固态继电器原理及应用电路

合集下载

直流固态继电器工作原理及接线使用方法

直流固态继电器工作原理及接线使用方法

直流固态继电器工作原理及接线使用方法说到直流固态继电器,这可是个让人既陌生又熟悉的东西。

听上去高大上,其实也没那么复杂。

今天咱们就来聊聊它的工作原理和怎么接线使用,保证让你一看就懂。

1. 直流固态继电器是什么?1.1 定义直流固态继电器,简单来说就是一种能够用来控制电路的开关装置。

不同于传统的电磁继电器,固态继电器没有活动的机械部件,而是靠半导体材料来实现控制。

这样一来,它们就没有了噪音和磨损,更加耐用。

1.2 应用场景固态继电器通常用在那些需要频繁开关的场合,比如电机控制、加热器控制等。

它的好处就是能稳定、快速地切换电路,基本上可以说是非常适合各种现代自动化设备的。

2. 工作原理2.1 基本原理固态继电器的工作原理其实并不复杂。

它通过输入信号来控制内部的开关装置。

这个开关装置一般由几个电子元件组成,比如晶体管或者光耦合器。

当你给它一个电信号,继电器内部的开关就会迅速打开或关闭,从而实现对外部电路的控制。

2.2 控制信号固态继电器的控制信号通常是直流电,比如5V或12V的直流电压。

只要你给它一个合适的直流信号,它就能立刻做出反应。

与传统的电磁继电器不同,它没有那些“咔嚓”声,也没有运动部件,所以开关起来非常平稳安静。

3. 接线使用方法3.1 接线步骤接线这块可能是大家最关心的,搞不好就容易出现问题。

其实接线也不难,只要你按以下步骤来就没问题:确定引脚:首先,你得弄清楚固态继电器的各个引脚功能。

一般来说,固态继电器有三个主要引脚:控制输入端、负载输出端和电源端。

具体引脚的功能可以查看说明书或者继电器上的标记。

连接控制端:将控制信号线连接到继电器的控制端。

比如说,如果你的固态继电器需要5V的直流电信号,那么你就把5V电源和地线分别接到控制端的正负极。

连接负载端:负载端是用来连接你要控制的设备的。

比如说你要用固态继电器来控制一个灯泡,那么就把灯泡的电源线和固态继电器的负载输出端连接起来。

检查连接:在接线完成之后,一定要检查一下每一根线是不是都接对了,避免出现接错的情况。

固态继电器的工作原理及作用

固态继电器的工作原理及作用

固态继电器的工作原理及作用继电器是一种利用电磁作用来控制大电流的开关装置。

传统的电磁继电器具有机械结构,容易受到机械磨损和振动的影响,导致寿命短、可靠性差等问题。

为了解决这些问题,固态继电器(Solid State Relay,简称SSR)应运而生。

固态继电器是一种半导体器件,它不需要机械结构,具有寿命长、可靠性高、响应速度快、体积小等优点,被广泛应用于工业自动化、电气控制等领域。

一、固态继电器的工作原理固态继电器的主要组成部分是输入电路、控制电路和输出电路。

输入电路用于接收控制信号,控制电路将输入信号转换为驱动输出电路的信号,输出电路则控制负载电流的开关。

固态继电器的输出电路通常由两个反向并联的晶体管组成,它们的控制端相互连接,形成一个共阳或共阴电路。

当控制电路的信号为低电平时,输出电路中的晶体管都处于截止状态,负载电路断开。

当控制电路的信号为高电平时,输出电路中的晶体管都处于导通状态,负载电路闭合。

固态继电器的控制电路通常采用光电耦合器,它是由发光二极管和光敏三极管组成的。

当输入电路的信号为高电平时,发光二极管发出的光线照射到光敏三极管上,使其导通,从而产生一个驱动输出电路的信号。

当输入电路的信号为低电平时,发光二极管不发出光线,光敏三极管不导通,输出电路中的晶体管都处于截止状态,负载电路断开。

二、固态继电器的作用固态继电器的作用是控制负载电流的开关。

负载可以是灯泡、电机、加热器、风扇等电器设备,也可以是电容、电感、电阻等电路元件。

固态继电器可以通过控制电路的信号,实现对负载电流的精确控制。

它具有以下优点:1.寿命长。

固态继电器不需要机械结构,不存在机械磨损和振动的问题,寿命可达数十万次以上。

2.可靠性高。

固态继电器的输出电路采用晶体管,响应速度快,不受电磁干扰和浪涌电流的影响,具有较高的可靠性。

3.响应速度快。

固态继电器的控制电路采用光电耦合器,响应速度可达微秒级,可适用于高速开关控制。

4.体积小。

固态继电器原理及应用电路

固态继电器原理及应用电路

固态继电器原理及应用电路固态继电器是一种用固态电子元件代替机械触点的继电器。

它由固态电子开关、输入电路、输出电路三部分组成。

固态继电器工作原理与普通继电器类似,但由于使用了固态电子元件,因此具有更快的响应速度、更高的可靠性和更长的使用寿命。

固态继电器的输入电路通常是一个光电耦合器,其原理是利用光电转换效应实现输入信号与输出电路之间的隔离。

输入信号经过光电耦合器后,可以将光电转换器上的发光二极管(LED)发射的光信号转换为输出电路上的接收器上的光电三极管(Phototransistor)中的电流信号。

固态继电器的输出电路通常由半导体开关电路构成,可以是晶体管、场效应晶体管、双向三极管等。

当光电三极管中的电流达到一定程度时,输出电路上的半导体开关就会通电,使得输出电路上的负载得到驱动。

可以根据需要选择不同的功率输出电路来适应不同的负载要求。

1.自动化控制系统:固态继电器可以广泛应用于各种自动化控制系统中,如工业自动化控制系统、智能家居控制系统等。

通过控制输入信号的电平,可以实现对输出负载的开关控制。

2.电力控制系统:固态继电器可以在电力控制系统中起到重要作用。

例如,在电力系统的电力开关控制中,可以使用固态继电器来实现对电阻、电容、电感等电力元件的开关控制。

3.电子设备:固态继电器可以广泛应用于电子设备中,如计算机、通信设备、医疗设备等。

通过固态继电器的开关控制,可以实现电子设备的电源开关、电路切换等功能。

4.高频电路:固态继电器由于具有快速响应速度和低损耗特性,适用于高频电路的开关控制。

例如,在射频电路中,可以使用固态继电器来实现对高频信号的开关控制。

总之,固态继电器具有快速响应速度、高可靠性和长使用寿命的优点,广泛应用于各种控制系统和电子设备中。

随着固态电子技术的不断进步和应用领域的扩大,固态继电器在未来的应用前景将会更加广阔。

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例固态继电器(SSR)与机电继电器相比,是一种没有机械运动,不含运动零件的继电器,但它具有与机电继电器本质上相同的功能。

SSR是一种全部由固态电子元件组成的无触点开关元件,他利用电子元器件的点,磁和光特性来完成输入与输出的可靠隔离,利用大功率三极管,功率场效应管,单项可控硅和双向可控硅等器件的开关特性,来达到无触点,无火花地接通和断开被控电路。

交流固态继电器SSR(Solid state releys)是一种无触点通断电子开关,为四端有源器件。

其中两个端子为输入控制端,另外两端为输出受控端,中间采用光电隔离,作为输入输出之间电气隔离(浮空)。

在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。

整个器件无可动部件及触点,可实现相当于常用的机械式电磁继电器一样的功能。

固态继电器的工作SSR固态继电器以触发形式,可分为零压型(Z)和调相型(P)两种。

在输入端施加合适的控制信号VIN时,P型SSR立即导通。

当VIN撤销后,负载电流低于双向可控硅维持电流时(交流换向),SSR关断。

Z型SSR内部包括过零检测电路,在施加输入信号VIN时,只有当负载电源电压达到过零区时,SSR才能导通,并有可能造成电源半个周期的最大延时。

Z型SSR关断条件同P型,但由于负载工作电流近似正弦波,高次谐波干扰小,所以应用广泛。

有普通型(S,采用双向可控硅元件)和增强型(HS,采用单向可控硅元件)之分。

当加有感性负载时,在输入信号截止t1之前,双向可控硅导通,电流滞后电源电压90O(纯感时)。

t1时刻,输入控制信号撤销,双向可控硅在小于维持电流时关断(t2),可控硅将承受电压上升率dv/dt很高的反向电压。

这个电压将通过双向可控硅内部的结电容,正反馈到栅极。

如果超过双向可控硅换向dv/dt指标(典型值10V/s,将引起换向恢复时间长甚至失败。

单向可控硅(增强型SSR)由于处在单极性工作状态,此时只受静态电压上升率所限制(典型值200V/s),因此增强型固态继电器HS系列比普通型SSR的换向dv/dt指标提高了520倍。

固态继电器原理及应用电路

固态继电器原理及应用电路

固态继电器原理及应用电路固态继电器(Solid State Relay,简称SSR)是一种电子开关装置,能够通过对输入信号的操控来实现对电路的开关控制。

与传统的机械继电器相比,固态继电器没有机械结构,具有响应速度快、寿命长、噪声小、抗干扰能力强等优点。

其原理和应用电路如下。

原理:固态继电器的核心部件是一对光耦合器(Optocoupler)和功率晶体管(Power Transistor)。

光耦合器的输入端与控制电路相连,而输出端与功率晶体管的控制极相连。

当输入电流通过光耦合器时,会发射出红外光,经过光电转换后驱动功率晶体管的控制极,使其导通或截止,从而实现对负载电路的开关控制。

应用电路:1.开关控制电路:固态继电器可以实现对照明、空调、电机等负载电路的开关控制。

其输入端可以采用低电平触发或高电平触发方式,根据控制系统的要求,选择对应的输入电压。

输出端则可以通过选定功率晶体管的类型来实现不同功率负载电路的控制。

2.定时控制电路:固态继电器还可以与定时器结合,实现定时控制功能。

例如,在灌溉系统中,通过将固态继电器接入水泵的电源线路,可以利用定时器控制水泵的工作时间,自动定时给植物浇水,提高灌溉效率。

3.温控电路:固态继电器可以应用于温控系统中,实现对加热或冷却设备的控制。

将温度传感器的输出信号接入固态继电器的输入端,通过控制输入信号的电平,控制固态继电器的导通与截止,从而调节加热或冷却设备的工作状态,使温度保持在设定值附近。

4.光电隔离电路:固态继电器的光耦合器具有光电隔离功能,可以将控制端与输出端进行电气隔离,防止控制电路对负载电路产生干扰。

因此,固态继电器广泛应用于自动控制系统中,如PLC、自动化生产线等领域。

总结:固态继电器的原理和应用电路主要是通过光耦合器和功率晶体管实现对负载电路的开关控制。

它在实际应用中具有快速响应、寿命长、噪声小、抗干扰能力强等优点,广泛应用于各种自动控制系统中。

通过合理选择输入信号和功率晶体管的类型,可以满足不同负载电路的控制需求。

固态继电器的原理与应用

固态继电器的原理与应用

固态继电器的原理与应用固态继电器是一种可以实现与传统电磁继电器相同功能的电子开关装置。

它使用半导体材料和电子技术代替传统的机械触点,具有高速、长寿命、可靠性高的特点。

本文将详细介绍固态继电器的工作原理以及常见的应用领域。

一、固态继电器的工作原理固态继电器可以通过电子元器件进行控制信号和工作电路的隔离,实现开关的闭合和断开。

其主要由输入控制电路、功率放大器和输出控制电路组成。

1.输入控制电路:接收外部的控制信号,将其转化为符合固态继电器要求的控制电压和电流。

2.功率放大器:根据输入控制电路的输出,将信号放大到足以使输出控制电路工作的程度。

3.输出控制电路:根据功率放大器的输出,控制开关的闭合和断开。

通常采用半导体元件,如绝缘栅双极性晶体管(MOSFET)、双电结型触发二极管(SJT)等。

固态继电器的闭合和断开过程是由输入控制电路的控制信号决定的。

当输入控制电路接收到高电平信号时,输出控制电路将产生足够的电压和电流,使开关闭合。

反之,当输入控制电路接收到低电平信号时,输出控制电路将断开开关。

二、固态继电器的应用领域1.交流电源控制:固态继电器可用于对交流电源进行开关控制,可以实现开关控制的快速和精确。

此外,固态继电器还具有无噪音、无电弧和较小的体积等优点。

2.温度控制:固态继电器可以通过控制加热元件的通断来实现对温度的控制。

由于固态继电器没有机械触点,因此不存在接触电阻和开关频次限制的问题,能够实现更高精度的温度控制。

3.光电控制:固态继电器可用于光电开关控制。

光电传感器测量到光信号后,通过固态继电器输出控制信号,实现对光电开关装置的开关控制。

固态继电器对光信号具有极强的适应能力,能够实现高速、高精度的光电开关控制。

4.油压控制:固态继电器可用于对油压机械的控制。

通过接收压力传感器的反馈信号,控制固态继电器的开关状态,实现对油压的精确控制。

5.电力控制:固态继电器可用于电力系统的控制和保护。

它可以实现对电力设备的开关控制、电压调节、电流限制等功能,具有高速和可靠的特点。

固态继电器的结构、原理及应用

固态继电器的结构、原理及应用

固态继电器(SolidStateRelay,缩写SSR ),是由微电子电路,分立电子器件, 电力电子功率器件组成的无触点开关。

用隔离器件实现了控制端与负载端的隔离。

固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。

与传统继电 器相比,最大的特点在于无触点开关。

一、 什么是固态继电器固态继电器是一种全部由固态电子元件组成的新型无触点开关器件,它利用电子 元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无 火花地接通和断开电路的目的,因此又被称为“无触点开关”。

固态继电器是一 种四端有源器件,其中两个端子为输入控制端,另外两端为输出受控端。

它既有 放大驱动作用,又有隔离作用,很适合驱动大功率开关式执行机构,较之电磁继 电器可靠性更高,且无触点、寿命长、响应速度快,对外界的干扰也小,已被得 到广泛应用。

二、 固态继电器结构及原理常用固态继电器几乎都是模块化的四端有源器件,其中两端为输入控制端,另外 两端为输出受控端,其基本构成如下图所示。

器件中多采用光电耦合器实现输入 与输出之间的电气隔离。

输出受控端利用开关三极管、双向晶闸管等半导体器件 的开关特性,实现无触点、无火花地接通和断开外接控制电路的目的。

整个器件 无可动部件及触点,可实现相当于常用电磁继电器一样的功能。

只是相比传统电 磁继电器,可通断的负载一般比较小。

固态继电器按输出端极性的不同,可分为直流式和交流式两大类。

直流固态继电 器(DC-SSR )控制电压由输入端IN 输入,通过光电耦合器将控制信号耦合至接 收电路,经放大处理后驱动开关三极管VT 导通。

显然,直流固态继电器的输出 端OUT 在接入被控电路回路中时,是有正、负极之分的。

交流固态继电器(AC-SSR ) 的电路原理与直流固态继电器不同的是,其开关元件采用了双向晶闸管VS 或其 他交流开关,因此它的输出端OUT 无正、负极之分,可以控制交流回路的通断。

固态继电器原理及应用电路

固态继电器原理及应用电路

固态继电器原理及应用电路固态继电器,又称无触头继电器.它是采用可控硅地斜角面,触发导通.(其实就是可控硅在工作),图为固态继电器.图中地固态继电器,它可以控制24v至380v地交流电(看上面1-2之间).但是指令它工作地电压为;4v至32v直流电(看下面3-4)下面我来把它当作,普通地继电器来作比如;一楼图中地1-2接线端,就是继电器地常开触点.3-4就是继电器地线图接线端.与我画地草图固态继电器地种类很多,工作电压与控制电压各有不同.本楼图中地固态继电器,它是控制220v-240之间交流地电压,电流40a.但指令它地电压,可在90-240 v之间再来说说,怎样判断它地好坏.用表地最高档,测1-2点.如果是通地或有点通,证明坏了.如果不通,再给3-4接通相应地电源.再次测试1-2,看是否通(好地就通).图中为工作中地固态我再来找个坏地,砸开看看.就是一个小电路板,里面有电容、电阻、二极管、可控硅,图片为固态正面.洞口上方三个大焊点,一个是固定焊点(假地).另外两个就是可控硅地斜角,可控硅导通我们再来看看它地背面,很明显中间有个可控硅地背影.可控硅背帖着固态后背铝合金外壳,为地是散热.里面填有象塑料样地东西,为地是吸热(散发给后盖,热由后铝合金盖导出).这也就是人们所说地,固态继电器爱着火地原因(就是热最超高,点燃胶塑).因此选用固态,必须从大(算地20安,装30-40安).另外必须装相应安数地空开保护,否则很容易着火器态继电器,适用于启闭频繁过高地地方(不断地停起).它地优点是;动作频率快,灵敏不打弧.缺点,工作和控制电源,受限(必须买相应地安装,否则不工作).造价高……就象图中这样,我这是一秒开启,两秒停.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例1.输入信号:通过控制电路,如微处理器或触发器,向固态继电器的控制端发送信号。

这个信号可以是电压、电流或数字信号。

2. 光耦隔离:控制端的信号驱动固态继电器的光耦隔离器。

光耦隔离器中的发光二极管(LED)通过控制信号的电流或电压发射出光。

这个光通过空气或透明材料传播到另一侧的光敏电阻(PHOTO-TRIAC/Triode-Thyristor)。

这种光学耦合装置可以确保输入和输出两个电路之间的电气隔离。

3.开关操作:光敏电阻接收到来自光耦隔离器的光信号后,触发开关装置。

固态继电器的输出端通常使用晶闸管(TRIAC)或场效应晶体管(FET)来实现开关操作。

4.输出控制:开关装置的操作将导致输出端的电气连通或断开。

通过开关闭合或开关闭合,固态继电器可以将电流通过或阻断。

1.自动化控制:固态继电器可以用于机器人控制、自动化设备和工业生产线等领域。

它们可以快速切换电路,实现精确的控制,提高生产效率。

2.照明控制:固态继电器可以用于室内和室外照明系统控制。

它们可以实现高速切换和调光功能,延长照明设备的使用寿命,降低能源消耗。

3.交通信号控制:固态继电器可以用于交通信号灯控制系统。

它们可以快速切换信号灯的状态,以适应交通流量的变化。

4.温度控制:固态继电器可以用于温度控制系统,如热水器和烘烤设备。

它们可以根据温度传感器的测量值,快速切换加热元件的电源,以保持温度在设定范围内。

5.电能计量:固态继电器可以用于电能计量装置中,用于测量和记录电能使用情况。

它们可以准确控制电能计量装置的输出,实现精确的电能测量。

总结起来,固态继电器通过利用固态材料的特性实现了快速、可靠的电气开关操作,具有应用广泛的优点。

它们在各种领域中用于自动化控制、照明控制、交通信号控制、温度控制和电能计量等方面,为各种设备和系统的操作和控制提供了有效的解决方案。

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例

固态继电器工作原理和应用实例固态继电器(SSR)是一种利用高可靠性半导体器件代替机械继电器的新型继电器。

它由输入控制电路和输出控制电路组成,能够将输入控制信号转换为输出控制信号,实现电气信号的放大、隔离和控制。

固态继电器相比传统的机械继电器具有更快的响应速度、更高的工作频率、更长的寿命和更高的抗干扰能力,因此被广泛应用于自动化控制、工业电气设备、电动机驱动、电力系统和通信设备等领域。

固态继电器的工作原理主要由输入驱动电路和输出开关电路组成。

输入驱动电路使用光电耦合器等元器件将输入的电气信号隔离,保证了输出开关电路与输入之间的电气隔离。

输出开关电路则由半导体器件(主要是功率场效应管和三极管)组成,它们能够根据输入信号的大小进行控制,实现开关状态的转换。

固态继电器的输出电压和电流通常通过类型和规格来定义。

1.高可靠性:固态继电器无机械运动部件,没有触点磨损和粘连的问题,从而大大提高了其可靠性和寿命。

2.高速响应:固态继电器的输出开关速度快,通常在微秒级别,比机械继电器快数十倍,适合于需要快速响应和高频率操作的应用。

3.低电磁干扰:固态继电器无电弧和触点,不会产生电磁干扰和开关跳闸现象,减少了对其他电子设备的影响。

4.高密度集成:固态继电器采用半导体器件制造,体积小,重量轻,易于集成和安装。

5.低功耗:固态继电器的输入驱动电路通常采用低功耗的光电耦合器,相比机械继电器的电磁驱动线圈,能够实现更高的能效。

1.工业自动化控制:固态继电器可用于自动化生产线、机器人控制系统等工业场合的中断、分离和保护电路。

2.温度控制系统:固态继电器可以控制加热元件的功率,实现对温度的精确调节和控制,适用于烘烤设备、电炉等温度控制系统。

3.电动机驱动:固态继电器可用于对电动机的启动、制动、调速等控制,适用于电机驱动、机械运动控制等应用。

4.汽车电子:固态继电器可用于汽车电子系统中的电磁阀、电动油泵、电动涡轮增压器等设备的控制。

固态继电器的工作原理及介绍

固态继电器的工作原理及介绍

固态继电器的工作原理及介绍引言继电器是电气控制系统中常用的一种电器设备,用于控制电路的开关与闭合。

传统的继电器使用电磁线圈和机械触点来实现电路的控制,然而,这种机械式继电器存在着寿命短、易磨损、噪音大等问题。

为了克服这些问题,固态继电器(SSR)应运而生。

本文将介绍固态继电器的工作原理及其应用。

一、固态继电器的原理1. 电气隔离固态继电器采用了半导体器件和光电耦合技术,取代了传统的机械触点。

固态继电器内部包含两个主要部分:输入端和输出端。

输入端与控制电路相连,输出端与被控制电路连接。

输入端使用光电耦合器件将控制信号转化为光信号,通过绝缘隔离技术,使输入和输出端实现了电气隔离,避免了电气干扰和电弧产生。

2. 半导体开关固态继电器的关键部分是半导体开关。

在固态继电器的输出端,通过控制电流的调节,可以使半导体开关从关断状态切换到导通状态,从而实现对被控制电路的开和关。

半导体开关的导通能力较弱,通常用来控制小功率的电路。

如果需要控制大功率的电路,可以通过并联连接多个固态继电器实现。

3. 零电压开关固态继电器采用了零电压开关技术,即在每个周期的交流电压正交点(通过零电压检测电路)切断电流,以降低电流切换时产生的电弧和噪音。

这不仅延长了固态继电器的寿命,还提高了系统的可靠性和稳定性。

二、固态继电器的优势1. 高可靠性固态继电器没有机械活动部件,避免了传统继电器容易磨损和寿命短的问题。

相比之下,固态继电器具有更长的寿命和更高的可靠性。

此外,固态继电器的零电压开关技术还能减轻设备的损耗和维护成本。

2. 低噪音传统的机械继电器在工作时会发出嗒嗒的噪音,而固态继电器无噪音无振动,提供了更加安静的工作环境。

3. 快速响应时间固态继电器由于无机械动作,可以实现快速的开关速度和响应时间,提高了系统的控制精度。

4. 小体积由于固态继电器采用集成化设计,其体积相比传统继电器更小,更容易安装在狭小的空间内。

5. 良好的环境适应性固态继电器采用半导体器件,具有耐振、耐冲击、抗污染等优点,适用于各种恶劣的工作环境。

直流固态继电器工作原理及接线使用方法

直流固态继电器工作原理及接线使用方法

直流固态继电器工作原理及接线使用方法直流固态继电器是一种常用的电气控制器,它具有控制电流、保护电路等优点。

下面我们来介绍一下直流固态继电器的工作原理及接线使用方法。

一、直流固态继电器的工作原理
1.1 什么是直流固态继电器?
直流固态继电器是一种利用半导体材料制成的开关,它可以实现直流电的开、关控制。

与传统的机械式继电器相比,它具有体积小、重量轻、响应速度快等优点。

1.2 直流固态继电器的工作原理
直流固态继电器的工作原理是通过控制半导体材料的导通和截止来实现电流的控制。

当继电器的控制信号为高电平时,半导体材料导通,电流可以通过;当控制信号为低电平时,半导体材料截止,电流无法通过。

二、直流固态继电器的接线使用方法
2.1 接线前的准备工作
在接线之前,需要先检查继电器的型号、额定电压等参数是否符合要求。

同时还需要准备好合适的导线、插座等配件。

2.2 接线的步骤
(1)将继电器的外壳拆开,露出内部的电路板和元件。

(2)根据电路图的要求,正确连接各个元件。

通常情况下,红色导线连接到正极上,黑色导线连接到负极上。

需要注意的是,不同型号的继电器可能存在差异,因此在接线时一定要仔细核对。

(3)将继电器安装回外壳中,并固定好螺丝。

2.3 注意事项
(1)在接线过程中要注意避免短路和过流现象的发生,以免损坏继电器或引发安全事故。

(2)在拆卸继电器时要小心谨慎,避免损坏内部元件。

直流固态继电器是一种非常实用的电气控制器,它的工作原理简单易懂、操作方便快捷。

希望本文能够帮助大家更好地了解和使用直流固态继电器。

固态继电器工作原理及接线使用方法

固态继电器工作原理及接线使用方法

固态继电器工作原理及接线使用方法一、工作原理固态继电器是一种电子开关设备,采用半导体器件代替传统的机械继电器。

它主要由一个输入控制端和一个输出控制端组成,实现对电路的开关控制。

固态继电器的工作原理是通过控制输入端的电信号来操纵半导体器件中的电阻变化,从而实现开关的控制。

当输入信号为高电平时,固态继电器闭合;当输入信号为低电平时,固态继电器断开。

固态继电器的优点包括速度快、寿命长、抗干扰能力强等。

但是也需要注意其承受电流和工作环境温度范围,以免损坏器件或影响其正常工作。

二、接线使用方法1.接线须知–在接线之前,务必断开电源,以确保安全。

–根据固态继电器的额定工作电压和电流来选择合适的继电器。

–注意接线时的极性,不要接反。

2.接线步骤–将固态继电器的输入端(控制端)与控制信号源相连,输入端一般标有“+”和“-”,“+”为高电平输入,“-”为低电平输入。

–将固态继电器的输出端与需要控制的电路或设备相连,输出端也有极性标记,请注意连接方式。

–接通电源,根据需要的信号输入调整控制信号,固态继电器即可实现开关控制。

3.注意事项–接线时不要使固态继电器承受超过额定电流或电压的信号,以免损坏。

–在高温环境下使用固态继电器时,注意散热问题,避免过热影响继电器的正常工作。

4.示范接线图控制信号源 ------------------- 输入端(+)||——固态继电器|输出端(+)————————需要控制的设备三、总结固态继电器是一种应用广泛的电子开关设备,其工作原理简单清晰,接线使用也相对便捷。

正确理解固态继电器的工作原理和合理接线使用,可以更好地实现对电路的控制。

在真实工程应用中,根据具体场景和需求合理选择固态继电器,并按照规范接线使用,可确保设备的安全可靠性和稳定性。

固态继电器的工作原理及介绍

固态继电器的工作原理及介绍

固态继电器的工作原理及介绍固态继电器(Solid-State Relay,SSR)是一种采用固态器件代替传统机械继电器的电子元件。

它具有无电弧、无噪音、快速响应、易于集成等优点,因此在现代电子设备控制中得到广泛应用。

以下将分别介绍固态继电器的工作原理、特点及应用。

工作原理:固态继电器采用半导体器件(如晶体管和三极管)来控制工作电路的通断,其基本结构包括一个输入端、一个输出端和一个驱动电路。

当输入端施加正向电压时,通过驱动电路会使半导体器件导通,实现输出端的通断控制;当输入端施加反向电压时,半导体器件截止,输出端断开。

这样就可以实现继电器的开关功能。

特点:1.无电弧:相比传统机械继电器,固态继电器没有触点,不会产生电弧,从而减少了火灾和爆炸的风险,提高了安全性。

2.无噪音:固态继电器不需要机械接触,其工作过程中没有噪音,适用于对噪音要求较高的场合。

3.快速响应:固态继电器的开关速度非常快,可以在微秒级别内完成通断操作,适用于对响应速度要求较高的控制系统。

4.长寿命:由于固态继电器没有机械部件,没有磨损和接触问题,寿命较长,可靠性较高。

5.低功耗:传统机械继电器在开关过程中需要消耗较大的电流,而固态继电器在导通状态下的电流很小,功耗较低。

6.易于集成:固态继电器的体积小、重量轻,可以方便地集成到电路板上,节省空间和成本。

应用:1.微控制器和PLC控制系统:固态继电器可以作为开关或传感器的接口,实现机器控制、工艺控制等任务。

2.电机控制:固态继电器可以控制电机的启动、制动和转向,实现电动机的正反转和速度控制。

3.灯光控制:固态继电器可以控制灯光的开关和亮度调节,应用于舞台照明、室内照明等场合。

4.加热控制:固态继电器可以用于控制加热装置的通断和功率调节,例如电热炉、电热水器等。

5.温度控制:固态继电器可以根据温度传感器的信号来控制加热或冷却装置的运行,实现温度控制。

6.电力分配:固态继电器可以用于电力系统的分配和保护,例如控制电源输出、断路器保护等。

固态继电器的工作原理及作用

固态继电器的工作原理及作用

固态继电器的工作原理及作用固态继电器是一种电子器件,它以固态元件(如光电耦合器、场效应晶体管和二极管等)来代替传统的电磁继电器中的机械触点,能够实现电信号的开关控制。

固态继电器被广泛应用于自动化控制系统、电力电路和通信设备等领域,具有工作稳定、可靠性高、寿命长、体积小等优点。

1.输入电路:输入电路一般由一个光电耦合器组成。

当输入电流流过光电耦合器的发光二极管时,会产生光信号。

光信号经过光隔离后,被光电耦合器内的光敏三极管转换为电流信号。

2.驱动电路:电流信号经过光电耦合器后,进入固态继电器的驱动电路。

驱动电路会根据电流大小进行放大和整形,使得输出电流能够满足控制要求。

3.输出控制:输出控制是固态继电器的核心部分,主要由一对相反极性的二极管和场效应晶体管(MOSFET)组成。

当输入信号有效时,MOSFET会被触发,导通输出负载电流;当输入信号无效时,MOSFET会被关闭,切断输出负载电流。

二极管用于防止负载电流的反向流动,保护输出电路。

1.开关控制:固态继电器能够根据输入信号的变化来控制输出电路的开关状态。

这使得固态继电器可以实现对电路的精确控制,比传统的电磁继电器更加灵活和可靠。

2.电隔离:固态继电器内部的光电耦合器可以实现输入和输出之间的电隔离。

这种电隔离可以减少干扰和噪声的传递,提高系统的稳定性和抗干扰能力。

3.电气性能优化:固态继电器由于采用了固态元件,具有响应速度快、寿命长、可靠性高、抗振动和抗冲击能力强等优点。

同时,固态继电器没有机械触点,不存在接点粘连和烧蚀等问题,可以工作在恶劣的环境条件下。

4.节能环保:固态继电器在工作时不需要消耗电磁线圈的能量,较少产生热量,并且可以精确控制输出电流的大小,减少能耗。

这有助于提高系统的能效性能,保护环境,降低能源消耗。

5.规模化应用:固态继电器可以通过串联和并联等方式灵活应用,具有模块化和规模化应用的能力。

这为系统的设计和维护带来了便利,并且可以在保持性能的同时降低成本。

固态继电器的工作原理和应用范围

固态继电器的工作原理和应用范围

固态继电器的工作原理和应用范围工作原理固态继电器是一种电子开关装置,其工作原理是通过半导体器件控制电路的开关状态。

相比于传统的机械继电器,固态继电器具有更快的响应速度、更小的尺寸、更长的使用寿命和更高的可靠性。

固态继电器的主要工作原理包括以下几个方面:1.光耦隔离:固态继电器使用光耦隔离技术,将输入端和输出端通过光耦隔离元件隔开,可以防止输入端的电气干扰对输出端的影响,提高电路的稳定性和可靠性。

2.触发控制:固态继电器的输入端通过电流或电压的变化来触发装置的开关行为。

当输入端的信号满足触发条件时,固态继电器会将输出端的电路连接或断开,实现对电路的控制。

3.半导体输出:固态继电器的输出端使用半导体器件(如双向可控硅)来实现对电路的开关控制。

这种半导体输出有较低的导通电阻和较高的绝缘电阻,提高了继电器的工作效率和可靠性。

4.过载保护:固态继电器通常具有过载保护功能,当输出端的电流超过额定值时,继电器会自动断开输出端,以保护电路和继电器本身的安全。

应用范围固态继电器广泛应用于各个领域的电路控制和电力控制中。

以下是固态继电器的常见应用范围:1. 工业自动化•数控设备:固态继电器可用于控制数控机床、数控车床、加工中心等设备的电路,实现自动化控制和精确操作。

•自动化生产线:固态继电器可以控制自动化生产线的各个工作部件,如输送带、机械臂、分拣器等,提高生产效率和生产质量。

•焊接设备:固态继电器可用于控制电阻焊接机、大功率脉冲焊接机等,实现精确的焊接操作和工艺控制。

2. 动力控制•电动汽车充电桩:固态继电器可用于电动汽车充电桩中的电力控制,实现对电流和电压的稳定调节,提高充电效率和安全性。

•电动机控制:固态继电器可用于电动机的启动、停止和转向控制,实现对电动机的精确控制和保护。

•照明控制:固态继电器可用于室内外照明系统的开关控制,实现照明的智能化管理和节能控制。

3. 温度控制•温度控制器:固态继电器可用于温度控制器中的温度调节和温控开关,实现对温度的精确控制和保护。

固态继电器原理及应用电路

固态继电器原理及应用电路

固态继电器原理及应用电路固态继电器(Solid State Relay,简称SSR)是一种集电器和控制器为一体的开关装置。

与传统的电磁继电器相比,固态继电器不使用机械组件,而是使用半导体器件来实现开关功能。

固态继电器的原理和应用电路如下:一、固态继电器的原理固态继电器的主要构成部分是一个输入电路和一个输出电路。

输入电路通常由一个光电耦合器组成,光电耦合器将外界信号转化为光信号。

输出电路通常由一对串联的晶闸管或三端可控硅器件组成,用于控制电流或电压的通断。

1.输入电路固态继电器的输入电路通常由光电耦合器构成,其作用是将外界的控制信号转换为光信号。

光电耦合器有两个重要的部分,发光二极管(LED)和光敏电阻(光敏晶体管、光敏三极管或光敏场效应晶体管)。

当输入信号电压加到LED两端时,LED就会发光,而光敏电阻(或光敏晶体管等)将光信号转化为电流信号,以操控输出电路。

2.输出电路固态继电器的输出电路通常由一对晶闸管或三端可控硅器件串联构成。

晶闸管和三端可控硅器件都是一种半导体器件,在输入控制信号的作用下,可以实现电流或电压的通断控制。

晶闸管的输出电流由其控制极的控制电流决定,三端可控硅器件的输出电流由其控制极的控制电流和触发电压决定。

3.隔离电路为了保证输入电路和输出电路之间的电气隔离,防止输入和输出端引脚之间的电气回路,固态继电器通常会设计隔离电路,用于隔离输入电路和输出电路。

二、固态继电器的应用电路1.电力控制系统2.汽车电子系统3.工控系统在工业自动化中,固态继电器可应用于PLC、DCS等工控系统中。

它可以实现工业设备的自动化控制和信号处理,提高生产效率和安全性。

4.电子仪器总结:固态继电器是一种通过半导体器件实现开关功能的继电器。

它不使用机械组件,具有抗震动和抗振动的特点,适用于各种电力控制和信号处理系统。

其原理主要涉及输入电路和输出电路,通过光电耦合器将外界信号转换为光信号,再通过晶闸管或三端可控硅器件实现电流或电压的通断控制。

固态继电器原理,检测以及应用电路

固态继电器原理,检测以及应用电路

固态继电器原理和应用电路固态继电器(SOLIDSTATE RELAYS),简写成“SSR”,是一种全部由固态电子元件组成的新型无触点开关器件,它利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无火花地接通和断开电路的目的,因此又被称为“无触点开关”。

固态继电器是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。

一、固态继电器的原理及结构SSR按使用场合可以分成交流型和直流型两大类,它们分别在交流或直流电源上做负载的开关。

下面以交流型的SSR为例来说明它的工作原理:图1是它的工作原理框图,图1中的部件①-④构成交流SSR的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。

工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能。

其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。

触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。

所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。

3.3v控制固态继电器电路

3.3v控制固态继电器电路

3.3V控制固态继电器电路在现代电子系统中,固态继电器(Solid State Relay, SSR)已成为一种重要的开关元件,其性能稳定、寿命长且易于控制。

与传统的机械继电器相比,固态继电器具有更快的响应速度、更高的可靠性以及无触点磨损等优点。

本文将详细阐述如何使用3.3V电压来控制固态继电器电路,包括其工作原理、电路设计、应用实例等方面。

一、固态继电器的工作原理固态继电器主要由输入电路、隔离电路和输出电路三部分组成。

输入电路负责接收控制信号,隔离电路则将输入电路与输出电路电气隔离,以确保系统的安全性,而输出电路则负责驱动负载。

当输入电路接收到控制信号(如3.3V电压)时,它会触发隔离电路中的光耦或其他隔离元件,进而激活输出电路中的开关元件(如晶闸管、三极管等)。

这样,固态继电器就能在不使用机械触点的情况下实现电路的通断控制。

二、3.3V控制固态继电器的电路设计1.输入电路设计:输入电路需要能够稳定地接收3.3V控制信号,并将其转换为适合隔离电路的输入。

这通常需要一个电阻来限制电流,以及一个保护二极管来防止反向电压损坏电路。

2.隔离电路设计:隔离电路是固态继电器的核心部分,它负责将输入电路与输出电路完全隔离。

常用的隔离元件包括光耦和变压器。

光耦具有体积小、重量轻、寿命长等优点,因此在许多应用中都是首选的隔离元件。

3.输出电路设计:输出电路需要根据具体的应用需求来设计。

对于阻性负载,可以直接使用开关元件来控制电路的通断;对于感性负载或容性负载,则需要添加额外的保护电路来防止电压或电流的冲击。

三、应用实例以一个简单的LED灯控制电路为例,我们可以使用3.3V电压来控制固态继电器,进而控制LED灯的亮灭。

在这个电路中,输入电路由一个3.3V的电源、一个限流电阻和一个保护二极管组成;隔离电路使用一个光耦来实现电气隔离;输出电路则由一个开关三极管和一个LED灯组成。

当输入电路接收到3.3V控制信号时,光耦被激活,进而触发开关三极管导通,LED灯亮起。

固态继电器原理及应用电路

固态继电器原理及应用电路

固态继电器原理及应用电路下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR 的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。

工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。

触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。

所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。

这种设计能防止高次谐波的干扰和对电网的污染。

吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。

图2是一种典型的交流型SSR的电原理图。

直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。

不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。

②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固态继电器原理及应用电路下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR 的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。

工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。

触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。

所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。

这种设计能防止高次谐波的干扰和对电网的污染。

吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。

图2是一种典型的交流型SSR的电原理图。

直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。

不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。

②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。

③使用电源属经交流降压整流所得的,其滤波电解电容应足够大。

图4 给出了几种国内、外常见的SSR的外形。

二、固态继电器的特点SSR成功地实现了弱信号(Vsr)对强电(输出端负载电压)的控制。

由于光耦合器的应用,使控制信号所需的功率极低(约十余毫瓦就可正常工作),而且Vsr所需的工作电平与TTL、HTL、CMOS等常用集成电路兼容,可以实现直接联接。

这使SSR在数控和自控设备等方面得到广泛应用。

在相当程度上可取代传统的“线圈—簧片触点式”继电器(简称“MER”)。

SSR由于是全固态电子元件组成,与MER相比,它没有任何可动的机械部件,工作中也没有任何机械动作;SSR由电路的工作状态变换实现“通”和“断”的开关功能,没有电接触点,所以它有一系列MER不具备的优点,即工作高可靠、长寿命(有资料表明SSR的开关次数可达108-109次,比一般MER的106高几百倍);无动作噪声;耐振耐机械冲击;安装位置无限制;很容易用绝缘防水材料灌封做成全密封形式,而且具有良好的防潮防霉防腐性能;在防爆和防止臭氧污染方面的性能也极佳。

这些特点使SSR可在军事(如飞行器、火炮、舰船、车载武器系统)、化工、井下采煤和各种工业民用电控设备的应用中大显身手,具有超越MER的技术优势。

交流型SSR由于采用过零触发技术,因而可以使SSR 安全地用在计算机输出接口上,不必为在接口上采用MER而产生的一系列对计算机的干扰而烦恼。

此外,SSR还有能承受在数值上可达额定电流十倍左右的浪涌电流的特点。

表1 参数名称(单位) 参数值最小典型最大输入端直流控制电压(V) 3.2 14 输入电流(mA) 20 接通电压(V) 3.2 关断电压(V) 1.5 反极向保护电压(V) 15 绝缘电阻(Ω) 109 介质耐压(V) 1500 输出端额定输出电压(V) 25 250 额定输出电流(A) 10 浪涌电流(A) 100 过零电压(V) ±15 输出压降(V) 2.0 输出漏电流(mA) 10 接通电间(mS)10 关断时间(mS) 10 工作频率(Hz) 47 70 功率损耗(W) 1.5 关断dV/dt(V/μs) 200 晶闸管结温℃ 110 工作温度(℃) -20 80 三、主要参数与选用功率固态继电器的特性参数包括输入和输出参数,下面以北京科通继电器总厂生产的GX-10F 继电器为例,列出输入、输出参数,详见表1,根据输入电压参数值大小,可确定工作电压大小。

如采用TTL或CMOS等逻辑电平控制时,最好采用有足够带载能力的低电平驱动,并尽可能使“0”电平低于0.8 V。

如在噪声很强的环境下工作,不能选用通、断电压值相差小的产品,必需选用通、断电压值相差大的产品,(如选接通电压为8 V或12 V的产品)这样不会因噪声干扰而造成控制失灵。

输出参数的项目较多,现对主要几个参数说明如下:1、额定输入电压它是指定条件下能承受的稳态阻性负载的最大允许电压有效值。

如果受控负载是非稳态或非阻性的,必需考虑所选产品是否能承受工作状态或条件变化时(冷热转换、静动转换、感应电势、瞬态峰值电压、变化周期等) 所产生的最大合成电压。

例如负载为感性时,所选额定输出电压必须大于两倍电源电压值,而且所选产品的阻断(击穿)电压应高于负载电源电压峰值的两倍。

如在电源电压为交流220V、一般的小功率非阻性负载的情况下,建议选用额定电压为400V—600V的SSR产品;但对于频繁启动的单相或三相电机负载,建议选用额定电压为660V—800V的SSR产品。

2、额定输出电流和浪涌电流额定输出电流是指在给定条件下(环境温度、额定电压、功率因素、有无散热器等)所能承受的电流最大的有效值。

一般生产厂家都提供热降额曲线。

如周围温度上升,应按曲线作降额使用。

浪涌电流是指在给定条件下(室温、额定电压、额定电流和持续的时间等)不会造成永久性损坏所允许的最大非重复性峰值电流。

交流继电器的浪涌电流为额定电流的5-10倍(一个周期),直流产品为额定电流的1.5-5倍(一秒)。

在选用时,如负载为稳态阻性,SSR可全额或降额10%使用。

对于电加热器、接触器等,初始接通瞬间出现的浪涌电流可达3倍的稳态电流,因此,SSR降额20%-30%使用。

对于白织灯类负载,SSR应按降额50%使用,并且还应加上适当的保护电路。

对于变压器负载,所选产品的额定电流必须高于负载工作电流的两倍。

对于负载为感应电机,所选SSR的额定电流值应为电机运转电流的2—4倍,SSR的浪涌电流值应为额定电流的10倍。

固态继电器对温度的敏感性很强,工作温度超过标称值后,必须降热或外加散热器,例如额定电流为10A的JGX—10F产品,不加散热器时的允许工作电流只有10A。

四、应用电路1、基本单元电路如图5a所示为稳定的阻性负载,为了防止输入电压超过额定值,需设置一限流电阻Rx;当负载为非稳定性负载或感性负载时,在输出回路中还应附加一个瞬态抑制电路,如图5b所示,目的是保护固态继电器。

通常措施是在继电器输出端加装RC吸收回路(例如:R=150 Ω,C=0.5 μF或R=39 Ω,C=0.1 μF),它可以有效的抑制加至继电器的瞬态电压和电压指数上升率dv/dt。

在设计电路时,建议用户根据负载的有关参数和环境条件,认真计算和试验RC回路的选值。

另一个常用的措施是在继电器输出端接入具有特定钳位电压的电压控制器件,如双向稳压二极管或压敏电阻(MOV)。

压敏电阻电流值应按下式计算:Imov=(Vmax-Vmov)/ZS 其中ZS为负载阻抗、电源阻抗以及线路阻抗之和,Vmax、Vmov分别为最高瞬态电压、压敏电阻的标称电压,对于常规的220V和380V的交流电源,推荐的压敏电阻的标称电压值分别为440-470V和760-810V。

在交流感性负载上并联RC电路或电容,也可抑制加至SSR输出端的瞬态电压和电压指数上升率。

但实验表明,RC吸收回路,特别是并联在SSR输出端的RC吸收回路,如果和感性负载组合不当,容易导致振荡,在负载电源上电或继电器切换时,加大继电器输出端的瞬变电压峰值,增大SSR 误导通的可能性,所以,对具体应用电路应先进行试验,选用合适的RC参数,甚至有时不用RC吸收电路更有利。

对于容性负载引起的浪涌电流可用感性元件抑制,如在电路中引入磁干扰滤波器、扼流圈等,以限制快速上升的峰值电流。

另外,如果输出端电流上升变化率(di/dt)很大,可以在输出端串联一个具有高磁导率的软化磁芯的电感器加以限制。

图5 通常SSR均设计为“常开”状态,即无控制信号输入时,输出端是开路的,但在自动化控制设备中经常需要“常闭”式的SSR,这时可在输入端外接一组简单的电路,如图5c所示,这时即为常闭式SSR。

2、多功能控制电路图6a为多组输出电路,当输入为“0”时,三极管BG截止,SSR1、SSR2、SSR3的输入端无输入电压,各自的输出端断开;当输入为“1”时,三极管BG导通,SSR1、SSR2、SSR3的输入端有输入电压,各自的输出端接通,因而达到了由一个输入端口控制多个输出端“通”、“断”的目的。

图6b为单刀双掷控制电路,当输入为“0”时,三极管BG截止,SSR1输入端无输入电压,输出端断开,此时A点电压加到SSR2的输入端上(UA-UDW应使SSR2输出端可靠接通),SSR2的输出端接通;当输入为“1”时,三极管BG 导通,SSR1输入端有输入电压,输出端接通,此时A点虽有电压,但UA-UDW的电压值已不能使SSR2的输出端接通而处于断开状态,因而达到了“单刀双掷控制电路”的功能(注意:选择稳压二极管DW的稳压值时,应保证在导通的SSR1“ ”端的电压不会使SSR2导通,同时又要兼顾到SSR1截止时期“ ”端的电压能使SSR2导通)。

3、用计算机控制电机正反转的接口及驱动电路图7计算机控制单相交流电机正反转的接口及驱动电路,在换向控制时,正反转之间的停滞时间应大于交流电源的1.5个周期(用一个“下降沿延时”电路来完成),以免换向太快而造成线间短路。

电路中继电器要选用阻断电压高于600 V和额定电压为380 V以上的交流固态继电器。

图7 计算机控制单相交流电机正反转的接口及驱动电路为了限制电机换向时电容器的放电电流,应在各回路中外加一只限流电阻Rx,其阻值和功率可按下式计算:Rx=0.2×VP/IR(Ω), P=Im2Rx 其中:VP—电源峰值电压(V);IR—固态继电器额定电流(A);Im—电机运转电流(A);P—限流电阻功率(W)图8 计算机控制三相交流电机正反转的接口及驱动电路图8计算机控制三相交流电机正反转的接口及驱动电路,图中采用了4个与非门,用二个信号通道分别控制电动机的起动、停止和正转、反转。

相关文档
最新文档