高二数学椭圆的定义及其标准方程(供参考)
椭圆定义及其标准方程
椭圆定义及其标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴长。
椭圆的长轴的中点O称为椭圆的中心,短轴的长度称为椭圆的短轴长。
椭圆的离心率e是一个小于1的正数,它等于焦距与长轴长之比的一半。
椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的长轴长和短轴长。
在坐标系中,椭圆的中心位于原点O(0, 0),长轴与x轴平行,短轴与y轴平行。
椭圆的定义和标准方程给出了椭圆的基本特征,下面我们来详细解释一下椭圆的性质和应用。
首先,椭圆是一种闭合的曲线,它在平面上呈现出一种椭圆形状,具有两个对称轴,分别是长轴和短轴。
椭圆的离心率决定了椭圆的形状,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于长条形。
其次,椭圆在几何光学、天文学、工程学等领域有着广泛的应用。
在几何光学中,椭圆镜可以将平行光线聚焦到一个焦点上,因此被广泛应用于激光器、望远镜等光学设备中。
在天文学中,行星和卫星的轨道往往呈现出椭圆形状,根据椭圆的性质可以精确描述它们的运动轨迹。
在工程学中,椭圆的形状被广泛运用于汽车、飞机等机械设备的设计中,以提高性能和效率。
另外,椭圆还具有许多有趣的数学性质。
例如,椭圆的面积可以用长轴和短轴的长度来表示,即πab,其中π为圆周率。
椭圆还具有反射性质,即光线从一个焦点射到椭圆上,会经过另一个焦点。
这些性质使得椭圆成为了数学研究和实际应用中的重要对象。
总之,椭圆是一个具有丰富几何性质和广泛应用价值的数学对象,它的定义和标准方程为我们理解和利用椭圆提供了重要的基础。
通过对椭圆的深入研究和应用,我们可以更好地认识和掌握这一重要的数学概念,为科学研究和工程实践提供更多可能性。
2.2.2椭圆的几何性质1(高二数学精品课件)
B2
A1
F1
b
oc
a
A2
F2
B1
结论 :通过上面的分析,我们得到判断曲线 是否对称的方法:
以-x代换x,若方程不变,则曲线关于y轴对称;若以
-y代换y,方程不变,曲线关于x轴对称;
同时以- x代换x,以- y代换y,方程不变,则方 程关于坐标原点对称.
二、椭圆
简单的几何性质
1 b2
1得:
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2
A1
F1
b
oc
a
A2
F2
B1
椭圆的对称性
Y
P1(-x,y)
P(x,y)
O
X
P2(-x,-y)
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称;
长半轴长为a,短 半轴长为b. a>b
e c a
a2=b2+c2
x2 b2
y2 a2
1(a
b
0)
|x|≤ b,|y|≤ a
同前 (b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c)
同前
同前
同前
例1已知椭圆方程为9x2+25y2=225,
它的长轴长是: 10 。短轴长是: 6 。
(1) x2 y2 1
32
(2)
x2 y2 1 36 100
(3) 16x2+25y2=400
3.1.1椭圆及其标准方程-高二数学课件
且经过点( , − ),求它的标准方程.
练习巩固
练习5 如图,在圆x2+y2=4上任取一点P,过点P作x轴的
垂线段PD,D为垂足,当点P在圆上运动时,线段PD的
中点M的轨迹是什么?为什么?
练习巩固
练习6 设A,B两点的坐标分别为(-5,0),(5,0). 直线AM,BM
相交于点M,且它们的斜率之积是- ,求点M的轨迹方程.
(0,-b) (0,b)
a,b,c关系
F1(0,-c),F2(0,c)
2c
(0,-a) (0,a)
(-b,0) (b,0)
a>b>0,且a2=b2+c2
三、焦点三角形
P
焦点三角形:由椭圆上一个点P及两个
焦点构成的三角形
F1
O
F2
Q
三角形PF1Q:由椭圆的一个焦点和过焦点的弦构成的三角形
练习巩固
椭圆:我们把平面内与两个定点F1,F2的距离的和等
于常数(大于|F1F2|)的点的轨迹叫做椭圆。
|PF1|+|PF2|=2a > 2c
椭圆的标准方程:
焦点在x轴:
其中,a>b>0,且a2=b2+c2
焦点在y轴:
练习1 平面内有一长度为4的线段AB,动点P满足
|PA|+|PB|=6,则点P的轨迹是( C
A.直线
B.射线
C.椭圆
)
D.圆
练习巩固
练习2
椭圆
+
= 的焦点坐标为( C )
A.(5,0) (-5,0)
B.(0,5) (0,-5)
椭圆及标准方程
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
其中a为长轴的一半,b为短轴的一半。
在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。
椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。
离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。
根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。
首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。
其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。
最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。
除了标准方程外,椭圆还可以有其他形式的方程。
例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。
其中t为参数,a和b同样为长轴和短轴的一半。
利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。
另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。
其中(h,k)为椭圆的中心坐标。
通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。
总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。
通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。
对于数学和物理学的学习和应用都有着重要的意义。
椭圆的标准方程
椭圆的标准方程首先,让我们来看一下椭圆的定义。
椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点被称为焦点,常数2a被称为椭圆的主轴长度。
椭圆还有一个重要的参数e,称为离心率,它可以用来描述椭圆的偏心程度。
离心率e的取值范围为0到1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆变成一条直线。
接下来,我们来看一下椭圆的标准方程。
椭圆的标准方程可以表示为:(x-h)²/a² + (y-k)²/b² = 1。
其中(h,k)为椭圆的中心坐标,a和b分别为椭圆在x轴和y轴上的半轴长度。
根据标准方程,我们可以轻松地确定椭圆的中心、半轴长度和离心率等重要参数。
椭圆的标准方程还可以通过焦点和顶点的坐标来表示。
假设椭圆的焦点坐标分别为(F1x, F1y)和(F2x, F2y),顶点坐标分别为(V1x, V1y)和(V2x, V2y),则椭圆的标准方程可以表示为:(x-F1x)² + (y-F1y)² + (x-F2x)² + (y-F2y)² = 2a²。
通过这种表示方式,我们可以更直观地理解椭圆的形状和位置关系。
在实际问题中,椭圆的标准方程可以帮助我们解决许多与椭圆相关的数学和物理问题。
例如,在天文学中,椭圆轨道被广泛应用于描述行星和卫星的运动轨迹;在工程学中,椭圆的形状被用于设计汽车和飞机的零部件;在艺术领域中,椭圆的美学特性被用于构图和设计。
总之,椭圆的标准方程是描述和理解椭圆的重要工具,它可以帮助我们准确地描述椭圆的形状、大小和位置关系,解决与椭圆相关的各种实际问题。
通过学习和掌握椭圆的标准方程,我们可以更深入地理解椭圆的数学本质和实际应用,为我们的学习和工作带来更多的启发和帮助。
希望本文对您有所帮助,谢谢阅读!。
高二数学课件:椭圆与椭圆的标准方程
3 2 5 2a ( ) ( 2) 2 2 2 3 1 10 10 2 2 2 10 , a 10 c 2, . 又 b 2 a 2 c 2 10 4 6. 3 2 5 ( ) ( 2) 2 2 2
解:设所求的标准方程为
建系: 建立适当的直角坐标系; 设点: 设M(x,y)是曲线上任意一点; 列式: 建立关于x,y的方程 f(x,y)=0; 化简: 化简方程f(x,y)=0. 检验: 说明曲线上的点都符合 条件(纯粹性);符合 条件的点都在曲线上.
2、椭圆的标准方程
椭圆的焦距为2c(c>0),M与F1、F2的距离的和为2a 怎样建立平面直角坐标系呢?
x y 2 1(a b 0) 2 a b
F1
2
2
y
M
o
F2
x
x2 y2 ∴所求椭圆的标准方程为 25 9 1
讲评例题
例2 已知椭圆的两个焦点的坐标分别是
圆适合下列条件的标准方程。
5 3 (-2,0)、(2,0)并且经过点( , ) 求椭 2 2
解: (1)因为椭圆的焦点在x轴上,所以 x2 y 2 设它的标准方程为 2 2 1 (a>b>0) 由椭圆的定义知,
x2 y2 ∴所求椭圆的标准方程为 1( x 5) 课堂练习 25 16
a b
.
y
A
B
o
C
x
4:课堂练习
x2 y2 1上一点P到一个焦点的距离为5, 1 椭圆 25 9
则P到另一个焦点的距离为( A) A.5 B.6 C.4
D.10
x2 y2 1 的焦点坐标是(C ) 2.椭圆 25 169
高二数学椭圆标准方程
y
由椭圆定义有: PF1 PF2 2a 任意一点 ,
( x c )2 y 2 ( x c ) 2 y 2 2a
P
F2
即
F1
o
x
2 2 2 移项平方,化简得 cx a a ( x c ) y
移项得:a ( x c ) 2 y 2 a 2 cx
2 2 2 2 2 2 2 2
(a c ) x a y a ( a c ) 两边平方,化简得:
x2 y2 2 2 a c 0 即 2 2 1 2 a a c 令 b 2 a 2 c 2 ( b 0)
得
x y 2 1 2 a b
2
2
y
F1 (0,c) , F2 (0, c)
PF1 PF2 2a
F2
P( x , y )
X
x 2 ( y c ) 2 x 2 ( y c ) 2 2a
O
F
1
a
x y 1 2 2
2
2
b
y
y
P( x, y)
F2
F2
P( x, y)
F1
o
x
o
F1
x
x y 2 1 2 a b
2
2
y x 2 1 2 a b
2
2
如何根据标准方程判断焦点在哪个坐标轴上?
例Байду номын сангаас分析:
例1. 已知椭圆的焦点为F1(0,-6),
F2(0,6),且椭圆过点P(2,5),求
椭圆的标准方程.
例2.已知一个运油车上的贮油罐横截面的 外轮廓线是一个椭圆,它的焦距为2.4m,外轮 廓线上的点到两个焦点距离的和为3m, 求这个椭圆的标准方程.
高二数学椭圆知识点
高二数学椭圆知识点一、引言简要介绍椭圆在数学中的重要性及其在现实世界中的应用。
二、椭圆的定义1. 标准定义:在平面上,到两个固定点(焦点)距离之和为常数的点的轨迹称为椭圆。
2. 几何定义:由椭圆的中心、焦点和任意一点构成的三角形,其两边之和大于第三边。
三、椭圆的性质1. 焦点和焦距- 焦点:椭圆上任意一点到两个焦点的距离之和是常数,这个常数是椭圆的长轴。
- 焦距:两个焦点之间的距离。
2. 长轴和短轴- 长轴:椭圆上最长的直径,通过两个焦点。
- 短轴:垂直于长轴的最短直径。
3. 离心率- 定义:焦点到椭圆中心的距离与焦距的比值。
- 性质:离心率的值介于0和1之间(不包括1)。
四、椭圆的标准方程1. 直角坐标系中的椭圆方程- 横向椭圆:`(x^2)/(a^2) + (y^2)/(b^2) = 1` (a > b)- 纵向椭圆:`(y^2)/(a^2) + (x^2)/(b^2) = 1` (a < b)2. 参数a、b、c的关系:`c^2 = a^2 - b^2`五、椭圆的图形特征1. 椭圆的对称性2. 椭圆的边界3. 椭圆的内含角和外切角六、椭圆的面积计算- 公式:`A = πab`七、椭圆的应用问题1. 椭圆在几何问题中的应用2. 椭圆在物理和工程问题中的应用3. 椭圆在天文学中的应用八、椭圆的相关问题解答1. 椭圆与圆的关系2. 椭圆的切线问题3. 椭圆的焦点反射性质九、练习题提供几个关于椭圆的计算和证明问题,包括:- 求椭圆的焦点坐标- 计算椭圆的面积- 求椭圆的离心率- 椭圆上的切线问题十、结论总结椭圆的重要性和在数学学习中的地位。
请根据上述概要,逐一扩展每个部分的内容,确保每个部分都有详细的解释和必要的数学公式。
同时,可以添加图表和示例来帮助理解。
最终的文章应该是逻辑清晰、结构严谨、语言准确,并且格式规范,便于读者阅读和理解。
人教A版高二数学《椭圆及其标准方程》课件
设M(x, y)是椭圆上任意一点,
M
椭圆的焦距2c(c>0),M
与F1和F2的距离的和等于正 常数2a (2a>2c) ,则F1、F2的坐 标分别是(c,0)、(c,0) .
F1 0 F x
2
由椭圆的定义得,限制条件:| MF1 | | MF2 | 2a
代入坐标 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2
点 焦点的位 x2 , y2 项中哪个分母大,焦点就在哪一条
置的判定
坐标轴上.
15
x2 变式1:椭圆的方程为:3
y2 7
1
,
则
a=____7_,b=____3___,c=___2____,焦点坐
标为:(0_,_2_)和__(__0_,-_2_)_焦距等于_____4_____;曲
线上一点P到焦点F2的距离为3,则点P到另 一个焦点F1的距离等于___2__7___3_,则 △F1PF2的周长为_2__7___4_____ y
25 16
25 16
思考:求合适下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭
圆经过点(5,0).
y
解:因为椭圆的焦点在 x 轴上,设
x2 a2
y2 b2
1(a
>
b>
0).
由椭圆的定义知
F1 O
F2 P x
2a (5 4)2 (0 0)2 (5 4)2 (0 0)2 10,
所以 a 5.
又因为 c 4,所以 b2 a2 c2 25 16 9.
因此,所求椭圆的标准方程为
x2 y2 1. 25 9
定义法 20
高中数学---椭圆知识点小结
高二数学椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=4、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2024-2025学年高二数学选择性必修第一册(配北师大版)课件1.1椭圆及其标准方程
5 2
21
2 2 25
a= ,b =a -c = -1= .
2
4
4
2
2
4
4
故点 M 的轨迹方程为 25 + 21 =1.
探究点三
【例3】 已知P为椭圆
求△F1PF2的面积.
椭圆中的焦点三角形问题
2
12
+
2
=1上一点,F1,F2是椭圆的焦点,∠F1PF2=60°,
3
解 由已知得 a=2√3,b=√3,所以 c= 2 - 2 =
12-3=3,从而|F1F2|=2c=6,
在△PF1F2 中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°,即
36=|PF1|2+|PF2|2-|PF1|·|PF2|.①
由椭圆的定义得|PF1|+|PF2|=4√3,
即 48=|PF1|2+|PF2|2+2|PF1|·|PF2|.②
2
5
+ (2 + 2)
+
3 2
(- 2)
2
5
+ (2 -2) =2√10,即
b2=a2-c2=6,
2
2
所以所求椭圆的标准方程为10 + 6 =1.
a=√10,又 c=2,所以
(3)经过点 P
1 1
,
3 3
,Q
1
0,2
.
解 (方法一)①当椭圆焦点在 x 轴上时,可设椭圆的标准方程为
2
2
+
2
分类讨论,但要注意a>b>0这一条件.
(3)当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成
高二数学椭圆的标准方程(1)
椭圆的标准方程
临川二中
袁庆
圆锥曲线的形成
椭圆的定义
定义 平面内与两定点F1、F2的距离之和等于
定值(大于 F1F2 )的点的轨迹叫做椭圆。
焦点:两个定点F1、F2称为焦点。 焦距:两个焦点之间的距离 F1F2 称为焦距。
椭圆的标准方程
点的位置
平面内到定点F 的距离与到定直线L 椭圆的第二定义:
2
2
6 1 1 m n 由题: m 9, n 3 3 2 1 m n
x y 即 1 9 3
2 2
也可设椭圆方程为Ax By 1( A 0, B 0)
2 2
例题讲解二
x2 y 2 例2 椭圆 1的焦点为F1,F2,点P在椭圆上, 9 2 若 PF1 4,则 PF2 2
若将PF2延长交椭圆于另一点Q,
12 则PFQ 的周长为 1 Y
P
F1
O
F2
Q
X
x y 椭圆 2 2 1(m 1)上一点P到其左焦点的 例3: m m 1 距离为3,到右焦点的距离为 1.则P到右准线的 y
2
2
距离为 2
o
x
x2 y2 1 内有一点( P 1,-1), 变式2 在椭圆 4 3
求椭圆的方程 且经过两点( P1 6,1),P ( ,- 2), 2 - 3
2 2
1 6 2 1 2 a b 2 2 由题可知: a 3, b 9(舍去) 2 3 1 2 2 a b
x y 法二 可设椭圆方程为 1(m 0, n 0) m n
的距离之比为常数e (0<e<1) 的点的轨迹为椭圆.
高二数学椭圆知识点整理
一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a by a x ; 焦点在y 轴: ()012222>>=+b a bx a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .10 3.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( ) A .3 B .23 C .38 D .32 4.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .552 6.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .23 7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B += . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
高二数学优秀课件《椭圆的定义2.2.1(2)与标准方程》(公开课)课件
2
2
二、例题与练习
2 2
例1. 求下列方程表示的椭圆的焦点坐标:
(1)
x y 1 36 24
;
(2)8x2+3y2=24.
解:(1)已知方程就是椭圆的标准方程, 由36>24,可知这个椭圆的焦点在x轴上, 且a2=36,b2=24,所以c2=a2-b2=12, c2 3 因此椭圆的焦点坐标为
2 2
2
2
小结:
求椭圆标准方程的方法 一种方法:
课堂练习
1.口答:下列方程哪些表示椭圆?若是,则判定其焦点 在何轴?并指明 a 2 , b 2
x2 y2 (1) 1 16 16 x2 y2 (2) 1 25 16
(3)9x2 25 y 2 225 0
(4) 3x2 2 y 2 1
课堂练习
x2 y 2 2、如果椭圆 1上一点M 到焦点F1的距离 100 36 等于6,则点M 到另一个焦点F2的距离为 ( C ) A.10 B.12 C.14 D.16
一、复习:
1.
x2 y2 + 2 = 1 a > b > 0 2 a b
y P
标准方程
x2 y2 + 2 = 1 a > b > 0 2 b a y
F2 P
不 同 点
图
形
F1
O
F2
x
O
F1
x
焦点坐标 相 同 点 定 义
F1 -c , 0,F2 c , 0
F1 0,- c ,F2 0,c
x2 y 2 2 1 (a b 0) 2 a b
由已知,得2a=8,即a=4,又因为c=3, 所以b2=a2-c2=7,因此椭圆的标准方程是
高二数学讲义椭圆标准方程(精品-原创有答案)
高二数学讲义第六讲 椭圆的标准方程知识梳理1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段;12220220022a c a c F F a c >>⇔⎫⎪=>⇔↔⎬⎪<<⇔⎭椭圆线段无意义,轨迹不存在 数形结合 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆,(椭圆的焦半径公式:|PF 1|=a+ex 0, |PF 2|=a-ex 0)。
(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:○2、参数方程:cos sin x a y b φφ=⎧⎨=⎩),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔5.几个概念: ①通径:2b 2a ; ③点与椭圆的位置关系: ④22221x y a b+=上任意一点P 与两焦点21,F F 构成的三角形可称为椭圆的焦点三角形. ⑤弦长公式:;⑥椭圆在点P (x 0,y 0)处的切线方程:00221x x y ya b+=; ○7基本三角形:中心焦点短轴顶点这三点构成椭圆的基本三角形。
高二数学椭圆的定义和标准方程
F1
F2
椭圆的定义: 平面内与两定点F1、F2 的距离之和为常数 的距离之和为常数的点 (大 的轨迹 或集合)叫做椭圆。 于 | F1F( 2|) 的点的轨迹(或集合)叫做椭圆。
椭圆的焦点: F1、F2 椭圆的焦距: |F1F2|
解: 设点M(x,y)为所求轨迹上任意一点
求平面内与两定点F1、 F2 的距离之和为常数 (大 椭圆的定义:平面内与两定点 F1、F2 的距离之和 于 | F1F2( |) 的点的轨迹 (或集合) ? 为常数 大于 | F1F2|)的点的轨迹 (或集合)叫做椭圆。 Y |MF1|+|MF2|= 2a
2 2 2
a 2x 2 +(a 2 -c2 )y2 =a 2 (a 2 -c2 )
b2 x 2 +a 2 y 2 =a 2 b2
2 2
b2 a 2 -c2 (b 0) 2 2 2 2 2 2 a x +b y =a b
x y 2 1 a b
y x 2 1 2 a b
2
2
解 : 因为 5 4
解
x2 y2 1 与X轴,Y轴 25 16
1 SABF1 = AF 1 OB 2
B
1 = OF 1 + OA OB 2
F1
O
A
X
因为点A为椭圆与X轴正半轴交点
所以 因为点B为椭圆与Y轴正半轴交点
所以
x2 0 1x 5 OA 5 25 16
0 y2 1 y 4 OB 4 25 16
x y 1 9 4
2
2
y x 1 9 4
2
2
设F1、
F2为椭圆
P为椭圆上一点,与F1、
高二数学椭圆及其标准方程
表示到焦点F1(-6,0和) F2 ____(_6_,_0_)
的距离和为常数_6__5__的椭圆;
②求满足下列条件的椭圆的标准方程
(1)a 5, F1(3,0), F2(3,0)
x2 y2 1 25 16
(2)a 5, c 3
x2 y2 1 25 16
y2 x2 1 25 16
例3.如果点M(x,y)在运动过程中,总满足关系
以F1、F2所在直线为x轴,线段F1F2的垂直平分线为y轴 建立直角坐标系xoy,
则焦点坐标为F1(-C,0)、F2(C,0)
设P(x, y)为椭圆上任意一点,
由椭圆定义得: PF1 PF2 2a
你会化简吗? 动手试试
(x c)2 y 2 (x c)2 y 2 2a
y
思考:如果焦点在y轴上呢?
焦点在x轴上
y
不
BP
a
b
同
F1 c o
F2 x
焦点在y轴上
y
F2
P
b
Ba
o
c
x
F1
点
F1(c, 0), F2(c, 0)
F1(0, c), F2 (0, c)
x2 y2 a2 b2
1
(a b 0)
y2 a2
x2 b2
1
(a b 0)
相 定义
同 点
参数
PF1 PF2 2a a2 b2 c2. a b 0 a c 0
焦点则变成 F1(0,c), F2 (0,c)
F2
P
y2 x2 1 (a b 0)
a2 b2
新疆 王新敞
奎屯
o
x
F1
标准方程的特点:焦点在坐标轴上,两焦点的中点为坐 标原点;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二 年级 数学 科辅导讲义(第 讲)
学生姓名: 授课教师: 授课时间: 12.21
椭圆及其标准方程
第一部分:基础知识梳理 知识点一 椭圆的定义
平面内到两个定点21F F ,的距离之和等于常数(大于21F F )的点的集合叫做椭圆。
两个定点21F F ,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
根据椭圆的定义可知:椭圆上的点M 满足集合2a}MF MF {M 21=+=P ,c F F 221=,0,0>>c a 且c a 、都为常数。
当c a >即c a 22>时,集合P 为椭圆。
当c a =即c a 22=时,集合P 为线段21F F 。
当c a <即c a 22<时,集合P 为空集。
知识点二 椭圆的标准方程
(1))0(122
22>>=+b a b y a x ,焦点在x 轴上时,焦点为)0,(c F ±,焦点c F F 221=。
(2))0(122
22>>=+b a b
x a y ,焦点在y 轴上时,焦点为),0(c F ±,焦点c F F 221=。
知识点三 椭圆方程的一般式
这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:
C By Ax =+22(其中C B A 、、为同号且不为零的常数,B A ≠),它包含焦点在x 轴或y 轴上两
种情形。
方程可变形为
12
2=+B
C y A C x 。
当
B C A C >时,椭圆的焦点在x 轴上;当B
C
A C <时,椭圆的焦点在y 轴上。
一般式,通常也设为12
2
=+By Ax ,应特别注意B A 、均大于0,标准方程为1112
2=+B
y A x 。
知识点四 椭圆标准方程的求法 1. 定义法
椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。
例1、 在△ABC 中,A 、B 、C 所对三边分别为c b a 、、,且B (-1,0)C (1,0),求满足c a b >>,且c a b 、、成等差数列时,顶点A 的曲线方程。
变式练习 1.在△ABC 中,点B (-6,0)、C (0,8),且C A B sin sin sin 、、成等差数列。
(1)求证:顶点A 在一个椭圆上运动。
(2)指出这个椭圆的焦点坐标以及焦距。
2. 待定系数法
首先确定标准方程的类型,并将其用有关参数b a 、表示出来,然后结合问题的条件,建立参数b a 、满足的等式,求得b a 、的值,再代入所设方程,即一定性,二定量,最后写方程。
例2、 已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程。
例3、 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3()1,6(21--P P 、,求椭圆方程。
变式练习 2.求适合下列条件的椭圆的方程; (1)两个焦点分别是(-3,0),(3,0)且经过点(5,0).
(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.
3.已知椭圆经过点
),(336和点),(13
2
2,求椭圆的标准方程。
4.求中心在原点,焦点在坐标轴上,且经过两点),(),,(2
1-031
31Q P 的椭圆标准方程。
知识点五 共焦点的椭圆方程的求解
一般地,与椭圆)0(12222>>=+b a b y a x 共焦点的椭圆可设其方程为)(1222
2
2b k k b y k a x ->=+++。
例4、 过点(-3,2)且与14
92
2=+y x 有相同焦点的椭圆的方程为( ) A.
1101522=+y x B.110022522=+y x C.1151022=+y x D. 1225
1002
2=+y x 变式练习 5.求经过点(2,-3)且椭圆36492
2
=+y x 有共同焦点的椭圆方程。
知识点六 与椭圆有关的轨迹问题的求解方法
与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。
迹,其基本思路是设出轨迹上一点),(y x P 和已知曲线上一点),(00y x M ,建立其关系,再代入。
例5、已知圆922=+y x ,从这个圆上任意一点P 向x 轴作垂线段'PP ,点M 在'
PP 上,并且→
→
='2MP PM ,求点M 的轨迹。
知识点七 与弦的中点有关问题的求解方法
直线与椭圆相交于两点),(11y x A 、),(22y x B ,称线段AB 为椭圆的相交弦。
与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特
点是巧代线段AB 的斜率。
其方程具体是:设直线l 与椭圆)0(122
22>>=+b a b
y a x 相交于B A 、两点,坐
标分别为),(11y x A 、),(22y x B ,线段AB 的中点为),(00y x M ,则有
①式-②式,得22
22122221---b y y a x x =,即0
2
20202212122212122y a x b y a x b y y x x a b x x y y ⋅⋅-=⋅⋅-=++⋅-=-- ∴0
2
2y a x b k AB
⋅⋅-= 通常将此方程用于求弦中点的轨迹方程。
例6.已知:椭圆
14
162
2=+y x ,求: (1)以P (2,-1)为中点的弦所在直线的方程; (2)斜率为2的相交弦中点的轨迹方程;
(3)过Q (8,2)的直线被椭圆截得的弦中点的轨迹方程。
第二部分:巩固练习
1. 设21F F ,为椭圆116
22
=+y x 的焦点,P 为椭圆上一点,则21F PF ∆的周长是( ) A. 16 B. 8 C. 8152+ D. 无法确定 2. 椭圆12432
2
=+y x 的两个焦点之间的距离为( ) A. 12 B. 4 C. 3 D. 2 3. 椭圆552
2
=+ky x 的一个焦点是(0,2),那么k 等于( ) A. -1 B. 1 C. 5 D. -5
4. 已知椭圆的焦点是21F F ,,P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点
Q 的轨迹是( )
A. 圆
B. 椭圆
C. 双曲线的一支
D. 抛物线
5. 已知椭圆
1922
2=+m y x 的焦点在x 轴上,则m 的取值范围是__________. 6. 椭圆192
2
22=-+a y a x 的焦点坐标是___________. 7. 椭圆14
2
22=+
y a x 的焦距为2,则正数a 的值____________.。