高考物理法拉第电磁感应定律(大题培优)含详细答案
高考物理培优 易错 难题(含解析)之法拉第电磁感应定律附答案
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n BrRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
高中物理法拉第电磁感应定律习题培优题及答案解析
高中物理法拉第电磁感应定律习题培优题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。
线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv = E I R =q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考物理培优 易错 难题(含解析)之法拉第电磁感应定律及详细答案
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ;(2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω【解析】【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt =线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量;(3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J【解析】【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =x t ∆∆=7 m/s 根据欧姆定律可得:I =BLv r R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得: I =()R r t∆Φ+∆ 磁通量变化量 ΔΦ=S t∆∆B 解得: q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以 Q R =R r R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J3.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响). ()1判断金属棒两端a 、b 的电势哪端高;()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J【解析】【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
高考物理二轮 法拉第电磁感应定律 专项培优及答案解析
高考物理二轮法拉第电磁感应定律专项培优及答案解析一、法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
备战高考物理培优专题复习法拉第电磁感应定律练习题含答案解析
备战高考物理培优专题复习法拉第电磁感应定律练习题含答案解析一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。
一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。
求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)含详细答案
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)含详细答案一、法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
高考物理法拉第电磁感应定律(大题培优)附答案
由楞次定律知该电流由 b 向 a 通过 R1。
(2)由 I q 得在 0 至 t1 时间内通过 R1 的电量为: t
q
It1
n B0r22t1 3Rt0
2.如图所示,在垂直纸面向里的磁感应强度为 B 的有界矩形匀强磁场区域内,有一个由 均匀导线制成的单匝矩形线框 abcd,线框平面垂直于磁感线。线框以恒定的速度 v 沿垂直 磁场边界向左运动,运动中线框 dc 边始终与磁场右边界平行,线框边长 ad=l,cd=2l,线 框导线的总电阻为 R,则线框离开磁场的过程中,求:
(1)请根据法拉第电磁感应定律,推导金属棒 MN 中的感应电动势 E; (2)在上述情景中,金属棒 MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛 伦兹力有关.请根据电动势的定义,推导金属棒 MN 中的感应电动势 E. (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做 功.那么,金属棒 MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的
(1)线框离开磁场的过程中流过线框截面的电量 q; (2)线框离开磁场的过程中产生的热量 Q; (3)线框离开磁场过程中 cd 两点间的电势差 Ucd.
【答案】(1) q
2Bl 2 R
(2)
Q
4B2l3v R
(3) Ucd
4Blv 3
【解析】
【详解】
(1)线框离开磁场的过程中,则有:
E B 2lv
量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦 兹力通过两个分力做功起到“传递”能量的作用. 【点睛】 本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒 子的受力及做功情况.
4.如图,水平面(纸面)内同距为 l 的平行金属导轨间接一电阻,质量为 m、长度为 l 的
高考物理二轮 法拉第电磁感应定律 专项培优及答案
高考物理二轮 法拉第电磁感应定律 专项培优及答案一、法拉第电磁感应定律1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
高考物理培优易错试卷(含解析)之法拉第电磁感应定律含答案
一、法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mgF mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.3.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】解:(1)初始时:0E BLv =EI R r=+ 对棒2:F 安BIL ma ==解得:222010m/s B L v a R r==+(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆解得:8C mvq BL== (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL xq R r R rφ∆∆==++ 又mv q BL=解得:22()mv R r x B L +∆=则稳定后两棒的距离:22()2m mv R r d d x d B L +'=-∆=-=4.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .【答案】(1)2020n B r E t π=(2)201203n B t r q Rt π=【解析】 【详解】(1)由法拉第电磁感应定律E n t φ∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流EI R =总③ 0~t 1时间内通过电阻R1的电荷量1q It = ④由①②③④式得201203n B t r q Rt π=5.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=导体棒切割磁感线产生的电动势为: E BLv =由闭合电路欧姆定律知:EI R r=+ 3.66/0.6x v m s t === 联立解得:0.4B T = (2)6()()()E BsLq It t t C R r t R r R r R r ∆Φ∆Φ======+∆+++ (3)由功能关系得:21sin 2mgx mv Q θ=+ 5.4R QQ R J R r==+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.6.如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5T 的匀强磁场中。
高考物理法拉第电磁感应定律(大题培优)及答案解析
(2)导体棒PQ到达磁场上边界时速度大小;
(3)导体棒PQ到达磁场上边界前的过程线框中产生的焦耳热.
【答案】(1) (2) (3)
【解析】
试题分析:(1)线框刚进入磁场时是做匀速运动.由平衡知识可列:
(2)设导体棒到达磁场上边界速度为 ,线框底边进入磁场时的速度为 ;导体棒相对于线框的距离为 ,线框在磁场中下降的距离为 .
(1)当电压表的读数为U=0.2V时,棒L2的加速度多大?
(2)棒L2能达到的最大速度vm.
(3)若在棒L2达到最大速度vm时撤去外力F,并同时释放棒L1,求棒L2达到稳定时的速度值.
(4)若固定棒L1,当棒L2的速度为v,且离开棒L1距离为S的同时,撤去恒力F,为保持棒L2做匀速运动,可以采用将B从原值(B0=0.2T)逐渐减小的方法,则磁感应强度B应怎样随时间变化(写出B与时间t的关系式)?
(1)金属棒αb以速度v匀速运动时两端的电势差Uab;
(2)物块运动H距离过程中电阻R产生的焦耳热QR.
【答案】1) (2)
【解析】
(1)金属棒ab以速度v匀速运动时,产生的感应电动势大小为:E=Blv
由闭合电路欧姆定律得:
金属棒αb两端的电压大小为:U=IR
解得:
由右手定则可得金属棒ab中的电流方向由a到b,
设克服安培力做的功为W,则:
解得:W="1.5J " (2分)
所以电路产生的总电热为1.5J,导体棒产生的电热为0.75J (1分)
7.如图所示,光滑、足够长的平行金属导轨MN、PQ的间距为l,所在平面与水平面成θ角,处于磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中.两导轨的一端接有阻值为R的电阻.质量为m、电阻为r的金属棒ab垂直放置于导轨上,且m由一根轻绳通过一个定滑轮与质量为M的静止物块相连,物块被释放后,拉动金属棒ab加速运动H距离后,金属棒以速度v匀速运动.求:(导轨电阻不计)
高中物理法拉第电磁感应定律习题培优题附答案
高中物理法拉第电磁感应定律习题培优题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值. 【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220 B l t m【解析】【分析】【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=- ⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R ⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:(1)此时通过电阻R 上的电流;(2)这一过程通过电阻R 上的电荷量q ;(3)此时作用于导体棒上的外力F 的大小.【答案】(1)3A (2)4.5C (3)2N【解析】【分析】【详解】(1)根据热功率:P =I 2R , 解得:3A P I R== (2)回路中产生的平均感应电动势:E nt φ∆=∆ 由欧姆定律得:+E I R r= 得电流和电量之间关系式:q I t nR r φ∆=⋅∆=+ 代入数据得: 4.5C BLd q R r==+ (3)此时感应电流I =3A ,由E BLv I R r R r ==++ 解得此时速度:()6m/s I R r v BL +==由匀变速运动公式:v 2=2ax , 解得:222m/s 2v a d== 对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma ,即:F -BIL -mgsin30°=ma ,解得:F =ma +BIL +mgsin30°=2 N【点睛】本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点.【考点】动生电动势、全电路的欧姆定律、牛顿第二定律.3.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=0.4m,上端接有电阻R=0.3Ω,虚线OO′下方是垂直于导轨平面的匀强磁场,磁感强度B=0.5T。
高考物理法拉第电磁感应定律(大题培优)含答案解析
高考物理法拉第电磁感应定律(大题培优)含答案解析一、法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)附详细答案
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)及详细答案
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb 为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q 为多少?(3)若在线框eb 边刚进入磁场时,立即给物体P 施加一竖直向下的力F ,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F 做功W F =3.6 J ,求eb 边上产生的焦耳Q eb 为多少?【答案】(1)1.2 V (2)3.2 J (3)0.9 J 【解析】 【详解】(1)线框eb 边以v =4.0 m/s 的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 V E BLv ==⨯⨯因为e 、b 两点间作为等效电源,则e 、b 两点间的电势差为外电压:U eb =34E =1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F 安=BLI根据闭合电路欧姆定律有:I =E R联立解得解得F 安=4 N 所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.3.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin182100.52/2/2B L vF mgRa m s m smα⨯⨯----⨯⨯===,(3)由题图可知0.8s末金属杆的速度为12.2/v m s=,前0.8s内图线与t轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s内金属杆的位移为 1.12x m=,由能量的转化和守恒定律得:211sin2Q Fx mgx mvα=--,代入数据解得: 4.12JQ=.【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.4.如下图所示,MN、PQ为足够长的光滑平行导轨,间距L=0.5m.导轨平面与水平面间的夹角θ= 30°,NQ丄MN,N Q间连接有一个3R=Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T=,将一根质量为m=0.02kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻1r=Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行,当金属棒滑行至cd处时速度大小开始保持不变,cd距离NQ为s=0.5 m,g=10m/s2。
高考物理培优易错试卷(含解析)之法拉第电磁感应定律及答案
高考物理培优易错试卷(含解析)之法拉第电磁感应定律及答案一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)附答案
高考物理 法拉第电磁感应定律 培优易错试卷练习(含答案)附答案一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。
一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。
求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
高考物理法拉第电磁感应定律(大题培优)及详细答案
一、法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sinv glθ=则ab棒开始下滑的位置离EF的距离21232xh at l l=+=(3)ab棒在区域Ⅱ中运动时间222sinxl ltv gθ==ab棒从开始下滑至EF的总时间222sinxlt t tgθ=+=感应电动势:12sinE Blv Bl glθ==ab棒开始下滑至EF的过程中回路中产生的热量:Q=EIt=4mgl sinθ2.如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:(1) ab棒1.5 s-2.1s的速度大小及磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:(1)初始时: E BLv0
I E R r
对棒 2: F 安 BIL ma
解得: a B2L2v0 10m/s2 Rr
(2)对棒 1 和 2 的系统,动量守恒,则最后稳定时: Mv0 (m M )v 解得: v 8m/s
(3)对棒 2,由动量定理: BILt mv ,其中 q I t
mg sin 30t2 2BLIt2 mv mv 其中
联立以上两式解得
I 2BL L x0
t2 R
t2
4L
v
x0
3v 2g
线框 ab 在下侧磁场匀速运动的过程中,有
t3
x0 v
4x0 v
所以线框穿过上侧磁场所用的总时间为
t
t1
t2
t3
7 2
L g
5.水平面上平行固定两长直导体导轨 MN 和 PQ,导轨宽度 L=2m,空间存在竖直向下的匀 强磁场,磁感应强度 B=0.5T,在垂直于导轨方向静止放置两根导体棒 1 和 2,其中 1 的质 量 M=4kg,有效电阻 R=0.6Ω,2 的质量 m=1kg,有效电阻 r=0.4Ω,现使 1 获得平行于导轨的 初速度 v0=10m/s,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
E
W q
计算得出 E.
(3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做 功的变化状况.
【详解】
(1)如图所示,在一小段时间t 内,金属棒 MN 的位移
x vt 这个过程中线框的面积的变化量 S Lx Lvt
穿过闭合电路的磁通量的变化量
BS BLvt
根据法拉第电磁感应定律 E t
R1
2.4V
答:(1)磁通量变化率为 0.04Wb/s,回路的感应电动势为 4V。
(2)a、b 两点间电压 Uab 为 2.4V。
2.两间距为 L=1m 的平行直导轨与水平面间的夹角为 =37°,导轨处在垂直导轨平面向下、
磁感应强度大小 B=2T 的匀强磁场中.金属棒 P 垂直地放在导轨上,且通过质量不计的绝缘 细绳跨过如图所示的定滑轮悬吊一重物(重物的质量 m0 未知),将重物由静止释放,经 过一 段时间,将另一根完全相同的金属棒 Q 垂直放在导轨上,重物立即向下做匀速直线运 动,金 属棒 Q 恰好处于静止状态.己知两金属棒的质量均为 m=lkg、电阻均为 R=lΩ,假设重 物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度 g=l0m/s2,sin 37°=0.6,cos37°=0.8.求:
垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为 L。一质量为 m、边长为 L 的 正方形线框距磁场上边界 L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀 速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为 g。 求:
(1)线框 ab 边刚越过两磁场的分界线 ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量 Q 和所用的时间 t。
如图所示,沿棒方向的洛伦兹力 f1 qvB ,做正功W1 f1 uΔt qvBuΔt 垂直棒方向的洛伦兹力 f2 quB ,做负功
W2 f2 vΔt quBvΔt 所以W1+W2 =0 ,即导体棒中一个自由电荷所受的洛伦兹力做功为零. f1 做正功,将正电荷从 N 端搬运到 M 端, f1 相当于电源中的非静电力,宏观上表现为“电 动势”,使电源的电能增加; f2 做负功,宏观上表现为安培力做负功,使机械能减少.大
【答案】(1) E BLv ;(2) E BLv (3)见解析
ቤተ መጻሕፍቲ ባይዱ【解析】
【分析】
(1)先求出金属棒 MN 向右滑行的位移,得到回路磁通量的变化量 ,再由法拉第电磁感应
定律求得 E 的表达式;
(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力, f1 evB ,棒中电子在 洛伦兹力的作用下,电子从 M 移动到 N 的过程中,非静电力做功W evBl ,根据电动势定义
ab 边受到的安培力
I E R
线框匀速进入磁场,则有
B 2 L2v F BIL
R
mg sin 30 B2L2v R
ab 边刚越过 ff 时,cd 也同时越过了 ee ,则线框上产生的电动势 E'=2BLv
线框所受的安培力变为
方向沿斜面向上
F 2BI L 4B2L2v 2mg R
(2)设线框再次做匀速运动时速度为 v ,则
【答案】(1)0.5N ;方向沿斜面向上(2)0.5N,方向沿斜面向上(3)1.5C
【解析】
【分析】
【详解】
(1)0-3s 内,由法拉第电磁感应定律得:
B E t t L1L2 2V
T=1s 时,F 安=BIL1=0.5N 方向沿斜面向上 (2)对 ab 棒受力分析,设 F 沿斜面向下,由平衡条件:
由于两个金属棒电阻串联,均为 R,可知
Q 棒产生的焦耳热为 Q Q总 3J 2
3.如图所示,两根相距为 L 的光滑平行金属导轨 CD、EF 固定在水平面内,并处在竖直向 下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为 R 的定值电阻,将质 量为 m、电阻可忽略不计的金属棒 MN 垂直放置在导轨上,可以认为 MN 棒的长度与导轨 宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒 MN 以恒定速度 v 向右运动过程中,假设磁感应强度大小为 B 且保持不变,为了方便,可认为 导体棒中的自由电荷为正电荷.
解得 E BLv (2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力
f1 evB ,f1 即非静电力
在 f 的作用下,电子从 N 移动到 M 的过程中,非静电力做功
W evBL 根据电动势定义 E W
q 解得 E BLv
(3)自由电荷受洛伦兹力如图所示.
设自由电荷的电荷量为 q,沿导体棒定向移动的速率为 u .
(1)当 t=1s 时,棒受到安培力 F 安的大小和方向; (2)当 t=1s 时,棒受到外力 F 的大小和方向; (3)4s 后,撤去外力 F,金属棒将由静止开始下滑,这时用电压传感器将 R 两端的电压即时 采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位
置与棒初始位置相距 2m,求棒下滑该距离过程中通过金属棒横截面的电荷量 q.
(1)请根据法拉第电磁感应定律,推导金属棒 MN 中的感应电动势 E;
(2)在上述情景中,金属棒 MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛 伦兹力有关.请根据电动势的定义,推导金属棒 MN 中的感应电动势 E. (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做 功.那么,金属棒 MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的 呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.
高考物理法拉第电磁感应定律(大题培优)含详细答案
一、法拉第电磁感应定律
1.如图所示,面积为 0.2m2 的 100 匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已 知磁感应强度随时间变化的规律为 B=(2+0.2t)T,定值电阻 R1=6 Ω,线圈电阻 R2=4Ω 求:
(1)磁通量变化率,回路的感应电动势。 (2)a、b 两点间电压 Uab。 【答案】(1)0.04Wb/s 4V(2)2.4V 【解析】
(1)金属棒 Q 放上后,金属棒户的速度 v 的大小; (2)金属棒 Q 放上导轨之前,重物下降的加速度 a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒 Q 放上后,重物每下降 h=lm 时,Q 棒产生的焦耳热.
【答案】(1) v 3m/s (2) a 2.7m/s2 (3) 3J
mg sin 30 4B2L2v R
解得
v v gL 44
根据能量守恒定律有
mg sin 30 2L 1 mv2 1 mv2 Q
2
2
解得 Q 47mgL 32
线框
ab
边在上侧磁扬中运动的过程所用的时间 t1
L v
设线框 ab 通过 ff 后开始做匀速时到 gg 的距离为 x0 ,由动量定理可知:
(1)初始时刻导体棒 2 的加速度 a 大小. (2)系统运动状态稳定时 1 的速度 v 大小. (3)系统运动状态达到稳定的过程中,流过导体棒 1 某截面的电荷量 q 大小. (4)若初始时刻两棒距离 d=10m,则稳定后两棒的距离为多少?
【答案】(1)10m/s2(2)8m/s(3)8C(4)2m 【解析】
【答案】(1)安培力大小 2mg,方向沿斜面向上(2) Q 47mgL t 7 L
32
2g
【解析】
【详解】
(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有
则线框进入磁场时的速度
mgL sin 30 1 mv2 , 2
v 2g sin30L gL
线框 ab 边进入磁场时产生的电动势 E=BLv 线框中电流
量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦 兹力通过两个分力做功起到“传递”能量的作用. 【点睛】 本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒 子的受力及做功情况.
4.如图所示,在倾角 30o 的光滑斜面上,存在着两个磁感应强度大小相等、方向分别
【详解】
(1)由 B=(2+0.2t)T 得磁场的变化率为
则磁通量的变化率为:
B 0.2T/s t
S B 0.04Wb/s t t
根据 E n 可知回路中的感应电动势为: t
E n nS B 4V
t
t
(2)线圈相当于电源,Uab 是外电压,根据电路分压原理可知: