给定数的运算。

本文将介绍立方根的概念、性质以及一些常见的计算方法。

一、立方根的定义对于一个实数a,如果存在一个实数x,满足x³ = a,那么x被称为a的立方根。

可以表示为x = ∛a。

其中,立方根符号∛可以理解为"立方根"或者"开三次方"。

二、立方根的性质1. 立方根的唯一性:每个正实数都有唯一的正立方根。

负实数的立方根在复数范围内存在多个。

2. 立方根的运算性质:a) 任意实数的立方根是实数或者复数。

b) 立方根运算具有可交换性,即∛(a * b) = ∛a * ∛b。

c) 立方根运算具有可分配性,即∛(a + b) ≠ ∛a + ∛b。

d) 立方根运算具有结合性,即∛(∛a) = ∛(a^(1/3)) = a^(1/9)。

即连续开两次立方根等于开九次方。

3. 立方根的特殊情况:a) 如果一个实数的立方根等于自身,即x³ = x,那么这个实数被称为立方根的不动点。

b) 如果一个实数的立方根等于负数,即x³ = -a,那么这个实数被称为立方根的负不动点。

三、立方根的计算方法计算立方根的方法主要有以下几种:1. 近似计算法:根据牛顿迭代方法,可以通过逐步逼近来计算立方根。

迭代公式为:xₙ₊₁ = (2 * xₙ + a / xₙ²) / 3其中,xₙ代表第n次逼近的结果,a为待开立方根的数值。

通过迭代计算,当xₙ₊₁与xₙ的差值小于某个精度要求时,可以得到一个近似的立方根值。

2. 公式法:对于较小的整数或一些特殊数值,可以利用一些特定的公式来求解。

例如,对于一个正整数n,其立方根可以表示为√(n² *√(n))。

对于一些特殊值如2、3等,也可以通过公式直接求解。

3. 数值计算软件:现代科学计算软件如Matlab、Python的NumPy 库等提供了方便快捷的立方根计算函数。

立方根(知识讲解)八年级数学上册基础知识讲与练(北师大版)

立方根(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题2.4 立方根(知识讲解)【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根. 【要点梳理】要点一、立方根的定义如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果3x a =,那么x 叫做a 的立方根.求一个数的立方根的运算,叫做开立方.特别说明::一个数a 表示,其中a 是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.特别说明::任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质=a =3a =特别说明::第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660. 【典型例题】类型一、立方根概念的理解1.如果21x -的平方根是3±,x y +是18的立方根,那么34x y +的值是多少?【答案】﹣3【分析】根据题意求出x ,y 的值,再代入所求代数式求解即可. 解:∵21x -的平方根是3±,∵21x -=9, 解得x =5,∵x y +是18的立方根,∵x y +=12,把x =5代入x y +=12得, 5+y =12, 解得y =﹣92,∵34x y +=3×5+4×(﹣92)=﹣3.【点拨】此题考查了平方根、立方根、方程的解,熟记立方根、平方根的定义是解题的关键.【变式1】我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述结论是否成立;(26的值. 【答案】(1)成立,理由见详解;(2)0. 【分析】(1)用一对互为相反数的数来验证即可,(2)根据(1)的结论,然后互为相反数的两个数相加等于0,求出x 的值,再计算即可.解:(1)2(2)0+-=,而且328=,3(2)8-=-,有880-=, ∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1则28x -和28x --也互为相反数, 即:28280x x ---=, 36x ∴=,6660=-=.【点拨】本题主要考查了立方根的定义和性质的应用,熟悉相关性质,能根据题中的信息:“若两个数的立方根互为相反数,则这两个数也互为相反数.”来解答是解题的关键.【变式2】一个正数的平方根分别是25a +和21a -,30b -的立方根是3-.求a ,b 的值.【答案】a =-1,b =3【分析】根据平方根、立方根的性质,通过求解一元一次方程,即可求出a 、b 的值; 解:由题意可知: (2a +5)+(2a −1)=0 , b −30=(−3)³=−27 解得:a =-1,b =3.【点拨】本题考查了平方根、立方根、一元一次方程的知识;解题的关键是熟练掌握平方根、立方根、算数平方根、一元一次方程的性质,从而完成求解.类型二、求一个数的立方根2.一个正数m 的两个平方根分别为2a +2和a ﹣11,求m 的立方根. 【答案】m 的立方根为4【分析】根据一个正数的两个平方根互为相反数列得2a +2+a ﹣11=0,解方程求出a 即可得到m ,再根据立方根定义求出m 的立方根.解:∵一个正数m 的两个平方根分别为2a +2和a ﹣11,∵2a +2+a ﹣11=0, 解得:a =3, ∵2a +2=8, 故m =82=64,∵m =4.【点拨】此题考查了平方根的定义,立方根的定义,解一元一次方程,正确理解平方根的定义是解题的关键.举一反三:【变式1】解方程:(4x)3=﹣512.【答案】x =﹣32【分析】利用立方根的定义求出解即可.解:(4x)3=﹣512,4x=﹣8, x =﹣32.【点拨】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.【变式22【答案】1-【分析】根据开立方,去绝对值号,开平方依次运算即可.解:原式=(425--+=425--+=1-【点拨】本题考查了开立方、开平方和去绝对值号,记住运算法则是解题的关键.类型三、已知一个数的立方根,求这个数3.已知2a -1的平方根是±3,3a +b -1的立方根是-2,求a 、b 的值. 【答案】a =5,b =-22【分析】根据平方根,立方根的定义列出关于a 、b 的方程求出a 和b 的值即可. 解:∵2a -1的平方根是±3,∵2a -1=9, ∵a =5,又∵3a +b -1的立方根是-2, ∵3a +b -1=-8, ∵b =-22.【点拨】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.举一反三:【变式1】已知:2x -的平方根为2±,27x y ++的立方根为4,求:x y -的值. 【答案】-39【分析】先利用平方根求出x ,再代入立方根求出y ,最后代入代数式求解. 解:∵2x -的平方根为2±∵()2224x -=±= ∵6x =∵27x y ++的立方根为4 ∵327464x y ++== ∵45y =∵64539x y -=-=-【点拨】本题考查了平方根、立方根,关键要掌握平方根和立方根的概念,会运用已知平方根和立方根求代数式.【变式2】已知21a +的平方根是±3,324a b +-的立方根是-2方根.【答案】2【分析】先利用平方根和立方根的性质可得到关于a 、b 的方程组,从而可求得a 、b 的值,然后代入求解即可.解:根据题意得:2193248a a b +=⎧⎨+-=-⎩,解得:48a b =⎧⎨=-⎩,=, ∵8的立方根是2,2.【点拨】本题主要考查的是立方根、平方根的性质,熟练掌握平方根、立方根的性质是解题的关键.类型四、立方根的实际运用4.【发现】2(2)0+-=1(1)0=+-=10(10)0+-=11044⎛⎫=+-= ⎪⎝⎭……;(1)根据上述等式反映的规律,请再写出一个等式:____________. 【归纳】等式∵,∵,∵,∵,所反映的规律,可归纳为一个真命题:对于任意两个有理数a ,b 0=,则0a b +=; 【应用】根据上述所归纳的真命题,解决下列问题:(2)210616a b -=,求a 的值.【答案】3(3)0+-=(2)10【分析】(1)根据题目给出的规律解答;(2)根据题意列出方程,与已知方程联立解得a 的值.解:3(3)0+-=,符合上述规律,3(3)0+-=;, ∵238620a b -+-=,解得2322a b -=,代入210616a b -=中, 解得,210a =,∵a =【点拨】本题考查了立方根的性质,互为相反数的性质等知识,解题的关键是明确题意,灵活运用所学知识解决问题.举一反三:【变式1】填写下表,并回答问题:(20.1738 1.738=,求a 的值. 【答案】填表见分析;(1)见分析;(2)5.25 【分析】(1)根据被开方数a 的小数点每向右或向左移动三位,或向左移动一位解答;(2)根据(1)总结的规律解答.(1)由题可知,被开方数的小数点每向右或向左移动三位,地向右或向左移动一位;(2)由(1)总结的规律可知:0.1738的小数点向右移动了一位,∵0.00525的小数点应向右移动三位,得到 5.25a =.【点拨】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格. 【变式2】在一个长,宽,高分别为9cm ,8cm ,3cm 的长方体容器中装满水,然后将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长.【答案】6cm【分析】先根据长方体体积公式求出长方体的容积,再由正方体的容积与长方体的容积相同进行求解即可.解:由题意得:长方体的容积为3983216(cm )⨯⨯=∵将容器中的水全部倒入一个正方体容器中,恰好倒满, ∵长方体和正方体的容积相等,∵6(cm).【点拨】本题主要考查了立方根,解题的关键在于能够熟练掌握求立方根的方法.类型五、算术平方根与立方根的实际应用5.已知:21a -的算术平方根是3,31b +的立方根是2-,c 是30的整数部分,求23a b c +-的值.【答案】8-【分析】由算术平方根,立方根的定义求出a ,bc 值,代入即可.解:∵21a -的算术平方根是3,∵219a -=, ∵5a =,∵31b +的立方根是2-, ∵318b +=-, ∵3b =-,<即:56<, ∵5c =,∵2325(3)358a b c +-=⨯+--⨯=-.【点拨】本题考查了算数平方根,立方根定义,估算无理数大小,能正确求出a 、b 、c 的值是解题的关键.举一反三:【变式1】已知m A =3m n ++算术平方根,2m n B -=4620m n +-1=-【分析】由算术平方根与立方根的含义可得方程组2{233m n m n -=-+=,再解方程组求解,m n 的值,从而可得答案.解:根据题意得:2{233m n m n -=-+=,解得:42m n ⎧=⎨=⎩,∵39m n ++=,46208m n +-=, ∵3A =;2B =, ∵1B A -=-,1=-【点拨】本题考查的是算术平方根与立方根的含义,二元一次方程组的解法,理解题意,求解42m n ⎧=⎨=⎩是解本题的关键.【变式2】已知a 的平方根是24b +的立方根是2 (1)求,,a b c 的值;(2)求2a b c ++的算术平方根.【答案】(1)a =5、b =2、c =1或c =0;(23. 【分析】(1)根据平方根和立方根的定义可确定a 、b 的值,再根据一个数的立方根和算术平方根相等的数是0和1,可以确定c ;(2)分c =0和c =1两张情况分别解答即可.解:(1)∵a 的平方根是24b +的立方根是2∵a =5,2b +4=8,即b =2=∵c =1或c =0∵a =5、b =2、c =1或c =0;(2)当c =1=当c =0;∵2a b c ++或3.【点拨】本题主要考查了平方根、立方根、算术平方根的定义,灵活运用相关定义并正确确定c 的值成为解答本题的关键.。

立方根和开立方知识讲解

立方根和开立方知识讲解

立方根和开立方【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根【要点梳理】 要点一、立方根的定义如果一个数的立方等于a ,那么这个数叫做 a 的立方根或三次方根 .这就是说,如果3x a ,那么x 叫做a 的立方根.求一个数的立方根的运算,叫做开立方要点诠释:一个数a 的立方根,用3a 表示,其中a 是被开方数,3是根指数.开立方 和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数, o 的立方根是0. 要点诠释:任意一个实数都有立方根,而且只有一个立方根,并且它的符号与这个非 零数的符号相同.两个互为相反数的数的立方根也互为相反数 .要点三、立方根的性质要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题 .要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动 3位,它的立方根的小数点就相应地向右或者向左移动 1 位.例如,30.000 216 = 0.06 , 3 0. 216=0.6 , 3 216=6 , 3 216000 =60.要点五、n 次方根如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根.当n 为奇数时,这个数为 a 的奇次方根;当n 为偶数时,这个数为 a 的偶次方根.求一个数a 的n 次方根的运算叫做开 n 次方,a 叫做被开方数,n 叫做根指数. 要点诠释:实数a 的奇次方根有且只有一个,正数a 的偶次方根有两个, 它们互为相反数;负数的偶次方根不存在.;零的n 次方根等于零,表示为 n0 0.【典型例题】 类型一、立方根的概念【总结升华】一个非零数与它的立方根符号相同;ca3a.A. 64的立方根是土 4 C.立方根等于本身的数只有0和111B . 是的立方根26D. 3_27327【答案】D;【解析】64的立方根是丄是 1的立方根;立方根等于本身的数只有2 80 和土 1.举一反三:【变式】(2015春?滑县期末)我们知道 a+b=0时,a 3+b 3=0也成立,若将a 看成a 3的立方 根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这 两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立; (2) 若肝苍■与互为相反数,求1 -.・:的值.【答案】解:(1) ••• 2+ (- 2) =0, 而且 23=8, (- 2) 3= - 8,有 8 - 8=0 , •••结论成立; •••即 若两个数的立方根互为相反数,则这两个数也互为相反数. (2)由(1)验证的结果知,1 - 2x+3x - 5=0 , • x=4 ,• 1 - . .=1 - 2= - 1. 类型二、立方根的计算2、求下列各式的值:(2)311 43 52(4)3_27 . ( 3)2 厂-.(_1)100【答案与解析】(4) 3_27 ,( 3)2 3~【总结升华】 立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方 举一反三: 【变式】计算:(1)30.008 ; (2) J 161;V 64(3)誇1—.(4)F1F —524【答案】(1)一 0.2 ; (2);( 3); (4)-43类型三、利用立方根解方程”是成立的.21027(2) 3 11 43 52(3)38解:(1)3、(2015春?罗平县期末)求下列各式中x的值:(1)3(X—1) 3=24.(2)(x+1 ) 3= —64.【思路点拨】先整理成x3=a的形式,再直接开立方解方程即可.【答案与解析】解:(1) 3 ( x—1) 3=24 ,(x- 1) 3=8,x —1=2,x=3 .(2)开立方得:x+1= —4,解得:x= - 5.【总结升华】本题是用开立方的方法解一元三次方程,要灵活运用使计算简便.举一反三:【变式】求出下列各式中的a :(1)若a' = 0.343,则a = _____ ; (2)若a‘ 一3= 213,则a = _____;3 3(3)右a + 125= 0,贝V a = ______ ; (4)若a 1 = 8,贝V a = _____.【答案】(1) a = 0.7 ; (2) a = 6; (3) a =一5; (4) a = 3.类型四、立方根实际应用CP4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱3体烧杯中,并用一量筒量得铁块排出的水的体积为64cm,小明又将铁块从水中提16起,量得烧杯中的水位下降了cm.请问烧杯内部的底面半径和铁块的棱长各是9多少16【思路点拨】铁块排出的64 cm3水的体积,是铁块的体积,也是高为cm烧杯的体积9【答案与解析】解:铁块排出的64 cm3的水的体积,是铁块的体积.设铁块的棱长为y cm,可列方程y364,解得y 4n 16设烧杯内部的底面半径为x cm,可列方程x264,解得x 6.9答:烧杯内部的底面半径为6 cm,铁块的棱长4 cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程) ,解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.举一反三:【变式】将棱长分别为和:厂的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为_____________ 琢。

人教版七年级数学下册精品教学课件 第六章 实数 立方根

人教版七年级数学下册精品教学课件 第六章 实数 立方根
第六章 实数 6.2 立方根 七年级数学·人教版
学习目标:
1.了解立方根的概念,会用开立方运算求一个数的立方根. 2.了解立方根的性质,并学会用计算器计算一个数的立方根或立 方根的近似值.
重点难点:
1.掌握立方根的概念. 2.了解立方根与平方根的区别与联系.
情景导入
某化工厂使用半径为1米的一种球形储气罐储藏气体,现 在要造一个新的球形储气罐,如果要求它的体积必须是原来 体积的8倍,那么它的半径应是原来储气罐半径的多少倍?
(2)因为 ( 3 3)3 = 3
( 3)3 27 28
所以 3 < 27
8
所以 3 3
<
3 2
5.若 3 x =2,y2 =4,求 x 2y 的值.
解:∵ 3 x =2, y2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 16 = 4 或 x 2 y = 0 = 0.
课堂小结
定义 正数的立方根是正数,

负数的立方根是负数;

性质 0的立方根是0.

3 -a 3 a
用计算 被开方数的小数点向左或向右移动 器计算
3n位时立方根的小数点就相应的向
左或向右移动n位(n为正整数).
知识精讲
知识点一 立方根的概念及性质 问题:要制作一种容积为 27 m³的正方体形状的包装箱, 这种包装箱的棱长应该是多少? 设这种包装箱的棱长为 x m,则 x³= 27. 这就是要求一个数,使它的立方等于 27. 因为 3³= 27,所以 x = 3. 因此这种包装箱的棱长应为 3 m.

中考数学关键知识点总结平方根与立方根的计算与性质

中考数学关键知识点总结平方根与立方根的计算与性质

中考数学关键知识点总结平方根与立方根的计算与性质在中考数学中,平方根和立方根是一些重要的数学概念和知识点。

本文将对平方根和立方根的计算方法和性质进行总结和归纳。

一、平方根的计算与性质1. 平方根的定义:对于非负实数a,若存在一个非负实数b,使得b的平方等于a,则称b为a的平方根,记作√a,其中,√为平方根的符号。

2. 平方根的计算方法:a) 直接求解法:对于一个非负实数a,如果a是一个完全平方数,那么它的平方根可以直接求解;b) 定位求解法:对于一个非负实数a,可以通过定位在两个连续完全平方数之间,然后利用线性插值进行求解。

3. 平方根的性质:a) 非负实数的平方根是唯一确定的,即每一个非负实数都有一个唯一的非负平方根;b) 平方根的运算性质:若a和b均为非负实数,则有以下性质成立:- √(a*b) = √a * √b- √(a/b) = √a / √b- √(a^2) = |a|其中,^表示幂运算,|a|表示a的绝对值。

二、立方根的计算与性质1. 立方根的定义:对于任意实数a,若存在一个实数b,使得b的立方等于a,则称b为a的立方根,记作³√a,其中,³√为立方根的符号。

2. 立方根的计算方法:a) 直接求解法:对于一个实数a,可以通过直接求解或利用计算器进行计算;b) 近似求解法:对于一个实数a,如果无法通过直接求解法得到精确值,可以利用近似方法进行求解。

3. 立方根的性质:a) 任意实数都有一个唯一的立方根;b) 立方根的运算性质:若a和b为任意实数,则有以下性质成立:- ³√(a*b) =³√a * ³√b- ³√(a/b) = ³√a / ³√b- ³√(a^3) = a三、平方根和立方根的应用1. 平方根的应用:a) 平方根可以用于计算图形的边长、面积和体积等问题;b) 平方根可以用于解决一些实际生活中的计算问题,如距离、速度、时间等。

6.2 立方根

6.2 立方根
也就是把根号里的“负号”直接从根号里 面提到了根号“外面” 。
由此得出求一个负数的立方根的一般方法:
3 a 3 a
也就是说,求一个负数的立方根,可以先 求出这个负数的绝对值的立方根,然后再取它 的相反数。
例2:求下列各式的值。
(1) 3 8 ;(2)3 8 ;(3) 3 0.125
(4) 3 3 3 (5) 3 64
(4)0;
(5) 8 125
解:∵ (3)3 27
∴ -27的立方根是-3。
即 3 27 3
问题:
正数有立方根吗?如果有,有几个。
负数呢? 零呢? 从上面的例1可知:一个正数有一个正的立 方根;一个负数有一个负的立方根,零的立方根 是零。
从上面的例题可知:
3 27 3 3 27 3
由此可得出: 3 27 3 27
是负数。
表示 a的平方根表示为
a
a的立方根表示为:
3a
3、开立方
开平方
开立方

求一个数a的平方根 的运算,叫做开平方。
求一个数a的立

方根的运算,叫 算;
②它是一种运算,而 不是结果,它的结果是平 方根。
①它与立方 互为逆运算;
②它是一种
运算,而不是结
果,它的结果是
(5) 0的平方根和立方根都是0 √
练一练
2.求下列各式的值(口答):
(1) 31000
(3) 3 1
(2) 3 0.001
(4) 3 64 125
试一试:
1.21 的立方根是 3 21 ,- 21 的立方根是 3 21
2.若一个数的平方根是 8,则这个数的立方根是 2
3.- 8的立方根与9的平方根的积是 ± 6

湘教版八上数学 立方根

湘教版八上数学  立方根

解 : 依次按键: 2ndF 3 显示:1.259 921 05 所以,3 2 1.260.
2=
当堂练习
1. 判断下列说法是否正确:
(1) 25 的立方根是 5.
( ×)
(2) 任何数的立方根都只有一个.
( √)
(3) 如果一个数的立方根是这个数本身,那么
这个数一定是零.
( ×)
(4) 一个数的立方根不是正数就是负数. ( × )
解: ∵ x-2 的平方根是±2, ∴ x-2 = 4. ∴ x = 6. ∵ 2x+y+7 的立方根是 3, ∴ 2x+y+7 = 27. 把 x = 6 代入,解得 y = 8. ∵ x2+y2 = 36+64 = 100, ∴ x2+y2 的算术平方根为 10.
方法总结:本题先根据平方根和立方根的定义,运用 方程思想求出 x,y 值,再根据算术平方根的定义求解.
逆向思维
与学习开平方运算的过程一样,体现着一种重 要的数学思想方法,你体会到了么?
典例精析
例1 分别求下列各数的立方根:
1, 8 ,0,-0.064.
27
解: 由于 13 = 1,因此

由于
,因此

由于 03 = 0,因此

由于 (-0.4)3 = -0.064,因此
.
探究1 求下列各式的值:
3 23 = __2_,
3a
读作:立方根号 a,或三次根号 a.
填一填: 根据立方根的意义填空:
因为 23 = 8,所以 8 的立方根是( 2 );
因为(0.5)3 = 0.125,所以 0.125 的立方根是(0.5);
因为( 0 )3 = 0,所以 0 的立方根是( 0 );

立方根知识点讲解(含例题)

立方根知识点讲解(含例题)

1.立方根的概念和性质(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的__________或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例如:53=125,那么5是125的立方根.(2)表示方法:一个数a”表示,读作:“三次根号a”,其中a是被开方数,3是根指数.(3)拓展:互为相反数的两数的立方根也互为相反数.2.开立方(1)定义:求一个数的立方根的运算,叫做__________.(2)性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;=③3==a.(3)开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.3.平方根和立方根的区别和联系1.被开方数的取值范围不同在a是非负数,即a≥0a是任意数.2.运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.K知识参考答案:1.(1)立方根2.(1)开立方(2)负数(3)逆运算一、求立方根和开立方根据开立方与立方互为逆运算的关系,我们可以求一个数的立方根,或者检验一个数是不是某个数的立方根.【例1】-64的立方根是A .-4B .4C .±4D .不存在【答案】A【解析】∵(−4)3=−64,∴−64的立方根是−4,故选A .【例2A .-1B .0C .1D .±1 【答案】C-1-1,故选A .【名师点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【例3】下列计算中,错误的是A B 34=-C 112=D .25=- 【答案】D【解析】A .正确;B .正确;C .正确;D 故错误,故选D . 【例4】求下列各数的立方根:(1)-343;(2)8125. 【解析】(1)因为3(7)343-=-,所以-343的立方根是-7.(2)因为328()5125=, 所以8125的立方根是25. 【例5】求下列各式的值:(1;(23)【解析】(1(2(3 二、利用立方根的知识解方程只含有未知数或某个关于未知数的整体的三次方的方程,可以先通过“移项、合并同类项、系数化为1”等变形为x 3=m 或(ax +b )3=m 的形式,再利用开立方的方法求解.【例6】若a 3=–8,则a =__________.【答案】–2【解析】∵a 3=–8,∴a =–2.故答案为:–2.【例7】求下列各式中的x :(1)8x 3+125=0;(2)(x +3)3+27=0. 【解析】因为381250x +=, 所以38125x =-,(2)因为3(3)270x ++=,所以3(3)27x +=-,x+=-,所以33x=-.所以6三、平方根和立方根的综合应用在解决立方运算与开立方运算时,遵循的原则为正数的立方和立方根为正数,负数的立方和立方根为负数.【例8】64的平方根和立方根分别是A.8,4 B.8,±4 C.±8,±4 D.±8,4【答案】D【解析】因为(±8)2=64,43=64,所以64的平方根和立方根分别是±8,4,故选D.【例9】已知2a-1的平方根是±3,3a+b-1的立方根是4,求a+b的平方根.【名师点睛】此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.【例10】已知x+122x+y-6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.【解析】(1)∵x+12的算术平方根是,2x+y-6的立方根是2.∴x+12=2=13,2x+y-6=23=8,∴x=1,y=12.(2)当x=1,y=12时,3xy=3×1×12=36,∵36的平方根是±6,∴3xy的平方根±6.【名师点睛】本题考查了算术平方根、立方根的性质,解决本题的关键是熟记平方根、立方根的定义,能熟练运用它们的逆运算是解本题的关键.。

立方根的性质

立方根的性质

立方根的性质立方根是数学中一个重要的概念,它是一个数的立方的逆运算。

在数学中,我们经常遇到立方根,它有一些独特的性质和规律,让我们一起来了解一下。

1. 立方根的定义对于任意一个实数x,如果存在实数y,使得y³ = x,那么y就是x的立方根。

在数学符号中,我们通常用√³x来表示。

例如,8的立方根就是2,因为2³=8。

2. 立方根的性质2.1. 唯一性一个实数的立方根是唯一的。

也就是说,一个实数只有一个确定的立方根。

例如,27的立方根是3,而不可能是其他实数。

2.2. 正负号一个实数的立方根可能是正数、负数或零。

例如,-8的立方根有两个值,分别是-2和2。

而0的立方根只有一个值,就是0本身。

2.3. 运算规律•(a√³x)³ = a³ * x•√³(x * y) = √³x * √³y•√³(x / y) = √³x / √³y3. 应用立方根在实际中有许多应用。

例如,立方根可以用来计算立方体的体积、解方程、工程设计中的材料强度分析等。

在数学建模和物理学中,立方根也有着重要的作用。

4. 结语立方根作为数学中一个重要的概念,有着许多独特的性质和规律,深受数学家和科学家的喜爱。

通过了解和掌握立方根的性质,我们可以更好地应用和理解数学知识,拓展数学的应用范围。

希望通过本文的介绍,对立方根的性质有一个更深入的了解。

如果你对立方根感兴趣,也欢迎继续深入学习和探索。

立方根

立方根

立方根1.立方根的概念及表示方法(1)立方根的概念:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根).如23=8,那么2就叫做8的立方根,由于⎝⎛⎭⎫-323=-278,所以-32叫做-278的立方根.(2)立方根的表示方法:a 的立方根可表示为“3a ”,读作“三次根号a ”,其中“3”是根指数,“a ”是被开方数.要注意,这里的根指数“3”不能省略.例如:2的立方根可表示为32.【例1-1】 求下列各数的立方根:(1)8;(2)-125;(3)127;(4)-0.064;(5)0;(6)-6.【例1-2】 下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56 D .(-1)2的立方根是-12.立方根的性质(1)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根是0.(2)开立方求一个数的立方根的运算,叫做开立方.如同开平方与平方互为逆运算一样,开立方与立方也互为逆运算.【例2】 有下列命题:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1和0.其中错误的是( ).A .①②③B .①②④C .②③④D .①③④ 3.立方根的应用立方根在日常生活中应用很广泛,如求物体的体积等.【例3】 某金属冶炼厂,将27个大小相同的立方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160 cm 、80 cm 和40 cm ,求原来立方体钢锭的边长为多少?4.立方根的化简公式3-a =-3a ;3a 3=a ;(3a )3=a .如果x 3=a ,那么x 就是a 的立方根,即x =3a ,所以x 3=(3a )3=a .同样,根据定义,a 3是a 的三次方,所以a 3的立方根就是a ,即3a 3=a .设x 3=a ,则(-x )3=-x 3=-a .根据立方根的定义可知,x =3a ,-x =3-a .3-a =-3a .要深入理解立方根的性质,必须掌握以上性质公式. 【例4】 化简:(1)3-64;(2)30.000 125;(3)-3338.5.灵活利用立方根与平方根解题平方根与立方根是两个很相近的概念,如果不正确地认识和理解它们的异同,在解题中很容易引起混淆而造成解题错误.(1)区别:①定义不同.平方根:如果x 2=a ,那么x 叫做a 的平方根.立方根:如果x 3=a ,那么x 叫做a 的立方根.②表示方法不同.正数a 的平方根记为±a ,数a 的立方根记为3a .表示平方根时,根指数2一般省略不写,但是用根号表示立方根时,根指数3绝对不能省略,否则就与二次根式混淆了.③读法不同.正数a 的平方根±a ,读作“正、负根号a ”.数a 的立方根3a 读作“三次根号a 或a 的立方根”.④被开方数的取值范围不同.在平方根±a 中,被开方数a 是非负数,即a ≥0.但在3a 中,a 可以是任意的数.⑤根的个数不同.一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.任何数都存在立方根,一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.(2)联系:求平方根与立方根的运算都是开方运算,开平方与平方互为逆运算,开立方与立方互为逆运算,都是乘方的逆运算.【例5-1】 已知a 3+64+|b 3-27|=0,求(a -b )b 的立方根.【例5-2】 已知35x +32=-2,求x +17的平方根.课后练习1.填空题(1)1214的平方根是_________; (2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________; (4)25的算术平方根是_________; (5)9-2的算术平方根是_________;(6)4的值等于_________,4的平方根为_________; (7)(-4)2的平方根是_________,算术平方根是_________. (8)若9x 2-49=0,则x =________.(9)若12+x 有意义,则x 范围是________.(10)已知|x -4|+y x +2=0,那么x =________,y =________. (11)如果a <0,那么2a =________,(a -)2=________.2.选择题(1)2)2(-的化简结果是A.2B.-2C.2或-2D.4(2)9的算术平方根是 A.±3B.3C.±3D.3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根 (4)下列式子中,正确的是 A.55-=-B.-6.3=-0.6C.2)13(-=13D.36=±6(5)7-2的算术平方根是 A.71B.7C.41 D.4(6)16的平方根是 A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是 A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4 (9)16的平方根是 A.4B.-4C.±D.±2(10)169+的值是 A.7B.-1C.1D.-7牢记1-9的立方 一、选择题1.下列说法中正确的是( ) A.-4没有立方根 B.1的立方根是±1 C.361的立方根是61D.-5的立方根是35-2.在下列各式中:327102=343001.0=0.1,301.0 =0.1,-33)27(-=-27,其中正确的个数是( )A.1B.2C.3D.43.若m <0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -4.如果36x -是6-x 的三次算术根,那么( )A.x <6B.x =6C.x ≤6D.x 是任意数 5.下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 3.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( ) A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x -等于( )A.xB.2xC.0D.-2x (3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( ) A.0 B.±10 C.0或10D.0或-10(5)如果2(x -2)3=643,则x 等于( ) A.21B.27C.21或27 D.以上答案都不对二、填空题6.364的平方根是______.7.(3x -2)3=0.343,则x =______.8.若81-x +x -81有意义,则3x =______.9.若x <0,则2x =______,33x =______. 10.若x =(35-)3,则1--x =______.2.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________. 三、解答题11.求下列各数的立方根 (1)729 (2)-42717 (3)-216125 (4)(-5)312.求下列各式中的x .(1)125x 3=8 (2)(-2+x )3=-216(3)32-x =-2 (4)27(x +1)3+64=0三、解答题13.已知某数有两个平方根分别是a +3与2a -15,求这个数.14.已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.15.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长.。

实数—专题二、立方根

实数—专题二、立方根

实 数专题二、 立方根 【知识回顾】1.立方根:如果一个数x 的立方等于a ,即x 的三次方等于a(a x =3),即3个x 连续相乘等于a,那么这个数x 就叫做a 的立方根,也叫做三次方根。

2.开立方:求一个数的立方根的运算叫做开立方。

开立方与立方互为逆运算。

开立方的小数点移动规律:被开方数的小数点向右或向左每移动三位,则立方根的小数点就向右或向左移动一位。

3.常见立方数:113=; 823=; 2733=; 6443=; 12553=21663=; 34373=; 51283=; 72993=; 1000103=4、常用公式:a a =33,a a =33)( 5. 平方根与立方根的比较平 方 根立 方 根定 义如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根。

即:若)0(2≥=a a x 时,则x 称为a 的平方根,记作)0(≥±=a a x ,其中a 是被开方数,根指数是2如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根(也称作a 的三次方根)。

即:若3x a =,则x 称为a 的立方根,记作x=3a ,其中a 是被开方数,根指数是3 性 质 1. 一个正数有两个平方根,它们互为相反数1. 正数有一个正的立方根2. 0的平方根是0 2. 0的立方根是03. 负数没有平方根 3. 负数有一个负的立方根 开平方与平方互为逆运算开立方与立方互为逆运算n 次根偶数次方根与平方根性质相同 奇数次方根与立方根性质相同6.n 次方根的定义:如果一个数的n 次方等于a ,这个数叫做a 的n 次方根。

n 次方根的性质:(1)正数的偶次方根有两个,它们互为相反数;负数没有偶次方根; (2)任何数a 的奇次方根只有一个,且与a 同正负; (3)0的任何次方根为0。

【典型例题】【例1】求下列各式的值:(1)3125; (2)3271-- ; (3)38-; (4)338【变式练习】 1、填空2549的平方根是 ; -512的立方根是 ; 2(9)-的平方根是 ; -27的立方根是 ;64的平方根是 ; 343的立方根是 。

浙教版初中数学七年级上册立方根 知识讲解

浙教版初中数学七年级上册立方根 知识讲解

立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】【:389317 立方根、实数,知识要点】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质==a3=a要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660.【典型例题】类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【思路点拨】根据立方根的定义判断即可.【答案】D;【解析】A.如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B.一个数的立方根不是正数就是负数,错误,还有0;C.负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义.举一反三:【:389317 立方根 实数,例1】【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根C .立方根等于本身的数只有0和1D= 【答案】D.类型二、立方根的计算【:389317 立方根 实数,例2】2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4(5)10033)1(412)2(-+÷-- 【答案与解析】 解:(1)(2(3)43===9 1=241=2⎛⎫⨯- ⎪⎝⎭- (4)=331=1-++ (5) 3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方. 举一反三:【变式】计算:(1=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可.【答案与解析】解:(x ﹣2)3=﹣125,可得:x ﹣2=﹣5,解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体.举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______;(3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______. 【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3.类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y = 设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗).。

立方根 知识讲解

立方根 知识讲解

立方根责编:杜少波【学习目标】1. 了解立方根的概念,会用根号表示数的立方根;2. 了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3. 会用计算器求立方根. 【要点梳理】要点一、立方根的定义如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,记作3a 表示,其中a 是被开方数,3是根指数.符号“3”读作“三次根号”.求一个数的立方根的运算,叫做开立方. 要点诠释:开立方和立方互为逆运算. 要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33aa =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、下列结论正确的是( ) A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1 D 332727-=【答案】D ;【解析】64的立方根是4;12-是18-的立方根;立方根等于本身的数只有0和±1.【总结升华】一个非零数与它的立方根符号相同;33a a -=举一反三:【变式】下列说法正确的是( )A .一个数的立方根有两个B .一个非零数与它的立方根同号C .若一个数有立方根,则它就有平方根D .一个数的立方根是非负数 【答案】B ;提示:任何数都有立方根,但是负数没有平方根.2、(2016春•南昌期末)已知实数x 、y 满足4216240,2-3x x y x y -+-+=求的立方根.【思路点拨】先由非负数的性质求得x 、y 的值,然后在求得代数式的值,最后再求得它的立方根即可. 【答案与解析】解:由非负数的性质可知:2x -16=0,x -2y +4=0, 解得:x =8,y =6.∴442-=28-6=833x y ⨯⨯. ∴42-3x y 的立方根是2.【总结升华】本题考查了非负数的性质、立方根的定义,求得x 、y 的值是解题的关键. 类型二、立方根的计算3、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (423327(3)1---(5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-(23321145⨯+(3)331864-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】(2015春•武汉校级期末)计算= .【答案】.解:.类型三、利用立方根解方程4、(2015春•黄梅县校级月考)若8x 3﹣27=0,则x= . 【思路点拨】先求出x 3的值,然后根据立方根的定义解答. 【答案】. 【解析】解:8x 3﹣27=0,x 3=,∵()3=,∴x=;【总结升华】本题考查了利用立方根求未知数的值,熟记立方根的定义是解题的关键. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3.类型四、立方根实际应用5、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。

七年级数学立方根

七年级数学立方根
七年级数学立方根
目录
• 立方根基本概念与性质 • 立方根运算规则与技巧 • 代数式中立方根处理技巧 • 图形与几何中立方根应用 • 实际问题中立方根应用举例 • 练习题及测试题精选
01 立方根基本概念与性质
立方根定义及表示方法
立方根定义
若一个数的立方等于另一个数, 则这个数被称为另一个数的立方 根。
0的立方根是0,即$sqrt[3]{0}=0$。
负数立方根
负数的立方根是负数,且随着被开方数的减小而减小。同 时,负数的奇次幂仍然是负数,因此负数的立方根只有一 个实数值。
02 立方根运算规则与技巧
立方根四则运算规则
立方和公式
立方差公式
$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$, 在求解立方根的和时可以利用此公式进行化 简。
体积与质量关系
在烹饪、农业等领域,经常需要利用物体的体积和质量关系,这时立方根可以 帮助我们进行单位换算和问题解决。
空间几何问题
家居装修、城市规划等领域中,经常涉及到空间几何问题,利用立方根可以计 算物体的边长、空间容积等。
环境保护和资源利用问题探讨
空气质量监测
环保部门在监测空气质量时,需要计算空气中污染物的浓度,这时可以利用立方 根进行反推计算。
通过立方根运算,可以求出几何图形的边长、半径等参数,进而解决相关问题。
几何图形的面积、体积等计算
在几何图形中,经常需要计算面积、体积等,这些计算往往与立方根有关。
几何图形的相似与全等
在解决几何图形相似与全等问题时,立方根运算也经常出现,例如计算相似比等。
空间观念培养及拓展
空间想象力的培养
通过解决与立方根有关的几何问题,可以培养学生的空间想象力,帮助他们更好地理解几何图形 的结构和性质。

初二数学立方根平方根知识点总结归纳

初二数学立方根平方根知识点总结归纳

初二数学立方根平方根知识点总结归纳初二数学立方根平方根知识点总结归纳数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.下面是店铺整理的关于数学立方根平方根知识点总结归纳,欢迎大家参考!立方根知识点总结知识要领:如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根。

立方根读作“三次根号a”其中,a叫做被开方数,3叫做根指数。

(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

求一个数a的立方根的运算叫做开立方。

立方根的性质:⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。

如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。

立方和开立方运算,互为逆运算。

互为相反数的两个数的立方根也是互为相反数。

负数不能开平方,但能开立方。

立方根如何与其他数作比较? ⑴做这两个数的立方⑵作差⑶比较被开方数(如三次根号3大于三次根号2)任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.平方根与立方根的区别与联系一、区别⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。

⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。

⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。

二、连系二者都是与乘方运算互为逆运算《平方根与立方根》知识点归纳平方根:概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。

就是2说,如果x=a,那么x就叫做a的平方根。

立方根概念性质与平方根的区别

立方根概念性质与平方根的区别

). (C) ). (C)±2 (D)-2 (D)
3. (A)
,则 (B)
的值是( (C)
). (D)
4.下列四种说法中共有(
)个是错误的.
(1)负数没有立方根;(2)1 的立方根与平方根都是 1;
(3) (A)1
的平方根是 (B)2
;(4) (C)3 ) C.2
3
. (D)4
5. 64 的立方根是( A.±4
2
B.±2
D.-2 )
2 3 6.若 a 5 , b 5 ,则 a b 的值为(
A.-10
B.0
C.0 或-10
3
D.0,-10 或 10 )
7.若 3 a 4 4 ,那么 a 67 的值是( A.64 B.-27 C.-343 ) D. 2 D.343
3
3 2
a ”表示,读作“三次根号 a”
如:2 是 8 的立方根, -3是-27的立方根,0 是 0 的立方根.
例:1、怎样求下列括号内的数?各题中已知什么数?求什么数?
( (1)
3 ( ) =0.001 ; (2)
3 ) =-
27 64

( (3)
3 ) =0 .
2、求下列各数的立方根: (1)-8
2. 求下列各数的立方根. (1)0.001 (2)-216 3 (3)3 (4)-3 8
课堂练习: 1. 判断正误: (1) 8 的立方根是 2 (
27
3
) (2)负数不能开立方( (4) 8 的立方根是 2 ( ) (6)0 的立方根是 0(
) )
(3)4 的平方根是 2(

(5)负数有一个平方根(

立方根_精品课件

立方根_精品课件
1.立方根的定义,性质,计算. 2.立方根与平方根的异同
相同点: ①0的平方根、立方根都有一个是0 ②平方根、立方根都是开方的结果。
不同点: ①定义不同 ②个数不同 ③表示方法不同 ④被开方数的取值范围不同
1、平方根的定义:如果
1、立方根的定义:如果
一个数的平方等于a,那
一个数的立方等于a,那
么这个数叫做a的平方根。
+,-,x,÷,乘方,开方(开平方,开立方)
2.立方根的性质
探究1. 根据立方根的意义填空.
因为2 3 =8,所以8的立方根是( 2 )
因为(12)3 =0.125,所以0.125的立方是( 12)
因为(0)3 =0,所以0的立方根是( 0 )
因为 (-2)3 =-8,所以-8的立方根是(-2 )
探究3 先填写下表,再回答问题:
a 0.000001 0.001 1 1000
1000000
3a
1 10 100
从上面表格中你发现什么? 归纳:
被开方数扩大(缩小)1000倍时,它的立方根扩 大(缩小)10倍.
课堂练习2:
你能求出下列各式中的未知数x吗?
(1) x3=343 (2)(x-1)3=125
国的行动;轴心国集团内部缺乏紧密合作和战略协同。
【随堂练习】
(3)发展:随着城市的发展和工商业繁荣,(市民阶级)形成,他们成为早期的资产阶级。
r (每小点2分,共计4分。答出其中两点即可给满分。言之有理可酌情给分。)
②给殖民地带来灾难;
R
. 既有欣喜愉悦,又有落寞孤寂的心情。(即赏月的欣喜、漫步的悠闲、人生的感慨、贬谪的悲凉)
3
-a
3
a
互为相反数的两个 数的立方根也互为相 反数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根.”(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.(3)表示法不同,正数a的平方根表示为± ,a的立方根表示为 .(4)被开方数的取值范围不同,± 中的被开方数a是非负数; 中的被开方数可以是任何数.
重点
立方根的概念与求法
难点
会分平方根与立方根。
方法
类比学习法。
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
复习知识


情ቤተ መጻሕፍቲ ባይዱ

回顾与思考
1.什么叫平方根?如何用符号表示数a(≥0)的平方根?
2.什么叫算术平方根?
如何用符号表示数a(≥0)的算术平方根?
3.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?
学生小组讨论后,请学生相互补充。
探究立方根的性质




例2求下列各式的值
(1)(2)
(3)
你能发现什么规律
对于任何数a都有
学生先独立思考,然后分组交流,最后学生上台讲解。
教师给予评价。
根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步
提高学生观察能力、分析问题的能力。




议一议
1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?
三、情感态度与价值观:
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.
探究P78
归纳总结:
如果a≥0,则
练习P79 T1
学生思考片刻,然后进行解答,教师给予适当的评价。
学生自主思考,小组合作交流

用课件展示
学生自主探究为主,教师适当引导小组充分交流讨论。
用课件展示
学生自主完成
通过问题的解决使学生感受成功的喜悦,肯定探索活动的意义。
逐步加深对立方根概念的理解,及时巩固所学知识。
13.2立方根(1)
学校
主备人
时间
2010.7.10




在教学中利用类比方法,让学生通过类比旧知识学习新知识。教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握。通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运算之间的互逆关系,并学会了从立方根与立方是互逆运算中寻找解题途径。
3.类似立方根你能给出4次方根n次方根吗?
学生先独立尝试,再小组之间讨论交流、总结,
教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。
学生熟练掌握平方根的内容的前提下能用类推的方法得出立方根的相关概念。




例1求下列各数的立方根:看看正数、0和负数的立方根各有什么特点?
学生可能只注重于知识小结而忽略了方法的总结,在方法小结时,需要教师的合作帮助,让学生养成良好的学习数学的方法和习惯。
实践延伸
必做题:课本80页第1题和3题
选做题:课本80页第5题和第6题
问题:
要制作一种容积为27 的正方体形状的包装箱,这种包装箱的边长应该是多少?
变式:如果问题中正方体的体积为5 ,正方体的边长又该是多少?
用课件展示问题
学生口头回答
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
学生解答互相评析
让学生自主探究
通过对平方根的复习为下面类比学习立方根创设支点或者平台。
由问题情境导入新课




1试着给数的立方根下个定义呢?你能举出某个数的立方根吗?你能用符号将你所说的立方根表示出来吗?
立方根的概念.
一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).
2给开立方下一个定义吗?开立方运算与立方运算有什么样的关系呢?求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.
2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?
学生先思考后独立做题,教师巡视,如果发现学生在做第2题时遇到困难,可让学生小组讨论,个人发言。
培养学生实践运用能力




通过本节课的学习,你有什么收获(知识与方法)?还有什么困惑?对自己在本节课的表现有什么评价?
学生小结和交流学习的收获、数学思想的感悟、学习方法的体会等,或提出疑问进行讨论;教师帮助学生整理所学知识,引导学生进一步体会探究学习的过程和方法,领会数学的思想。
(1)8;(2)0.125;(3)0;(4) -8;(5)
分析:求一个数的立方根,可以通过立方运算来求.
立方根的性质
归纳总结得出结论:
正数的立方根是一个正数;负数的立方根是一个负数;零的立方根是零.
思考:平方根与立方根的联系与区别.
联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果.




一、知识与技能:
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同
二、过程与方法:
在数学活动中,首先回顾平方根知识引导学生观察、比较,对比分析,在自主探究中,类比理解立方根和开立方的的意义,并能灵活运用立方根的概念解决问题同时类比得出4次方根,n次方根。
相关文档
最新文档