5 第1课时分式的加减法
北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法
整1数)+,其1结+果为1__+____+_____1____. 1 3 2 4 3 5 n(n+2)
3n2+5n 4(n+1)(n+2)
知1-练
感悟新知
知识点 2 分式加减的应用及分式混合运算
知2-练
例2 小刚家和小丽家到学校的路程都是3km,其中小丽走的是 平路,骑车速度是2vkm/h.小刚需要走1km的上坡路、 2km的下坡路,在上坡路上的骑车速度为vkm/h,在下 坡路上的骑车速度为3vkm/h.那么 (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间?
知1-讲
特别解读: 通分的关键是确定最简公分母,分式与分式相加减时的最简 公分母是各分母的所有因式的最高次幂的积.
感悟新知
例1 计算:
(1) (32) (3a) 15 ; a 5a
1 1; x3 x3
知1-练
2a 1
a2
4
a
. 2
解:(1) 3 a 15 15 a 15 15 a 15 a 1 ;
(2)分式加减运算的结果要约分,化为最简分式(或整式).
课堂小结
异分母分式的加减 法
某学生化简分式出1现了+错误1 ,解答过程如下:
原式
x+1 x2-1
=(x+1)1(x-1)+(x+1)2(x-1)(第一步)
=(x+1)1+(2 x-1)(第二步)
=
3 x2-1
.(第三步)
课堂小结
异分母分式的加减 法
C.D.
-x x+2
x x- 2
知1-练
感悟新知
3. 计算的结a2+果2是ab(+b2 -) b
A
a2-b2 a-b
分式的加减乘除法
我来试一试!
x 1 x 3 3 2x , 2 , 2 2 x 16 x 9 x 20 x x 20
(1)
3
分式的加减法
1、通分:在不改变分式的值的情况下,把几个异分母的分式化为同分母分式的变形叫通分。 注:分式通分的依据是分式的基本性质。 2、最简公分母:几个分式中各分母的数字因数的最小公倍数与所有字母(因式)的最高次幂的积叫这 几个分式的最简公分母。 3、分式的加减法运算就是通分运算。
x 1 的最简公分母是______________________. 2 x y x y
2
(2)
(3)
我来试一试!
y x 2x 1 2 的最简公分母是________________________. 2x y y
(1)
例题2
通分: (1)
2a 3b 5x , , ; 2 2 5 xy 2 xz 3 yz 3
一.填空 1.若
M 2 xy y 2 x y ,则 M=___________. x2 y 2 x2 y 2 x y
2.公路全长 s 千米,骑车 t 小时可到达,要提前 40 分钟到达,每小时应多走____千米.
3.某班 a 名同学参加植树活动,其中男生 b 名(b<a).若只由男生完成,每人需植树 15 棵;若只由女生完成,则
5
每人需植树 4.已知
棵. 。
1 1 2 x 3 xy 2 y = =3,则分式 x y x 2 xy y
二.选择题 5.下列分式的运算中,其中结果正确的是( A、 ) C、
1 1 2 + a b ab
2
B、
(a 3 ) 2 a3 a
a2 b2 =a+b ab
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
分式的加减法数学教案设计
分式的加减法数学教案设计一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算方法。
2. 培养学生运用分式加减法解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式的加减法概念及运算方法。
2. 分式加减法在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的加减法运算方法。
2. 难点:分式加减法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解分式的加减法概念及运算方法。
2. 运用案例分析法,分析分式加减法在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作能力。
五、教学过程:1. 导入新课:通过复习分数的加减法,引导学生思考分式的加减法。
2. 讲解分式的加减法概念及运算方法:(1)分式的加减法概念:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再按照同分母分式加减法的法则计算。
(2)分式加减法的运算方法:a. 同分母分式相加减:分子相加减,分母保持不变。
b. 异分母分式相加减:先通分,再按照同分母分式加减法的法则计算。
3. 案例分析:分析分式加减法在实际问题中的应用。
(1)例题讲解:分析实际问题,引导学生运用分式加减法解决问题。
(2)学生练习:布置练习题,让学生独立解决实际问题。
4. 小组讨论:组织学生进行小组讨论,分享分式加减法在实际问题中的应用实例。
5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价。
6. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对分式加减法概念的理解程度。
2. 练习题:布置随堂练习,评估学生对分式加减法运算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作能力和解决问题的能力。
七、教学拓展:1. 引入更复杂的分式加减法问题,提高学生的解题能力。
2. 探讨分式加减法在高级数学中的应用,如在微积分、线性代数等领域。
分式方程的加减法运算
分式方程的加减法运算
分式方程是指含有分数形式的方程,其中未知数出现在分母或分子中。
分式方程的加减法运算是解决这类方程的常见方法之一,下面将详细介绍分式方程的加减法运算。
一、同分母分式的加减法
当分式方程中的分式有相同的分母时,可以直接进行加减法运算。
例如,对于分式方程$\frac{3}{5x} + \frac{2}{5x}$,由于两个分式的分母相同,可以将分子相加得到$\frac{3+2}{5x}=\frac{5}{5x}$。
二、不同分母分式的加减法
当分式的分母不同的时候,需要通过找到它们的最小公倍数来将它们的分母转换成相同的,然后再进行加减法运算。
例如,对于分式方程$\frac{1}{2x} - \frac{1}{3y}$,分母的最小公倍数为$6xy$,将分子乘以相应的倍数进行转换得到$\frac{3y}{6xy} - \frac{2x}{6xy}=\frac{3y-2x}{6xy}$。
三、加减法运算注意事项
在进行分式方程的加减法运算时,需要注意以下几点:
1. 确保分式的分母相同或转换成相同的分母;
2. 分子之间进行加减法运算时,分母保持不变;
3. 结果可能需要进行约分或化简。
通过以上介绍,我们可以看到分式方程的加减法运算并不复杂,关键在于找到合适的方法将分式转换成相同的分母,然后进行简单的加减法运算即可。
希望本文的内容能够帮助到大家理解分式方程的加减法运算,更好地解决相关问题。
2024年人教版八年级上册第十五章 分式分式的运算
15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。
【北师大版】数学八年级下册课件:第5章《分式的加减法》(2)ppt课件 大赛获奖精美课件PPT
2 x 10x 2x 2 x( x 5) 2 x 5 ( x 5)(x 5) x 25
3 x 15x 3x 3x( x 5) 2 x 5 ( x 5)(x 5) x 25
2018/3/23 该课件由【语文公社】 友情提供
3 . 2 y 该课件由【语文公社】 x
友情提供
( 1) 2
3
x 3x 2 x 与 (3) 2 与 ( 2 ) x5 x5 x 4 4 2x
解:(1)最简公分母是 2
3 2a b
2
a
2
b
与
a b ab c
2
1
把各分式化成相同 分母的分式叫做 分式的通分.
3 1 3 4 a a 4a a 4a 4a a 13பைடு நூலகம் 13 12 a a 2 2 ; 2 4 a 4a 4a 4a
你对这两种做法有何评判?
3 1 34 1 a 4a a 4 4 a
12 1 13 . 4a 4a 4a
2018/3/23
2018/3/23 该课件由【语文公社】 友情提供
2
例1.计算 :
2 2
x y (1 ) x y yx 2 2 y x 解:原式= x y ( x y)
3、猜一猜,异分母的分式应该如何加减?
2018/3/23 该课件由【语文公社】 友情提供
异分母分式加减法法则与异 分母分数加减法的法则类似 • 异分母分式加减法的法则: • 先通分,把异分母分式化 为同分母分式,再按同分 母分式相加减的法则进行 计算。 你会通
2018/3/23
该课件由【语文公社】 友情提供
3 1 3 4a 1 a 小明这样做: a 4a a 4a 4a a 12a a 2 2 4a 4a 小亮这样做: 13a 13 3 1 34 1 2 4a 4a a 4a a 4 4a 12 1 你对这两 4a 4a 种做法有何 13 评论? 4a
人教版八年级数学上册教案《分式的加减》
《分式的加减》◆教材分析教学对象是八年级学生,从知识的角度看,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行分式的乘除运算,基本掌握通分,能够确定几个分式的最简公分母;从数学活动经验、思维特征、学习习惯看,通过对分式的前期研究,运用类比分数的有关概念及性质、运算联想引申出分式的有关概念及性质、运算得习惯已基本形成。
通过第三学段三个学期的学习,思维水平也有了进一步地提升,理性思考能力明显提高,具备类比分数的加减运算法则探究出分式加减运算法则的能力。
但经验性思维依然占主导地位,部分学生的学习积极性、主动性不强,加之经历分数运算、因式分解的两次分流,分式加减运算既是前面代数运算的综合,又是分式概念及运算的难点内容之一,因此,对异分母分式加减和运用分式加减法则运算法则之后所涉及的诸如正确进行整式运算、分式化简等易出现差错,教学中应通过训练加以强化。
◆教学目标【知识与能力目标】1.熟练掌握同分母分式的加减运算2.掌握异分母分式的加减法则及通分的过程与方法.3. 会进行简单的分式的四则混合运算.【过程与方法目标】1、体验知识的化归,提高思维的灵活性,培养学生整体思考和分析问题的能力.2、经历分式混合运算法则的探究过程,进一步领会类比的数学思想.【情感态度价值观目标】让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品格,渗透化归对立统一的辩证观点. 【教学重点】1.分式的加减法.2.熟练地进行分式的混合运算.【教学难点】1.异分母分式的加减法及简单的分式混合运算.2.熟练地进行分式的混合运算.一、引入新课(课件展示)问题1:甲工程队完成一项工程需n 天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景 问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011年相比,森林面积增长率提高了多少?问题2的目的与问题1一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?二、讲授新课分式的加减法法则:同分母分式相加减,分母不变,把分子相加减。
《分式的加减法》第一课时参考课件
根据分式的基本性质 , 异分母的分式可化为同分母的 分式 , 这一过程叫做 分式的通分 . 为了计算方便, 异分母的分式通分时, 通常 取最简单 的公分母 (简称最简公分母), 作为它们的共同分母. 先确定公分母的系数,取各个分母系数的最小公倍数, 再取各分母所有字母因式的最高次幂的积。
例题解析 怎样进行分式的加减运算?
同分母分式加减法法则 与同分母分数加减法的法则类似。
尝试完成下列各题:
x 4 (1 ) ? x2 x2
2
x 2 x 1 x 3 (2) ? x 1 x 1 x 1
想一想
会异分母分数的加减, 就会异分母分式的加减
3 1 如 : ? 5 20
比如 3 1 ? a 4a
第三章
分式
3.3 分式的加减法(一)
新华中学八年级数学备课组
帮帮小明算算时间
从甲地到乙地有两条路,每 一个条路都是3km. 其中第一条 是平路,第二条有1km的上坡路 , 2km的下坡路.小明在上坡路上 的骑车速度为v km/h,在平路上 的骑车速度为2 vkm/h,在下坡路 上的骑车速度为3vkm/h, 那么: (1)当走第二条路时, 他从甲地 到乙地需要多长时间? 示意图 v (2)他走哪条路花费时间少? 少用多长时间?
小明认为, 只要把异分母的分式化成同分母的分式, 异分母的分式的 问题就变成了同分母分式的加减问题. 小亮同意小明的这种看法, 但他俩 的具体做法不同:
34 a 3 1 a 4a 4a a a 4a
12 a 4a
2
a 4a
2
13 a 4a
2
13 ; 4a
你对这两种做法有何评判?
2022年《分式的加减》教案 (省一等奖)
15.2.2分式的加减〔一〕一、教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、教学过程:〔一〕板书标题,呈现教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 〔二〕引导学生自学:阅读P15-16练习,并思考以下问题:1. 分数的加减运算法那么是什么?分式的加减运算法那么又是什么? 2. 异分母的分式加减法的一般步骤是什么?8分钟后,检查自学效果〔三〕学生自学,教师巡视: 学生认真自学,并完成P16练习 〔四〕检查自学效果:1.学生答复老师所提出的问题 2.学生答复P16练习〔五〕引导学生更正,归纳: 1.更正学生错误;2.P16例6. 第〔1〕题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比拟简单;第〔2〕题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.[分析] 第〔1〕题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.[分析] 第〔2〕题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 3.进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法那么计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:〔1〕取各分母系数的最小公倍数;〔2〕所出现的字母(或含字母的式子)为底的幂的因式都要取;〔3〕相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.4.异分母的分式加减法的一般步骤:〔1〕通分,将异分母的分式化成同分母的分式;〔2〕写成“分母不变,分子相加减〞的形式;〔3〕分子去括号,合并同类项;〔4〕分子、分母约分,将结果化成最简分式或整式. 〔六〕课堂练习 1.计算:〔1〕 〔2〕 〔3〕2.计算:〔1〕 〔2〕 111---x x x b a ab b a a +++2329122---m m aa a a a a a a a 2444122222--÷⎪⎭⎫ ⎝⎛+----+)225(423---÷-+x x x x作业:1.习题15.2第4,5题〔A本〕2.?感悟?P8-9分式的加减〔一〕3.预习P17-18练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
北师版八年级数学下册课件(BS) 第五章 分式与分式方程 分式的加减法 第1课时 同分母分式的加减法
8.(镇平县期末)若3x--21x =□+x-1 1 ,则□中的数是( B )
A.-1 C.-3
B.-2 D.任意实数
9.(郏县期末)已知分式 A=x-4 2 ,B=x-3 2 +2-1 x ,其中 x≠±2,则 A 与 B 的关系是( C ) A.A=B B.A=-B C.A>B D.A<B
二、解答题(共 48 分) 10.(12 分)计算:
解:小明走第一条路时,从家到学校的时间为33 =2v (h);小明走第二条路时, 2v
从家到学校的时间为1v +22
=4v
4 (h).v
-2v
=2v
>0,∴走第一条路节省时间,节
3v省2v h 的时间+xx- +11-xx- +31
;
解:原式=x+2+xx+-11-x+3 =xx+ +41
5a+3b (4) a2-b2
-a2-2ab2
.
解:原式=5a+a23-bb-2 2a =(a-b3a)+(3ba+b) =a-3 b
5.(2 分)化简a-a21 -11--2aa 的结果为( B )
A.aa+ -11
12.(12 分)已知 M=x22-xyy2 ,N=xx22+ -yy22 ,用“+”或“-”连接 M,N,有三种不 同的形式:M+N,M-N,N-M,请你任选其中一种进行计算,并化简求值, 其中 x∶y=5∶2.
解:(答案不唯一)M+N=x22-xyy2 +xx22+ -yy22 =xx+ -yy ,当 x∶y=5∶2 时,原式=73
数学 八年级下册 北师版
第五章 分式与分式方程
5.3 分式的加减法
第1课时 同分母分式的加减法
1.(2 分)计算x+x 1 -1x ,结果正确的是(A )
(完整版)分式加减教案
第五章分式与分式方程第三节分式的加减法〔第一课时〕一、授课目的1、知识与技术掌握同分母分式的加减法法那么,会进行简单分式的加减运算。
2、过程与方法经历研究分式加减运算法那么的过程,进一步培养代数化归意识和类比思想。
3、感神态度与价值观经过学习认识到数与式的联系,激发学生学习数学的兴趣,重视学习过程中对学生的概括、概括、交流等能力的培养;丰富数学感情与思想。
二、授课重点〔1〕同分母分式的加减运算法那么,同分母分式加减法的简单应用。
〔2〕类比、转变的思想的浸透。
三、授课难点〔1〕分子为多项式括号要加括号。
〔2〕当分式的分母是互为相反式时,转变为同分母。
四、授课过程1、情况引入〔1〕做一做:你能说说上面原由?1212777775751212式子的1212特点吗?并思虑做法运算法那么:同分母的分数相加减,分母不变,把分子相加减.1221a a x x35742b2b3y3y〔 2〕猜一猜:运算法那么:同分母的分式相加减,分母不变,把分子相加减.〔类比思想〕用式子表示为:b c b ca a a2、同分母加减例 1〔 1〕a ba b ;〔2〕 x224;ab ab x x2〔3〕m 2n4m n ;〔4〕x 3x 2 x 1 . m n m n x1x 1 x 1目的:授课生如何运用法那么进行运算,经过这 4 道例题,让学生学会加减法运算并注意运算时可能出现的问题。
注意:在进行运算时假设分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式—化简。
牛刀小试 1:(1)3x2x2xy ;(2)b2a22ab .2 x y2x y a b a b注意:经过学生的解答情况,对法那么做进一步的讲解,力求让学生理解并掌握同分母分式的加减法法那么。
3、拓展提高例2 计算〔 1〕 xy ; 〔 2〕 a21 2a . x yy xa 11 a牛刀小试 2:① 计算:2 x 1x 1 1 x② 先化简,再求值x 25 x 1 x x2x 22 , 其中 x 2021 .x目的:这是一组分母互为相反式的分式加减的题目,实那么是简单的异分母分式的加减法,经过例题的讲解,又有练一练的坚固,应该能够掌握,第三小题有意增加难度,在于学生能力的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3 分式的加减(第1课时)
学习目标
1.会进行同分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则.
2.会将互为相反数的分母化为同分母,发展符号感.
3.会进行简单的异分母的分式加减法.
课前预习方案
自主学习
1. +=1322
. 2.你认为
+12a a 应等于什么? 3.猜一猜,同分母的分式应该如何加减?
(让学生相互交流,引导学生通过与分数类比,大胆猜想同分母分式的加减运算法则.并让学生说明其合理性.培养学生的探索能力.)
4..猜一猜,异分母的分式应该如何加减?
知识链接
1.同分母的分数如何加减?
2.
+-124a a a = . 3. +-124ab 3a 5b
= . 课堂学习方案
知识结构
同分母的分式加减法法则:
同分母的两个分式相加(减),分母不变,把分子相加(减).
用式子表示:
a c ±
b c
=±a b c (其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 通分:把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母.
异分母的分式加减法法则:
异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减).
用式子表示
±±=±=A C AD BC AD BC B D BD BD BD
. 典型例题
例1.计算 1.+--2y 4y 22y
2. ++--+---222222x 3y x 2y 2y 3x x y x y x y
解:1.+--2y 4y 22y
=---2y 4y 2y 2
=--2y 4y 2
=+--(y 2)(y 2)y 2
= +y 2 2. ++--+---222222
x 3y x 2y 2y 3x x y x y x y =
+-++--22x 3y (x 2y)(2y 3x)x y =
+--+--22x 3y x 2y 2y 3x x y =
--223y 3x x y =-+-3(y x)(x y)(x y)
=-+3x y
例2 .计算:253a b ab
+, 5n mn mp +. 总结:
1.互为相反数的分母化为同分母时应提负号.
2.分数线的两个作用⑴除号⑵括号.
3.注意约分时的符号问题.
1.填空
⑴.
-++2x 12x 1x x = . ⑵.
---x y x y x y = . ⑶.+-152mn mn mn = .
⑷.
---22a b (a b)(b a)= . ⑸.+--a b a b b a = . ⑹.-+----222
x 2y y x y x y y x = . 2.计算
⑴. ++--+---2a b a 4b a
b
a 2
b a 2b a 2b
⑵. +-+----2
x 5x 4x
x 33x 3x
⑶. +-+----2222222x y y 2xy y x xy x xy x xy
计算---+2
2222x 2xy (y x)x y x xy ·
(其中x=-2,y=-3)。