组合数学第四章习题解答

合集下载

组合数学-卢开澄-习题答案

组合数学-卢开澄-习题答案

第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 48→49~50, 49→50 ) 2.(a) 5!8! (b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)! (c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 因首数字可分别为偶数或奇数,知结果为 2⨯5⨯P(8,2)+3⨯4⨯P(8,2).6. (n+1)!-17. 用数学归纳法易证。

8. 两数的公共部分为240530, 故全部公因数均形如2m 5n ,个数为41⨯31. 9. 设有素数因子分解 n=p 1n 11p 2 n 22…p k n k k , 则n 2的除数个数为( 2n 1+1) (2n 2+1) …(2n k +1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(1010-=-=+=+=∑∑n nk k k n nnk kk nx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk k n n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

李凡长版 组合数学课后习题答案习题4

李凡长版 组合数学课后习题答案习题4

第四章 生成函数1. 求下列数列的生成函数: (1){0,1,16,81,…,n 4,…} 解:G{k 4}=235(11111)1x x x x x +++-()(2)343,,,333n +⎧⎫⎛⎫⎛⎫⎛⎫⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭L 解:3n G n +⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭=41(1)x - (3){1,0,2,0,3,0,4,0,……} 解:A(x)=1+2x 2+3x 4+4x 6+…=(211x-)2. (4){1,k ,k 2,k 3,…} 解:A(x)=1+kx+k 2x 2+k 3x 3+…=11kx -. 2. 求下列和式: (1)14+24+…+n 4解:由上面第一题可知,{n 4}生成函数为A(x)=235(11111)1x x x x x +++-()=0kk k a x ∞=∑, 此处a k =k 4.令b n =14+24+…+n 4,则b n =0nk k a =∑,由性质3即得数列{b n }的生成函数为 B(x)= 0nn n b x ∞=∑=()1A x x -=34125(1111)ii i x x x x x i ∞=++++⎛⎫ ⎪⎝⎭∑. 比较等式两边x n 的系数,便得14+24+…+n 4=b n =1525354511111234n n n n n n n n -+-+-+-++++----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭321(1)(691)30n n n n n =+++-(2)1·2+2·3+…+n (n +1)解:{ n (n +1)}的生成函数为A(x)=32(1)x x -=0kk k a x ∞=∑,此处a k = n (n +1).令b n =1·2+2·3+…+n (n +1),则b n =0nk k a =∑.由性质3即得数列{b n }的生成函数为B(x)=nn n b x ∞=∑=()1A x x-=42(1)xx -=032nk kk x x k =+⎛⎫⎪⎝⎭∑. 比较等式两边x n 的系数,便得1·2+2·3+…+n (n +1)= b n =2(1)(2)213n n n n n +++=-⎛⎫ ⎪⎝⎭. 3. 利用生成函数求解下列递推关系: (1)()7(1)12(2)(0)2,(1)7f n f n f n f f =---==⎧⎨⎩;解:令A(x)=0()n n f n x ∞=∑则有A(x)-f(0)-f(1)x=2()nn f n x ∞=∑=2(7(1)12(2))n nf n f n x∞=---∑=217()12()nnn n x f n x xf n x∞∞==-∑∑=7x(A(x)-f(0))-12x 2A(x).将f(0)=2,f(1)=7代入上式并整理,得22711()(34)17121314n n n x A x x x x x ∞=-==+=+-+--∑. (2)()3(1)53(0)0nf n f n f =-+⋅=⎧⎨⎩;解:令A(x)=0()nn f n x ∞=∑,则有A(x)-f(0)= 1(3(1)53)n nnf n x ∞=-+⋅∑=03()153nn n n n x f n x x x ∞∞==+∑∑=3xA(x)+15x·113x-.A(x)= 215(13)xx - (3)()2(1)(2)(0)0,(1)1f n f n f n f f =-+-==⎧⎨⎩;解:令A(x)=0()nn f n x ∞=∑,则有A(x)-f(0)-f(1)x=2(2(1)(2))n nf n f n x ∞=-+-∑=212()()nnn n x f n x xf n x∞∞==+∑∑=2x(A(x)-f(0))+x 2A(x).将f(0)=0,f(1)=1代入上式并整理,得2()12x A x x x =--.4. 设序列{n a }的生成函数为:343(1)(1)xx x x --+-,但00b a =,110b a a =-,……,1n n n b a a -=-,……,求序列{n b }的生成函数.解:由00b a =,110b a a =-,……,1n n n b a a -=-,得0nk n k b a ==∑,所以A(x)=()1B x x-.由此得B(x)=(1-x)A(x)= 3431xx x -+-,亦即序列{n b }的生成函数。

最新组合数学习题答案(1-4章全)

最新组合数学习题答案(1-4章全)

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。

即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。

证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。

由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。

所以21{,,,,}m C e x x x -= 是G 的一个子群。

4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。

证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。

4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。

a n 的元素a 的数目。

证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。

所以就有一个这样的a ,即就有一个母元素。

4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。

所以其子群页应该是循环群。

4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。

组合数学第四版答案

组合数学第四版答案

组合数学第四版答案组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a- b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4 或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a- b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a 和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

组合数学第4章答案

组合数学第4章答案

组合数学第4章答案4.1证明所有的循环群是ABEL 群 证明:nn ,,**×x ,x m nm na b G G a b b a x xa b b a ++∈==∴=mmm 循环群也是群,所以群的定义不用再证,只需证明对于任意是循环群,有成立,因为循环群中的元素可写成a=x 形式所以等式左边x 等式右边x =,,即所有的循环群都是ABEL 群。

4.2x 是群G 的一个元素,存在一最小的正整数m ,使x m =e ,则称m 为x的阶,试证:C={e,x,x 2, …,x m-1} 证:x 是G 的元素,G 满足封闭性所以,xk 是G 中的元素 C ∈G再证C 是群:1、x i , x j ∈C , x i ·x j = x i+j 若i+j<=m-1,则x i+j ∈C若i+j>m,那么x i+j =x m+k =x m ·x k =x k ∈C 所以C 满足封闭性。

2、存在单位元e.3、显然满足结合性。

4、存在逆元, 设x a ·x b =e=x m x b =x m-ax a ∈C, (x a )-1= x b =x m-a4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n.证明:设G 是阶为n 的有限群,a 是G 中的任意元素,a 的阶素为k , 则此题要证n k ≤首先考察下列n+1个元素a a a a a n 1432,....,,,+由群的运算的封闭性可知,这n+1个元素都属于G ,,而G 中仅有n 个元素,所以由鸽巢原理可知,这n+1个元素中至少有两个元素是相同的,不妨设为aaji i+=(n j ≤≤1)aa ajii*=由群的性质3可知,a j是单位元,即a j=e ,又由元素的阶数的定义可知,当a 为k 阶元素时a k=e ,且k 是满足上诉等式的最小正整数,由此可证n j k ≤≤4.4 若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂:a,a2……..an解:设n=p 1a1…….p k ak ,共n 个素数的乘积,所以群G 中每个元素都以用这k 个素数来表示,而这些素数,根据欧拉定理,一共有 Φ(n)=n(1-1/p 1)………(1-1/p k )所以群G 中母元素的数目为n(1-1/p 1)………(1-1/p k )个. 4.5证明循环群的子群也是循环群证明:设H 是G=<a>的子群,若H=<e>,显然H 是循环群,否则取H 中最小的正方幂元m a ,下面证明m a 是H 的生成元,易见m a ⊆H ,只要证明H 中的任何元素都可以表成m a 的整数次方,由除法可知存在q 和r,使得l=qm+r,其中0≤r ≤m-1,因此有r a =qm l a -,因为m a 是H 中最小的正方幂元,必有r=0,这就证明出la=mq a }{m a ∈证明完毕。

组合数学第四章习题解答

组合数学第四章习题解答

4.23 凸多面体中与一个顶点相关的各角之和与2 的差称为该顶点的欠角,证明凸多面体各顶点欠 角之和为4
证:设V,S,E分别为顶点集,面集,边(棱)集。 由欧拉定理 |V|+|S|-|E|=2. 设aij为与顶点vi, 面Sj为相关的面角,ej为Sj的的边数, 给定Sj则∑aij=(ej-2)π 欠角和为∑(2π-∑aij)=∑2π-∑ ∑aij =2|V|π-∑ ∑aij=2|V|π-∑(ej-2)π =2|V|π-∑ejπ+2|S|π =2|V|π+2|S|π-2|E|π=4π
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。
G (1)(2)(3)(4)(5)(6)(7) (1234567),(1357246), (1473625),(1526374), (1642753),(1765432)
4.24 足球由正五边形与正六边形相嵌而成 (a)一个足球由多少正五边形与正六边形组成 (b)把一个足球所有的正六边形都着以黑色,正五 边形则着以其它各色,每个正五边形着色各不相 同,有多少种方案?
4.25 若G和G是两个群
G G ' {( g ,g ')g G ,g ' G ' }, ( g ,g ')( g ,g ') ( g g ,g 'g '), 1 1 2 2 1 2 1 2
4.21 在正四面体的每个面上都引一条高,有多少 种方案?
解:除了绕顶点-对面的中心轴旋转均不会 产生不变的图象外, 绕其他轴的旋转相当于正 4面体的面3着色。参照讲义4.6例3可得不同的 方案数为 M=[34+3·32]/12=9

(完整word版)组合数学第四版卢开澄标准答案-第四章

(完整word版)组合数学第四版卢开澄标准答案-第四章

习题四4。

1。

若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群.若群的元素交换律成立,即a , b G满足a b = b a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。

[证].设循环群(G,)的生成元是x0ÎG。

于是,对任何元素a ,b G,m,nÎN,使得a= x0m , b= x0n,从而a b = x0m x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n x0m(指数律)= b a故运算满足交换律;即(G, )是交换群.4.2。

若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ,x m—1}是G的一个子群。

[证].(1)非空性C :因为eÎG;(2)包含性C G:因为xÎG,根据群G的封闭性,可知x2, ,x m—1,(x m=)eÎG,故C G;(3)封闭性 a , b C a b C: a , b C,k,lÎN (0k〈m,0l〈m),使a = x k,b = x l,从而a b = x k x l = x(k+l)mod m C(因为0 (k+l) mod m〈m) ;(4)有逆元 a C a —1C: a C,kÎN (0k<m),使a = x k, 从而a -1= x m—k C(因为0 m-k < m)。

综合(1) (2)(3) (4),可知(C, )是(G, )的一个子群.4.3。

若G是阶为n的有限群,则G的所有元素的阶都不超过n。

[证]。

对任一元素xÎG,设其阶为m,并令C={e,x,x2,,x m-1},则由习题4.2.可知(C, )是(G, )的一个子群,故具有包含性C G。

因此有m = |C|£|G|= n所以群G的所有元素的阶都不超过n。

组合数学(第4章4.3)

组合数学(第4章4.3)
一个偏序可以扩张为一个全序。
2021/4/9
23
定理4.5.2 令(X, )是一个有限偏序集, 则 存在X上的线性序, 使得(X, )是(X, ) 的一个扩展.
证明:偏序的线性扩展算法,对集合
X={x1,x2,…,xn}的排序问题,满足:若xi xj, 则排序xi先于 xj 。
2021/4/9
2021/4/9
26
例4:X={1,2,3,4,5,6,7,8}, “”定义为整除 关系, 确定(X, )的一个线性扩展.
8
4
6
2
35
7
1
2021/4/9
27
等价关系与划分
定义6: 对于X中每一个元素a, a的等价类 定义为所有与a等价的元素构成的集合.记 为[a]={x x∈X , x~a }.
2021/4/9
2
4.4 生成r-组合
集合{1,2,3,4}的2-组合: {1,2}; {1,3}; {2,3}; {1,4}; {2, 4}; { 3,4}
字典序:令S={1,2,…,n}, 设A,B是S的两个r组合,若AB\AB中的最小整数属于A,则称 A先于B。
2021/4/9
3
S的r-组合可写成如下形式:
2021/4/9
8
字典序r-组合生成算法
初始: a1a2…ar=12…r 当a1a2…ar (nr+1) (nr+2)…n时,Do
1)确定最大整数k, 使得ak+1 n,且ak+1ai (i=1,2,…,r)
2) 用a1a2…ak-1 (ak+1)…(ak+rk+1)替换a1a2…ar.
2021/4/9

r)在始a,1a第2…r个ar后元面素存大在于an r1。ar 个组合,从a1a2…ar-1开

组合数学习题解答

组合数学习题解答

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求:x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1 将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

Richard组合数学第5版-第4章课后习题答案(英文版)

Richard组合数学第5版-第4章课后习题答案(英文版)
5. The integer k is equal to the total number of inversions for the given permutation. Any switch of adjacent terms ab → ba either decreases this total by one (if a > b) or increases this total by one (if a < b). Therefore we cannot bring the given permutation to 12 · · · n by fewer than k successive switches of adjacent terms.
7365 412
73658412
8. (a) For a permutation of {1, 2, 3, 4, 5, 6} the corresponding inversion sequence
(b1, b2, b3, b4, b5, b6) satisfies 0 ≤ bi ≤ 6 − i for 1 ≤ i ≤ 6. The total number of inversions is
←− ←− ←− ←− ←− 12534 ←− ←− →− ←− ←− 12543 ←− ←− ←− ←− ←− 14523 ←−4 ←−1 →−5 ←−2 ←−3 →−4 ←−1 ←−5 ←−3 ←−2 ←−1 →−4 →−5 ←−3 ←−2 ←− ←− ←− →− ←− 13542 ←− ←− →− ←− →− 13524 ←− ←− ←− ←− ←− 31524 ←−3 ←−1 →−5 ←−4 ←−2
(c) The set {x6} corresponds to coordinate 7 6 5 4 3 2 1 0 entry 0 1 0 0 0 0 0 0

组合数学第四章习题解答

组合数学第四章习题解答

4.19 试说明S5群的不同格式及其个数, • 9.解:5的拆分共有:00005,00014,00023, 00113,00122,01112,11111共七种,根据讲义4.4 节定理1可得S5中: (1)5共轭类有5!/5!=1个置换; (1)1(4)1共轭类有5!/4=30个置换; (2)1(3)1共轭类有5!/(2· 3)=20个置换; (1)2(3)1共轭类有5!/(2!3)=20个置换; (1)1(2)2共轭类有5!/(2!2 )=15个置换; (1)3(2)1共轭类有5!/(3!2)=10个置换; (5)1共轭类有5!/5=24个置换; ∴共有不同格式7种,如上所示。
旋转 12345
12345 13524 14253 15432
5
2
翻转
12534 21345 32415 51423 41235
4
3
c ( a1 ) c(a2 ) 1 c ( ag ) l [m m ... m ] G
Байду номын сангаас
8( g r b y ) ]
3 3 3 3 2
1 P(G ) [( g r b y ) 6 6 ( g r b y ) 2 ( g 4 r 4 b 4 y 4 )] 24 3 ( g r b y ) 2 ( g 2 r 2 b 2 y 2 ) 2 6( g 2 r 2 b 2 y 2 )3 8( g 3 r 3 b3 y 3 ) 2 ]
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。

组合数学(西安电子科技大学(第二版))习题4答案

组合数学(西安电子科技大学(第二版))习题4答案

习题四(容斥原理)1.试求不超过200的正整数中素数的个数。

解:因为2215225,13169==,所以不超过200的合数必是2,3,5,7,11,13的倍数,而且其因子又不可能都超过13。

设i A 为数i 不超过200的倍数集,2,3,5,7,11,13i =,则22001002A ⎢⎥==⎢⎥⎣⎦,3200663A ⎢⎥==⎢⎥⎣⎦,5200405A ⎢⎥==⎢⎥⎣⎦,7200287A ⎢⎥==⎢⎥⎣⎦, 112001811A ⎢⎥==⎢⎥⎣⎦,132001513A ⎢⎥==⎢⎥⎣⎦,232003323A A ⎢⎥==⎢⎥⨯⎣⎦, 252002025A A ⎢⎥==⎢⎥⨯⎣⎦,272001427A A ⎢⎥==⎢⎥⨯⎣⎦,2112009211A A ⎢⎥==⎢⎥⨯⎣⎦, 2132007213A A ⎢⎥==⎢⎥⨯⎣⎦,352001335A A ⎢⎥==⎢⎥⨯⎣⎦,37200937A A ⎢⎥==⎢⎥⨯⎣⎦, 3112006311A A ⎢⎥==⎢⎥⨯⎣⎦,3132005313A A ⎢⎥==⎢⎥⨯⎣⎦,57200557A A ⎢⎥==⎢⎥⨯⎣⎦, 5112003511A A ⎢⎥==⎢⎥⨯⎣⎦,5132003513A A ⎢⎥==⎢⎥⨯⎣⎦,7112002711A A ⎢⎥==⎢⎥⨯⎣⎦, 7132002713A A ⎢⎥==⎢⎥⨯⎣⎦,111320011113A A ⎢⎥==⎢⎥⨯⎣⎦,2352006235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 2372004237A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231120032311A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231320022313A A A ⎢⎥==⎢⎥⨯⨯⎣⎦ 2572002257A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251120012511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251320012513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 271120012711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,271320012713A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 21113200021113A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,3572001357A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,351120013511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦351320013513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,371120003711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,…, 235720002357A A A A ⎢⎥==⎢⎥⨯⨯⨯⎣⎦,…,23571113200023571113A A A A A A ⎢⎥==⎢⎥⨯⨯⨯⨯⨯⎣⎦, 所以 23571113200(1006640281815)(3320149713965533221)(6432211110111i i j i j k i j k lii ji j ki j k li j k l m i j k l m ni j k l mi j k l m nA A A A A A S A A A A A A A A A A A A A A A A A A A A A <<<<<<<<<<<<<<<=-+-+-+=-++++++++++++++++++++-+++++++++++++∑∑∑∑∑∑0)00041+-+=但这41个数未包括2,3,5,7,11,13本身,却将非素数1包含其中, 故所求的素数个数为:416146+-=2.问由1到2000的整数中:(1)至少能被2,3,5之一整除的数有多少个? (2)至少能被2,3,5中2个数同时整除的数有多少个? (3)能且只能被2,3,5中1个数整除的数有多少个? 解:设i A 为1到2000的整数中能被i 整除的数的集合,2,3,5i =,则2200010002A ⎢⎥==⎢⎥⎣⎦,320006663A ⎢⎥==⎢⎥⎣⎦,520004005A ⎢⎥==⎢⎥⎣⎦, 23200033323A A ⎢⎥==⎢⎥⨯⎣⎦,25200020025A A ⎢⎥==⎢⎥⨯⎣⎦,35200013335A A ⎢⎥==⎢⎥⨯⎣⎦, 235200066235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, (1)即求235A A A ++,根据容斥原理有:235235232535235()1000666400(333200133)661466A A A A A A A A A A A A A A A ++=++-+++=++-+++=(2)即求232535A A A A A A ++,根据容斥原理有:232535232535235235235235()333200133266534A A A A A A A A A A A A A A A A A A A A A A A A ++=++-+++=++-⨯=(3)即求[1]N ,根据Jordan 公式有:1112233235232535235[1]2()310006664002(333200133)366932N q C q C q A A A A A A A A A A A A =-+=++-⨯+++⨯=++-⨯+++⨯=3.求从1到500的整数中能被3和5整除但不能被7整除的数的个数。

组合数学习题解答

组合数学习题解答

★★★第一章:★★★1、用六种方法求839647521之后的第999个排列。

提示:先把999换算成递增或递减进位制数,加到中介数上,就不用计算序号了。

解:字典序法递增进位制法递减进位制法邻位对换法839647521的中介数72642321↑67342221↑12224376↓10121372↓999的中介数121211↑121211↑1670↓1670↓839647521后999的中介数73104210↑67504110↑12230366↓10123362↓839647521后999个的排列842196537 859713426 389547216 →3←8→4→5→7→6←9←21★★★第二章★★★例5:10个数字(0到9)和4个四则运算符(+,-,×,÷) 组成的14个元素。

求由其中的n个元素的排列构成一算术表达式的个数。

因所求的n个元素的排列是算术表达式,故从左向右的最后一个符号必然是数字。

而第n-1位有两种可能,一是数字,一是运算符。

如若第n-1位是十个数字之一,则前n-1位必然构成一算术表达式。

10a n-1如若不然,即第n-1位是4个运算符之一,则前n-2位必然是算术表达式。

40a n-2,根据以上分析,令a n表示n个元素排列成算术表达式的个数。

则a2=120指的是从0到99的100个数,以及±0,±1,...,±9,利用递推关系(2-8-1),得a0=1/2特征多项式x2-10x-40 。

它的根是解方程得例7:平面上有一点P,它是n个域D1,D2,...,D n的共同交界点,见图2-8-4现取k种颜色对这n个域进行着色,要求相邻两个域着的颜色不同。

试求着色的方案数。

令a n表示这n个域的着色方案数。

无非有两种情况(1)D1和D n-1有相同的颜色;(2)D1和D n-1所着颜色不同。

第一种情形,域有k-1种颜色可用,即D1D n-1域所用颜色除外;而且从D1到D n-2的着色方案,和n-2个域的着色方案一一对应。

组合数学讲义及答案 4章 容斥原理

组合数学讲义及答案 4章 容斥原理
1
n 2
n1
A1 A2 An1 An
将上式与式(4.2.3)代入式(4.2.4)整理即得式(4.2.2) .
(二) 逐步淘汰原理
【定理 4.2.2】 (逐步淘汰原理) 设 A1,A2,…An 为有限集合 S 的子集,则
A1 A2 An
= S Ai
i 1 n 1 i j n
n = S - Ai Ai Aj Ai Aj Ak 1 i j n 1 i j k n i 1
-…+ 1
n1
A1 A2 An

4/49
《组合数学》
第四章
容斥原理
= S Ai
i 1
n
1 i j n
AA
i
2/49
《组合数学》
第四章
容斥原理
(3) A B = A - AB
§4.2
(一) 容斥原理
容 斥


【引理 4.2.1】 设 A,B 为有限集合,则有 (4.2.1) (证)对于 A+B 中的元素 a,在等式左边恰被统计一次,而 在等式右边被统计的次数,分为三种情形统计: (1) a A ,但 a B ,则 a 也恰被统计一次; (2) a A ,但 a B ,同样恰被统计一次; (3) a A 且 a B ,那么必有 a AB ,从而 a 被统计 1+1 -1=1 次。 所以,a 在等式两边被统计的次数是相同的。 【定理 4.2.1】 (容斥原理) 设 A1,A2,…An 为有限集合,则

qn= A1 A2 An 。 N k =S 中恰好具有 k 种性质的元素个数(k=0,1, …,n) 例如
N 0 = A1 A2 A2 A3 An
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转 12345
12345 13524 14253 15432
5
2
翻转
12534 21345 32415 51423 41235
4
3
c ( a1 ) c(a2 ) 1 c ( ag ) l [m m ... m ] G
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。
1
G (1)(2)(3)(4)(5)(6)(7) (1234567),(1357246), (1473625),(1526374), (1642753),(1765432)
4.5 试证循环群的子群也是循环群。 显然。 4.6 若H是G的子群,x和y是G的元素,试证: xH∩yH或为空,或xH=yH。 设a,b∈H,xa=yb,xH≠yH 存在m∈H,xm属于xH但不属于yH
x=yba-1,xm=yba-1m,由H是G的子群,因此 ba-1m∈H, yba-1m∈yH
4.23 凸多面体中与一个顶点相关的各角之和与2 的差称为该顶点的欠角,证明凸多面体各顶点欠 角之和为4
证:设V,S,E分别为顶点集,面集,边(棱)集。 由欧拉定理 |V|+|S|-|E|=2. 设aij为与顶点vi, 面Sj为相关的面角,ej为Sj的的边数, 给定Sj则∑aij=(ej-2)π 欠角和为∑(2π-∑aij)=∑2π-∑ ∑aij =2|V|π-∑ ∑aij=2|V|π-∑(ej-2)π =2|V|π-∑ejπ+2|S|π =2|V|π+2|S|π-2|E|π=4π
4.12 试用贝恩塞特引理解n个人围一圆桌坐下的 方案问题。 只考虑围中以旋转变化。 共有n!种方案。 旋转0度(1)(2)…(n!) 旋转360/n度(12…n!)
旋转[360/n]×2度(135…n!2)
……………………………… 旋转[360/n]×(n-1)度(n!(n!-1)…21)
1 l [c1 (a1 ) c1 (a2 ) ... c1 (a g )] n 1 [n!] (n 1)! n
以对角线±120度位置
(345)(152) (643)(251) 这种形式的置换有8个 1 6 2 4 4 4 4 P(G ) [( g r b y ) 6 ( g r b y ) ( g r b y )] 24 3 ( g r b y ) 2 ( g 2 r 2 b 2 y 2 ) 2 6( g 2 r 2 b 2 y 2 )3
4.20 图4.5用两种颜色着色的问题,若考虑互换颜 色使之一致的方案属于同一类,问有多少种不同 的方案
(1)不换色 不动:p1=(1)(2)(3)(4)(5)(6)(7)(8)(9)…(13)(14)(15)(16) 逆时针转90 :p2=(1)(2)(3456)(789 10)(11 12)(13 14 15 16) 顺时针转90 :p3=(1)(2)(6543)(10 987)(11 12)(16 15 14 13) 转180 :p4=(1)(2)(35)(46)(79)(8 10)(11 12)(13 15)(14 16) (2)换色 不动:p5=(12)(37)(48)(59)(6 10)(11 12)(13 14)(15 16) 逆时针转90 :p6=(12)(385 10)(6749)(11)(12)(16 15 14 13) 顺时针转90 :p7=(12)(10 583)(9476)(11)(12)(13 14 15 16) 转180 :p8=(12)(39)(4 10)(57)(68)(11 12)(13)(14)(15)(16) (16+2+2+4+0+2+2+4)/8=4(种方案)
1 5 [3 4 3 5 33 ] 39 10
4.17 一个圆圈上有n个珠子,用n种颜色对这n个 珠子着色,要求颜色数目不少于n的方案数是多少?
项链排列:n!/2n
4.18 若已给两个r色的球,两个b色的球,用它装 在正六面体的顶点,试问有多少不同的方案? 正六面体顶点的置换群见4.7例2 ,本题相当于用2个 r,两个b,4个g色的球装在正六面体的8个顶点上。 其中r2b2g4 的系数为 [C(8,2)C(6,2)+9C(4,2)C(2,1)]/24=22
3 (61)(25)(34), (12)(36)(54), (23)(14)(56),
4
1 6 2 3 4 N [5 2 5 4 5 2 5 3 5 ] 12
1505
4.14 一个正方体的六个面用g,r,b,y四种颜色涂染, 求其中两个面用色g,两个面用色y,其余一面用b, 一面用r的方案数。 解:使正六面体重合的刚体运动群如下:
也就是xm∈yH,矛盾
4.7 若H是G的子群,|H|=k,试证: |xH|=k, 其中x∈G。
只需证:对任意a,b∈H,a≠b,有a≠b即 可 设a,b∈H,a≠b,有xa=xb则左乘x的逆得 a=b矛盾
4.8 有限群G的阶为n,H是G的子群,则H的阶必除 尽G的阶。
用4.6的结论
4.9 有限群G的阶为n,x是G的元素,则x的阶必除 尽G的阶。
不动置换(1)(2)(3)(4)(5)(6)
以上下的中心为轴线左旋90度,右旋90度: (1)(2345)(6),(1)(5432)(6) 正六面体有3对对面,这种置换有6个 以上下的中心为轴线左旋180度,
(1)(24)(35)(6), 正六面体有3对对面,这种置换有3个
以对角线位置的平行棱的中以线为轴线旋转180 度, (16)(25(34) 这种形式的置换有6种
4.24 足球由正五边形与正六边形相嵌而成 (a)一个足球由多少正五边形与正六边形组成 (b)把一个足球所有的正六边形都着以黑色,正五 边形则着以其它各色,每个正五边形着色各不相 同,有多少种方案?
4.25 若G和G是两个群
G G' {( g , g ' ) g G, g ' G'}, ( g1 , g1 ' )( g 2 , g 2 ' ) ( g1 g 2 , g1 ' g 2 ' ),
4.19 试说明S5群的不同格式及其个数, • 9.解:5的拆分共有:00005,00014,00023, 00113,00122,01112,11111共七种,根据讲义4.4 节定理1可得S5中: (1)5共轭类有5!/5!=1个置换; (1)1(4)1共轭类有5!/4=30个置换; (2)1(3)1共轭类有5!/(2· 3)=20个置换; (1)2(3)1共轭类有5!/(2!3)=20个置换; (1)1(2)2共轭类有5!/(2!2 )=15个置换; (1)3(2)1共轭类有5!/(3!2)=10个置换; (5)1共轭类有5!/5=24个置换; ∴共有不同格式7种,如上所示。


4.1 若群G的元素a均可表示为某一元素x的幂,即 a=xm,则称这个群为循环群,若群的元素交换率成 立,即a,bG满足ab=ba,则称这个群为阿贝尔群, 试证明所有的循环群为阿贝尔群 证明:设G是一循环群,对任意的a,bG, 按定义a=xm,b=xn,ab=xmxn=xnxm=ba, 因此,循环群都是阿贝尔群。Leabharlann 1 4 72 5 8
3 6 9
(1+x)9中x2项的系数是c(9,2)=36
4(1+x)3(1+x2)3中x2项的系数是 4[c(3,2)c(3,0)+c(3,0)c(3,1)]=24
2(1+x) (1+x4)2中x2项的系数是0 (1+x) (1+x2)4中x2项的系数是c(4,1)=4
P(x)中x5项的系数是(36+24+4)/8=8
8( g r b y ) ]
3 3 3 3 2
1 P(G ) [( g r b y ) 6 6 ( g r b y ) 2 ( g 4 r 4 b 4 y 4 )] 24 3 ( g r b y ) 2 ( g 2 r 2 b 2 y 2 ) 2 6( g 2 r 2 b 2 y 2 )3 8( g 3 r 3 b3 y 3 ) 2 ]
4.3 设G是阶为n的有限群,则G的所有元素的阶都不 超过n 单位元e显然,对非单位元a,显然
4.4 若G是阶为n的循环群,求群G的母元素的数目, 即G的元素可表示成a的幂:a,a2,…,an的元素a的数目。 若a是母元素,则an=e 若ak(1<0<n)也是G的母元素,当且仅当ak的阶为n,
即当且仅当k与n互素,与n互素的元素个数为(n),
用4.2和4.8的结论
4.10 若x和y在群G作用下属于同一等价类,则x所 属的等价类Ex,y所属的等价类Ey有|Ex|=|Ey|。 显然
4.11 有一个3×3的正方形棋盘,若用红蓝色对这9 个格进行染色,要求两个格着红色,其余染蓝色, 问有多少种着色方案。
1 P( x) [(1 x)9 4 (1 x)3 (1 x 2 )3 8 2 (1 x)(1 x 4 ) 2 (1 x)(1 x 2 ) 4 ]
求g2y2br的系数 C(6,2)C(4,2)C(2,1)+3C(2,1)C(2,1)/24 =8
4.15 对一个正六面体的8个顶点用y和r两种颜色 染色,使其中有5个顶点用色y,其余三个顶点用 色r,求其方案数。
4.16 用b,r,g这三种颜色的5颗珠子镶成的圆环, 共有几种不同的方案?
1
构造群G共有如下几种置换
相关文档
最新文档