八年级初二数学 勾股定理练习题含答案

合集下载

新人教版数学八年级勾股定理练习题及答案(共6套)

新人教版数学八年级勾股定理练习题及答案(共6套)

精品文档新人教版数学八年级第十七章<勾股定理>勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是( A )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为__13_____.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?解:∵5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向“路”4m3m第2题图第5题图第9题图第8题图5m13m第11题东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R ο90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

初二数学勾股定理试题答案及解析

初二数学勾股定理试题答案及解析

初二数学勾股定理试题答案及解析1.如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个正方形(边长为c).请你将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)用(1)中画出的图形验证勾股定理.【答案】见解析【解析】(1)(答案不唯一)如图.(2)验证:∵大正方形的面积可表示为(a+b)2,又大正方形的面积也可表示为,∴,即a2+b2+2ab=c2+2ab.∴a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.2.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A.米B.米C.米D.3米【答案】C【解析】树干垂直于地面,于是可构造一个直角三角形,运用勾股定理可以计算出(米),所以树高为米.3.如图所示是一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长为________.【答案】7米【解析】(米).利用平移,得至少需要地毯的长为AC+BC=4+3=7(米).4.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE的长为( )A.1B.C.D.2【答案】D【解析】在Rt△ABC中,由勾股定理得.在Rt△ADC中,由勾股定理得.在Rt△ADE中,由勾股定理得.5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )A.3B.4C.5D.9【答案】A【解析】在Rt△ABD中,由勾股定理得.又点D是∠ABC的平分线上的点,它到BA,BC边的距离相等,所以点D到BC的距离等于DA之长3.6.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是________.【答案】76【解析】在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.7. (2014四川甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为( )A.1B.2C.3D.4【答案】D【解析】由题意得△ABD≌△CBD,所以∠ADB=∠CDB,而∠ADB+∠CDB=180°,所以∠BDC=90°,即BD⊥AC.在Rt△BCD中,由勾股定理得BD2=BC2-CD2=52-32=16,所以.8.(2013四川资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.80【答案】C【解析】在Rt△ABE中,由勾股定理得,所以阴影部分的面积为.9. (2012吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB 于点D ,则BD =________.【答案】2【解析】∵AC =3,BC =4,∠ACB =90°,∴.∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD =AC =3,∴BD =AB -AD =5-3=2.10. [问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a 、b 为底,以a +b 为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:∵BC =a +b ,AD =________,又∵在直角梯形ABCD 中,有BC________AD(填大小关系),即________,∴.【答案】见解析【解析】[定理表述]如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.[尝试证明]∵Rt △ABE ≌Rt △ECD ,∴∠AEB =∠EDC .又∵∠EDC +∠DEC =90°,∴∠AEB +∠DEC =90°,∴∠AED =90°. ∵S 梯形ABCD =S Rt △ABE +S Rt △DEC +S Rt △AED ,∴,整理,得a 2+b 2=c 2.[知识拓展];<;11. 在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,∠C =90°.(1)若a =6,b =8,则c =________;(2)若a =5,c =13,则b =________;(3)若c =34,a ︰b =8︰15,则a =________,b =________.【答案】(1)10 (2)12 (3)16;30【解析】(1)已知两直角边长a 、b ,由c 2=a 2+b 2=62+82=100,得c =10.(2)已知直角三角形的斜边长c 和一条直角边长a ,则由b 2=c 2-a 2=132-52=144,得b =12.(3)因为a︰b=8︰15,所以可设a=8k,b=15k(k>0),又因为∠C=90°,c=34,所以c2=a2+b2,即342=(8k)2+(15k)2.所以k=2.所以a=16,b=30.12.(2013鞍山)△ABC中,∠C=90°,AB=8,AC=6,则BC的长为________.【答案】【解析】利用勾股定理即可求得BC的长.∵∠C=90°,∴AB为斜边,∴.13.在Rt△ABC中,∠C=90°,AC=8,BC=6,CD⊥AB,垂足为D,求DB的长.【答案】在Rt△ABC中,AB2=AC2+BC2,∴AB2=82+62=100,∴AB=10.由三角形的面积公式得,∴.在Rt△BCD中,DB2=BC2-CD2,∴DB2=62-4.82=12.96.∴DB=3.6.所以DB的长为3.6.【解析】用勾股定理求AB的长,再利用面积求CD,在Rt△BCD中,用勾股定理求DB.14.如图,∠A=∠D=90°,AC与BD相交于点O,AB=CD=4,AO=3,则BD的长为()A.6B.7C.8D.10【答案】C【解析】由题意知△ABO≌△DCO,∴OA=OD.在Rt△ABO中,,∴BD=BO+OD=5+3=8.故选C.15.如图,在锐角△ABC中,已知AB=25cm,AC=30cm,BC边上的高AD=24cm,则△ABC的面积为________.【答案】300cm2【解析】在Rt△ABD中,.在Rt△ACD中,.所以BC=BD+DC=7+18=25,所以.16.(2013吉林)如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为________.【答案】(4,0)【解析】∵A(-6,0),B(0,8),∴OA=6,OB=8,∴AB=10.∵以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,∴AC=AB=10,∴OC=4,∴C(4,0).17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C与欲到达地点B偏离50米,结果他在水中实际游的路程比河的宽度多10米,求:该河的宽度AB为多少米?【答案】根据题意可知BC=50米,AC=(AB+10)米,设AB=x米,由勾股定理,得AC2=AB2+BC2,即(x+10)2=x2+502,解得x=120.即该河的宽度AB为120米.【解析】根据题意可知△ABC为直角三角形,根据勾股定理可求出直角边AB的长度.18.(2013资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80【答案】C【解析】利用勾股定理求出AB,然后用正方形的面积减去三角形的面积即可.19.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是________.【答案】或连接EF,则.∵E为AB的中点,∴.【解析】先根据题意画出图形.此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.①如图所示:连接CD,则.∵D为AB的中点,∴.②如图所示:20.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4C.D.【答案】D【解析】由勾股定理求得正方形的对角线长为,由作图得,所以点A表示的数是.。

初二数学勾股定理试题及参考答案

初二数学勾股定理试题及参考答案

一.选择题(共18小题)1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.2.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.183.如图,直线l1∥l2,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=()A.31°B.45°C.30°D.59°4.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B.C.D.25.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.646.2的算术平方根是()A.B.C.D.27.9的平方根为()A.3 B.﹣3 C.±3 D.8.81的平方根是()A.﹣9 B.9 C.±9 D.±39.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或110.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根11.5的平方根是()A.±2.5 B.﹣C.D.±12.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)15.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)16.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)17.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)18.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)二.填空题(共12小题)19.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.20.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.21.若线段a、b、c满足b2=a2﹣c2,则以a、b、c为边的三角形是三角形.22.在△ABC中,AB=2k,AC=2k+1,BC=3,当整数k=时,∠B=90°.23.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OA n的长度为.24.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若BC=10,AD=12,则AC=.。

八年级数学《勾股定理》课堂练习题含答案

八年级数学《勾股定理》课堂练习题含答案

八年级数学《勾股定理》课堂练习题课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).6题图 (A)212 (B)310 (C)56 (D)58三、解答题7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为____ __米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD=3千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .答案:1.13或.119 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .。

八年级数学(下)《勾股定理习题》练习题含答案

八年级数学(下)《勾股定理习题》练习题含答案

图1E八年级数学(下)《勾股定理习题》练习题1已知:如图1,点A 、D 、B 、E 在同一条直线上,AD=BE,AC∥DF,BC∥EF.求证:AC=DF.2已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E 、F,O 是BD 的中点. 求证:BE=DF.3已知:如图3, AB=DE,BC=EF,AF=CD. 求证:AB∥DE, BC∥EF.4已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.5已知:如图5, AD=AE,点D 、E 在BC 上,BD=CE,∠ADE=∠AED.求证: ⊿ABE≌⊿ACD图56已知:如图6,已知AC、BD相交于点O,AB∥CD, OA=OC.求证: AB=CD7已知:如图7,已知AC∥DF,BC=EF,∠C=∠F.求证: ⊿ABC≌⊿DEF.8已知:如图8,已知AC=AE,AB=AD.求证: OB=OD.9在直线L上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .S4 S3S2S1图1L 32 1C 图7F之间的关系,并分别用含n 的代数式表示a 、b 、c :a= ,b= ,c= ; (2)猜想以a 、b 、c 为边的三角形是否 为直角三角形,并验证你的猜想.11分析:这是一道结论开放题,据题意经过分析,符合要求的点C 有多个,如图2所示,1C ,2C ,3C ,4C ,5C ,6C 都是符合要求的点.参考答案1思路分析:要证明AC=DF,则需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,由AC∥DF可得∠CAB=∠FDE, 由BC∥EF可得∠CBA=∠FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明⊿ABC≌⊿DEF.由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证.2思路分析:要证明BE=DF,则需要证明⊿BOE≌⊿DOF.在⊿BOE和⊿DOF中,由BE⊥AC,DF⊥AC可得∠BEO=∠DFO=90°,∠BOE=∠DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明⊿BOE≌⊿DOF.由已知O是BD的中点可得:OB=OD,条件已具备,命题得证.3思路分析:要证明AB∥DE, BC∥EF,则需要证明∠A=∠D,∠BCA=∠EFD,由此只需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明⊿ABC≌⊿DEF.由已知AF=CD,根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证.4思路分析:要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE.在⊿ABC和⊿ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明⊿ABC≌⊿ADE.由已知∠BAD=∠CAE,根据等式性质得:∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,命题得证.5思路分析:要证明⊿ABE≌⊿ACD,在⊿ABE和⊿ACD中,已知AD =AE, ∠ADE=∠AED即相邻的一角一边对应相等,因此,只需证明∠ADE与∠AED的另一邻边相等即可,用SAS证明⊿ABE≌⊿ACD.由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证.6思路分析:要证明AB=CD,则需要证明⊿ABO≌⊿CDO.在⊿ABO和⊿CDO中,已知OA =OC, ∠AOB=∠COD即相邻的一角一边对应相等,因此,只需证明OA与OC的另一邻角相等即可,用ASA证明⊿ABO≌⊿CDO.由已知AB∥CD可得:∠A=∠C,命题得证.7思路分析:要证明⊿ABC≌⊿DEF,在⊿ABC和⊿DEF中,已知BC =E F, ∠C=∠F,即相邻的一角一边对应相等,因此,只需证明已知边的对角相等(∠A=∠EDF)即可,从而用AAS证明⊿ABC≌⊿DEF.由已知AC∥DF可得:∠A=∠EDF,命题得证.8思路分析:要证明OB=OD,则需要证明⊿BOE≌⊿DOC,已知一边和它的对角相等,即由AC=AE,AB=AD可得BE=DC,对顶角∠BOE=∠DOC,从而只要证明另一组角相等(∠B=∠D)即可.要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE,因为题中已知AC=AE,AB=AD,∠A是公共角,所以⊿BOE≌⊿DOC,∠B=∠D得证,从而命题得证.9分析: 经过观察图形,可以看出正放着正方形面积与斜放置的正方形之间关系为: S1+S2=1;S 2+S3=2; S3+S4=3;这样数形结合可把问题解决.解: S1代表的面积为S1的正方形边长的平方, S2代表的面积为S2的正方形边长的平图4EDCBA图3ED图2图2方,所以S 1+S 2=斜放置的正方形面积为1;同理S 3+S 4=斜放置的正方形面积为3,故S 1+S 2+S 3+S 4=1+3=4. 10分析:解:(1)12-n ;2n ;12+n(2)猜想以a 、b 、c 为边的三角形是直角三角形. 验证:由于124122)1(24224222++=++-=+-n n n n n n n为边、、,所以,以,即)()所以(c b a c b a n n n n n n 222222222422121,12)1(=++=+-++=+的三角形是直角三角形.11如图2所示,是由边长为1的小正方形组成的正方形网格,以线段AB (A ,B 为格点)为一条直角边任1C 意画一个Rt△ABC,且点C 为格点,并求出以BC 为边的正方形的面积.解:画出的Rt△ABC 如图2中所示,41624222+=+=BC =20,所以以BC 为边的正方形面积为20.。

人教版八年级下册数学第十七章 勾股定理含答案(全优)

人教版八年级下册数学第十七章 勾股定理含答案(全优)

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、下列数据中,哪一组不是勾股数( )A.7,24,25B.9,40,41C.3,4,5D.8,15,192、如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.43、如图,在⊙O中,直径MN=10,正方形ABCD的四个顶点都分别在半径OP、OM及⊙O上,且∠POM=45º,则AB=()A.2B.C.D.4、如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD=,则AB的长为( )A.2B.3C.4D.55、《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A. B. C.D.6、如图,的对角线与相交于点,,,,则的长为()A. B. C. D.7、下列各组数中不能作为直角三角形的三边长的是()A.7,24,25B. ,4,5C. ,1,D.40,50,608、直角三角形中,两直角边分别是12和5,则斜边上的中线长是().A.34B.26C.6.5D.8.59、如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.﹣2B.﹣2C.2 ﹣1D.1﹣210、如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

已知孔洞的最长边为2cm,则三角尺穿过孔洞部分的最大面积为( )A. cm 2B. cm 2C.2 cm 2D.(2+ )cm 211、如图,在矩形ABCD中,AD=5,AB=3 ,点E在AB上,= ,在矩形内找一点P,使得∠BPE=60°,则线段PD的最小值为()A.4B.2C.2 -2D.2 -412、如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于( )A.4B.C.D.513、三角形的三边长分别为6,8,10,那么最长边上的高为()A.4.8B.5C.6D.814、已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A=∠C-∠BB.a 2=b 2-c 2C.a:b:c=2:3:4D.a=,b=,c=115、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:① ;② ;③ ;④ .其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.17、如图,在Rt△ABC中,∠C=90°,AC=4,cosA= ,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为________.18、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.19、如图, Rt△ABC的两直角边 AC = 8cm , BC = 6cm , D 为 AC 上一点,将△ABC 折叠,使点 A 与点 B 重合,折痕为 DE ,则CD 的长为________cm.20、如图,在长方形 ABCD中,点E为长方形ABCD的边AD上一点,若AE=2,S=6,将长方形ABCD沿BE折叠,使点A落在EC上的点F处,则BCE的面ABE积是 ________.21、如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为________.22、在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么________23、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.24、如图,射线PB,PD分别交⊙O于点A,B和点C,D,且AB=CD=8。

八年级数学下册《勾股定理》练习题与答案(人教版)

八年级数学下册《勾股定理》练习题与答案(人教版)

八年级数学下册《勾股定理》练习题与答案(人教版)一、选择题1.由线段a 、b 、c 组成的三角形不是直角三角形的是( )A.=7,b =24,c =25;B.a =13,b =14,c =15;C.a =54,b =1,c =34; D.a =41,b =4,c =5;2.根据图形(图1,图2)的面积关系,下列说法正确的是( )A.图1能说明勾股定理,图2能说明完全平方公式B.图1能说明平方差公式,图2能说明勾股定理C.图1能说明完全平方公式,图2能说明平方差公式D.图1能说明完全平方公式,图2能说明勾股定理3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A.34B.4C.4或34D.以上都不对5.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣16.如图,在4×4的方格中,△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2, 3C.三边长为a,b,c的值为11,2,4D.a2=(c+b)(c﹣b)8.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺9.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米10.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cmB.10cmC.14cmD.无法确定11.如图,已知∠AOB=60°,点P是∠AOB的角平分线上的一个定点,点M、N分别在射线OA、OB上,且∠MPN与∠AOB互补.设OP=a,则四边形PMON的面积为( )A.34a2 B.14a2 C.38a2 D.18a212.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题13.若三角形三边之比为3:4:5,周长为24,则三角形面积.14.如图,等边△OAB的边长为2,则点B的坐标为.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD =4,则AE的长是_____.16.如图,运载火箭从地面L处垂直向上发射,当火箭到达点A处时,从位于地面R处的雷达测得AR的距离是40 km,此时测得∠ARL=30°,n(s)后,火箭到达点B处,此时测得∠BRL=45°,则火箭在这n(s)中上升的高度是 km.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则S n= .三、解答题19.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.20.如图,已知四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.24.已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:△AOM和△BON全等:(2)如图2,将△MON绕点O顺时针旋转,当点N恰好在AB边上时,求证:BN2+AN2=2ON2.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.B.2.B3.B.4.A.5.B6.B.7.C.8.C9.B.10.B.11.A.12.A13.答案为:24.14.答案为:(1,3).15.答案为:2 3.16.答案为:(203﹣20).17.答案为:61.18.答案为:38(34)n-1.19.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;20.解:连接AC.∵∠ABC =90°,AB =1,BC =2∴AC = 5在△ACD 中,AC 2+CD 2=5+4=9=AD2∴△ACD 是直角三角形∴S 四边形ABCD =12AB •BC +12AC •CD =12×1×2+12×5×2=1+ 5.故四边形ABCD 的面积为1+ 5.21.解:∵∠BDC =45°,∠ABC =90°∴△BDC 为等腰直角三角形∴BD =BC∵∠A =30°∴BC =12AC 在Rt △ABC 中,根据勾股定理得AC 2=AB 2+BC2 即(2BC)2=(4+BD)2+BC 2 解得BC =BD =2+23.22.解:(1)∵AB =13,BD =8∴AD =AB ﹣BD =5∴AC =13,CD =12∴AD 2+CD 2=AC 2∴∠ADC =90°,即△ADC 是直角三角形∴△ADC 的面积=12×AD ×CD =12×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°由勾股定理得:BC =413,即BC 的长是413.23.解:操作一:(1)14 (2)35º操作二:∵AC =9cm ,BC =12cm∴AB =15(cm)根据折叠性质可得AC =AE =9cm∴BE =AB ﹣AE =6cm设CD=x,则BD=12﹣x,DE=x在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2解得x=4.5∴CD=4.5cm.24. (1)证明:∵∠AOB=∠MON=90°∴∠AOB+∠AON=∠MON+∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴AM=BN;(2)证明:连接AM∵∠AOB=∠MON=90°∴∠AOB-∠AON=∠MON-∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴∠MAO=∠NBO=45°,AM=BN∴∠MAN=90°∴AM2+AN2=MN2∵△MON是等腰直角三角形∴MN2=2ON2∴BN2+AN2=2ON2.25.解:(1)AC+CE=(8-x)2+25+x2+81.(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD(点A与点E在BD的异侧),使AB=2,ED=3,连结AE交BD于点C设BC=x,则AE的长即为x2+4+(12-x)2+9的最小值.过点E作EF⊥AB,交AB的延长线于点F.在Rt△AEF中,易得AF=2+3=5,EF=12∴AE=13即x2+4+(12-x)2+9的最小值为13.。

八年级数学《勾股定理》练习题含答案

八年级数学《勾股定理》练习题含答案

八年级数学《勾股定理》练习题含答案一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③答案:1.a2+b2,勾股定理.2.(1)13;(2)9;(3)2,3;(4)1,2.2.4.52,5.5.132cm.6.A.7.B.8.C.3.59.(1)a=45cm.b=60cm;(2)540;(3)a=30,c=34;(4)63;(5)12.1010.B.11..512.4.13..314.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

(新)八年级数学《勾股定理》精选练习题及答案解析

(新)八年级数学《勾股定理》精选练习题及答案解析

勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。

八年级数学下册勾股定理习题(附答案)(含答案)

八年级数学下册勾股定理习题(附答案)(含答案)

C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

八年级初二数学 勾股定理练习题含答案

八年级初二数学 勾股定理练习题含答案

一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④2.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( )①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a 、b 、c 三个正方形的面积之和为( )A .11B .15C .10D .224.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 、BE 与相交于点G ,以下结论中正确的结论有( )(1)△ABC 是等腰三角形;(2)BF =AC ;(3)BH :BD :BC =1:2:3;(4)GE 2+CE 2=BG 2.A .1个B .2个C .3个D .4个5.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .cmB .cmC .cmD .9cm6.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( )A .4B .8C .16D .527.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形 9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .6二、填空题11.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.14.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______18.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.19.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________20.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.22.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,24.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.25.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.26.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D 是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.27.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=()()()()4a b c a b c a c b b c a+++-+-+-.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.28.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.29.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ; (2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,221697AG AC CG =--=,∴12ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴4GF AF AG =-=-在Rt CGF 中,2CF ===,故③正确.故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 2.D解析:D【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°,∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.3.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.4.C解析:C【分析】(1)根据角平分线的定义可得∠ABE =∠CBE ,根据等角的余角相等求出∠A =∠BCA ,再根据等角对等边可得AB =BC ,从而得证;(2)根据三角形的内角和定理求出∠A =∠DFB ,推出BD =DC ,根据AAS 证出△BDF ≌△CDA 即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF =AC ,再由BF 平分∠DBC 和BE ⊥AC 通过ASA 证得△ABE ≌△CBE ,即得CE =AE =12AC ,连接CG ,由H 是BC 边的中点和等腰直角三角形△DBC 得出BG =CG ,再由直角△CEG 得出CG 2=CE 2+GE 2,从而得出CE ,GE ,BG 的关系.【详解】解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵CD ⊥AB ,∴∠ABE +∠A =90°,∠CBE +∠ACB =90°,∴∠A =∠BCA ,∴AB =BC ,∴△ABC 是等腰三角形;故(1)正确;(2)∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°﹣45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△BDF ≌△CDA (AAS ),∴BF =AC ;故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°,∴∠DCB =45°,∴BD =CD ,BCBD .由点H 是BC 的中点,∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2.故(3)错误;(4)由(2)知:BF =AC ,∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE ⊥AC ,∴∠AEB =∠CEB ,在△ABE 与△CBE 中, ==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ),∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD=CD,H是BC边的中点,∴DH是BC的中垂线,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.故(4)正确.综上所述,正确的结论由3个.故选C.【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.5.C解析:C【解析】【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C.【点睛】本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.6.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD可以求得△ABC的面积.【详解】解:作AD⊥BC,则D为BC的中点,则BD=DC=2,∵AB=2522AB BD,∴△ABC的面积为S=12×BC×AD=12×4×4=8,故选:B.【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD是解题的关键.7.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.8.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 9.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=,CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.10.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.二、填空题11.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,AB=5,AD=5,CD=5,BC=5,∴BD=25其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 12.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴BC=10;综上可知,这个等腰三角形的底的长度为310或10.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.13.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE=2222AE AD+=+= ,8882即PA+PD的最小值为82.故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.14.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222=-=-=,BD AB AD15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222-=-=,CD AC AD13125∵∠ADB=90°,AB=15,AD=12,∴222215129=-=-,BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.17.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC -GE=CH-HF=CF=AB-BF=3 ∴EF=223332+=②过D 作DG⊥AC,DH⊥BC,垂足为G ,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4 ∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=525222x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.182【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..19.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 20.78. 【解析】∵∠C =90°,AB =5,BC =4,∴AC.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)见解析;(2)CD=2AD+BD,理由见解析;(3)CD=3AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH =22AD AH -=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD =3AD +BD ,故答案为:CD =3AD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)CD=8;(2)t=4;(3)12-=t v t(26t ≤<) 【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)在Rt △ACD 中,CD=8,AC=AB=10 ∴22AD=AC CD =6-同理可得AF=6∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t由PD=QF 得6-t=6-2t ,解得t=0,∵t >0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6,整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.25.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=12•BF•BG=6.②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=12(x-a)(x-b)=12(x2-ax-bx+ab)=12×2ab=ab.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.26.(1)S=24(06)464(616)tt t<⎧⎨-+<<⎩(2)10,103⎛⎫⎪⎝⎭(3)存在,(6,6)或(6,1027)-,(6,272)+【解析】【分析】(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵A,B的坐标分别是(6,0)、(0,10),∴OA=6,OB=10,当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,∴S=12×8×6=24;当点P在线段BC上时,BD=8,高为6+10-t=16-t,∴S=12×8×(16-t)=-4t+64;∴S与t之间的函数关系式为:240t6S4t64(6t16)<≤⎧=⎨-+<<⎩();(2)设P(m,10),则PB=PB′=m,如图1,∵OB′=OB=10,OA=6,∴AB′22OB OA-',∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图2,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP1=10−7,即P1(6,10-27②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3228627-=,∴AP3=AE+EP3=7+2,即P3(6,27),综上,满足题意的P坐标为(6,6)或(6,10-276,7+2).【点睛】本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.27.(1)6(2)(310)m2【分析】(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.【详解】(1)解:△ABC的面积为S ()()()() a b c a b c a c b b c a +++-+-+-(457)(457)(475)(574)+++-+-+-=6故答案是:6;(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)在Rt△ADE中,∵∠A=60°,∴∠ADE=30°,∴AE=12AD=6∴BE=AB﹣AE=62﹣6=2DE2222(46)(26)62AD AE-=-=∴BD2222BE DE(42)(62)226+=+=∴S△BCD 1(57226)(57226)(22675)(22657)510 4+++-+-+-=∵S△ABD=11642)6212324 22AB DE⋅=⨯⨯=∴S四边形ABCD=S△BCD+S△ABD=12324510+答:该块草地的面积为(12324510+m2.【点睛】本题考查了勾股定理的应用和三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.28.(1)AB=52)见解析;(3)CD+CF的最小值为7.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =3ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,。

八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。

2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。

3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。

4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。

参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。

八年级数学下册《勾股定理》练习题及答案(人教版)

八年级数学下册《勾股定理》练习题及答案(人教版)

八年级数学下册《勾股定理》练习题及答案(人教版)班级姓名考号A.3条B.2条C.1条D.0条A.嘉嘉对,淇淇错B.嘉嘉错,淇淇对C.两人都对D.两人都错1131-A .12mB .13mC .15mD .24m若ACDA .12B .15C .24D .30A .2B .5C .223+D .256+11.如图,在ABC 中1AB AC ==,若45B ∠=︒,则线段BC 的长为__.12.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则表示ABC 重心的点是__________;13.如图,小华将升旗的绳子拉倒竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗14.如图,在Rt ABC △中90C ∠=︒,∠B=60°,按以下步骤作图:△以点A 为圆心,以任意长为半径作弧,15.如图,在△ABC 中,△C =90°,BA =15,AC =12,以直角边BC 为直径作半圆,则这个半圆的面积是三、解答题.如图,ABC中,∠的平分线,交BC于点D.(1)请利用直尺和圆规作BACAD=,求10,620.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根摆出等边“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.参考答案1.C2.C3.B4.A5.D6.C7.D8.B9.B17.(1)解:如图,AD即为所求;∠(2)解:△AB=AC,AD平分BAC .解:如图,在AB ED=,即60AB=.10△又在Rt ABC2AB=-BC的长度是1122ABC S AC AB AB CD ∆== 238230525AC BC CD AB ⨯∴=== 20.(1)小颖摆出如图1所示的“整数三角形小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)不能摆出等边“整数三角形”.。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

八年级数学勾股定理中考试题与答案

八年级数学勾股定理中考试题与答案
的长度为( B )
第6题图
数学
八年级 下册
人教版
章末整合· 感知中考
B 第7题图
数学
八年级 下册
人教版
章末整合· 感知中考
第8题图
数学
八年级 下册
人教版
章末整合· 感知中考
9.(2021·岳阳)《九章算术》是我国古代数学名著,书中有下 列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高 、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对
数学
八年级 下册
人教版
章末整合· 感知中考
(3)①如图所示,直线PC即为所求;
②到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上.(答案不唯一)
(1)求证:△ABC≌△ECD;
( 1 )证明:∵AB∥CD ∴∠ABC=∠ECD, 又∵AB=EC,BC=CD, ∴△ABC≌△ECD(SAS).
数学
八年级 下册
人教版
章末整合· 感知中考
解:(2)由(1)得△ABC≌△ECD, ∴∠CED=∠A=90°. 设BE=x,∵AB=CE=3,则CD=BC=3+x, 在Rt△BED中,DE2=BD2-BE2, 在Rt△CED中,DE2=CD2-CE2, ∴BD2-BE2=CD2-CE2,
办法一:如图1,可利用一把有刻度的直尺在AB上量出CD =30 cm,然后分别以D,C为圆心,以50 cm与40 cm为半径 画圆弧,两弧相交于点E,作直线CE,则∠DCE必为9 0 ° .
数学
八年级 下册
人教版
章末整合· 感知中考
办法二:如图2,可以取一根笔直的木棒,用铅笔在木棒上
点出M,N两点,然后把木棒斜放在木板上,使点M与点C 重合,用铅笔在木板上将点N对应的位置标记为点Q.保持点 N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点 M对应的位置标记为点R.然后将RQ延长,在延长线上截取线 段QS=MN,得到点S,作直线SC,则∠RCS=90°.

八年级初二数学 勾股定理测试试题及答案

八年级初二数学 勾股定理测试试题及答案

一、选择题1.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°2.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCD S S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个3.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=ADD .F BAQ ∠=∠4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A.47 B.62 C.79 D.985.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.66.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是()A.46B.6 C.42D.267.如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.cm B.cm C.cm D.9cm8.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A .2cmB .2.5cmC .3cmD .4cm 9.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,610.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( ) A .6B .8C .10D .12二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 14.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________17.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.18.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间. 22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒; ②求AB 的长.23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解. 【详解】 连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形 ∴45AMB ∠=︒ 故选C . 【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.2.C解析:C 【分析】过M 作ME AD ⊥于E ,得出12MDE CDA ∠=∠,12MAD BAD ∠=∠,求出1()902MDA MAD CDA BAD ∠+∠=∠+∠=︒,根据三角形内角和定理求出AMD ∠,即可判断①;根据角平分线性质求出MC ME =,ME MB =,即可判断④和⑤;由勾股定理求出DC DE =,AB AE =,即可判断③;根据SSS 证DEM DCM ∆≅∆,推出DEM DCM S S =三角形三角形,同理得出AEM ABM S S =三角形三角形,即可判断②. 【详解】解:过M 作ME AD ⊥于E ,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,12MDE CDA ∴∠=∠,12MAD BAD ∠=∠,//DC AB ,180CDA BAD ∴∠+∠=︒,11()1809022MDA MAD CDA BAD ∴∠+∠=∠+∠=⨯︒=︒,1809090AMD ∴∠=︒-︒=︒,故①正确;DM 平分CDE ∠,90()C MC DC ∠=︒⊥,ME DA ⊥,MC ME ,同理ME MB =,12MC MB ME BC ∴===,故⑤正确; M ∴到AD 的距离等于BC 的一半,故④错误;由勾股定理得:222DC MD MC =-,222DE MD ME =-,又ME MC =,MD MD =, DC DE ∴=, 同理AB AE =,AD AE DE AB DC ∴=+=+,故③正确; 在DEM ∆和DCM ∆中DE DC DM DM ME MC =⎧⎪=⎨⎪=⎩,()DEM DCM SSS ∴∆≅∆,DEM DCM S S ∴=三角形三角形 同理AEM ABM S S =三角形三角形, 12AMD ABCD S S ∴=三角形梯形,故②正确;故选:C .【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.3.C解析:C根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解. 4.C解析:C依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+……2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】 解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 6.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD 和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长.【详解】∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,∴S △BCD =12BD•PE+12CD•PF=12BD•AC ,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=(46)2-(4x)2,∴x=2,∴AC=42,∴PE+PF=42.故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.7.C解析:C【解析】【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C.【点睛】本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.8.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x ,则BD=8x -,在△BDE 中,利用勾股定理列方程求解即可.【详解】在Rt △ABC 中,由勾股定理可知:10==,由折叠的性质可知:DC=DE ,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x ,则BD=8-x ,DE=x ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x)2,解得:x=3,∴CD=3.故选:C .【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.9.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.10.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13当1312=;故这个三角形的第三条边可以是12.故选:D .【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83∵DE AC⊥根据勾股定理可得DE=222CD CE-=由折叠的性质可得:DH=CD=103,CP=PH∴EH=DH-DE=4 3设CP=PH=x,则EP=CE-CP=83-x在Rt△PEH中,EP2+EH2=PH2即(83-x)2+(43)2=x2解得:x=5 3即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.13.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】 在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.1410【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴22123417EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴1634217FG EC == ∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.15.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.16.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】 本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键.17.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】 解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△D CE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.18【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即EF=CD=5.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20.28+ 【分析】 依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】 ∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1OA ,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯===3.6CE cm ∴==,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.22.(1)BC−AC =AD ;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB 上截取CE =CA ,连接DE ,证△ACD ≌△ECD 得DE =DA ,∠A =∠CED =60°,据此∠CED =2∠CBA ,结合∠CED =∠CBA +∠BDE 得出∠CBA =∠BDE ,即可得DE =BE ,进而得出答案;(2)①在AB 上截取AM =AD ,连接CM ,先证△ADC ≌△AMC ,得到∠D =∠AMC ,CD =CM ,结合CD =BC 知CM =CB ,据此得∠B =∠CMB ,根据∠CMB +∠CMA =180°可得;②设BN =a ,过点C 作CN ⊥AB 于点N ,由CB =CM 知BN =MN =a ,CN 2=BC 2−BN 2=AC 2−AN 2,可得关于a 的方程,解之可得答案.【详解】解:(1)BC−AC =AD .理由如下:如图(a ),在CB 上截取CE =CA ,连接DE ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,又CD =CD ,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+3)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴2222AB AC=84=45++∵11AB AC=BC AH 22⋅⋅∴85 45∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,AA'=2AH=165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654⎛⎫-+ ⎪ ⎪⎝⎭x ∴()2221654=16⎛⎫-+- ⎪ ⎪⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.26.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()22222m m m n m n =++-22222222m n m m n =+-+-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为3.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD ==-=∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.28.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,∴四边形AGBE是平行四边形,ⅱ)如图2中,作AH⊥BC于H.∵BH=CH=1 (1) 2k+∴1113 1(1),3(1) 2222DH k k AH BH k =-+=-==+∴222AH DH k k1AD=+=++∴四边形BGAE的周长=22k k1k+++,△ABC的周长=3(k+1),∴四边形AGBE与△ABC2221 k k k+++【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.29.(1)AB=52)见解析;(3)CD+CF的最小值为7.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC。

人教版数学八年级下册同步训练必刷题(勾股定理)附答案

人教版数学八年级下册同步训练必刷题(勾股定理)附答案

人教版数学八年级下册同步训练必刷题(勾股定理)一、单选题(每题3分.共30分)1.一个直角三角形的两条边的长分别为8.10.则第三条边的长为()A.6B.12C.2√41D.6或2√412.下列各组数中.是勾股数的是()A.1.√5.3B.0.3.0.4.0.6C.9.12.15D.5.6.73.在边长为1的小正方形组成的网格中.A.B.C.D、E在格点上.长度是√10的线段是()A.AB B.AC C.AD D.AE4.如图.某公园的一块草坪旁边有一条直角小路.公园管理处为了方便群众.沿AC修了一条近路.已知AB=40米.BC=30米.则走这条近路AC可以少走()米路A.30B.20C.50D.405.如图是一个外轮廓为矩形的机器零件平面示意图.根据图中的尺寸(单位:mm).可以计算出两圆孔中心B和C的距离为()mm.A.120B.135C.30√61D.1506.如图.在△ABC中.△ACB=60°.AC=1.D是边AB的中点.E是边BC上一点.若DE平分△ABC 的周长.则DE的长为()A.1B.√32C.√52D.537.斜边长是4的直角三角形.它的两条直角边可能是()A.3.√7B.2.3C.3.5D.2.28.在△ABC中.△A.△B.△C的对边分别是a.b.c.下列条件中.不能判定△ABC是直角三角形的是()A.∠A+∠B=90°B.∠A:∠B:∠C=1:2:3C.a=2.b=2.c=3D.a=1.b=2.c=√59.如图.有一架秋千.当它静止时.踏板离地0.5米.将它往前推3米时.踏板离地1.5米.此时秋千的绳索是拉直的.则秋千的长度是()A.3米B.4米C.5米D.6米10.如图.正方体的棱长为2cm.点B为一条棱的中点.蚂蚁在正方体表面爬行.从点A爬到点B的最短路程是()A.√10cm B.4cm C.√17cm D.5cm二、填空题(每题3分.共30分)11.如图的直角三角形中未知边的长x=.12.一个直角三角形的两直角边长分别为2.4.则斜边长为.13.一艘船以20海里/时的速度从A港向东北方向航行.另一艘船以15海里/时的速度从A港向西北方向航行.经过1小时后.它们相距海里.14.如图.直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C.且相互平行.若L1、L2的距离为1.L2、L3的距离为2.则正方形的边长为.15.如图所示.点B、D在数轴上OB=3、OD=BC=1、∠OBC=90∘.以D为圆心.DC长为半径画弧.与数轴正半轴交于点A.则点A表示的实数是.16.在没有直角工具之前.聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结.然后以3个结间距、4个结间距、5个结间距的长度为边长.用木桩钉成一个三角形.其中5这条边所对的角便是直角.依据是.17.如图.在离水面高度为8米的岸上.有人用绳子拉船靠岸.开始时绳子BC的长为17米.几分钟后船到达点D的位置.此时绳子CD的长为10米.问船向岸边移动了米.18.在△ABC中.高AD=15.若AB=25. AC=17.则△ABC的面积为. 19.如图.已知△B=△C=△D=△E=90°.且AB=CD=3.BC=4.DE=EF=2.则AF的长是.20.如图.长方体的长为15cm.宽为10cm.高为20cm.点B距离C点5cm.一只蚂蚁如果要沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短距离是cm.三、解答题(共6题.共60分)21.如图.在△ABC中.AE=3.BE=5.AC=4.DE是BC的垂直平分线.交BC于点D.交AB于点E.求证:△ABC为直角三角形.22.某船从港口A出发沿南偏东32°方向航行12海里到达B岛.然后沿某方向航行16海里到达C岛.最后沿某个方向航行了20海里回到港口A.则该船从B到C是沿哪个方向航行的?(即求C岛在B 岛的哪个方位.距离B岛多远?).请说明理由.23.滑梯的示意图如图所示.左边是楼梯.右边是滑道.立柱BC.DE垂直于地面AF.滑道AC的长度与点A 到点E的距离相等.滑梯高BC=1.5m.且BE=0.5m.求滑道AC的长度.24.如图.在△ABC中.AD⊥BC.垂足为D.E为AC上一点.BE交AD于点F.且BF=AC.FD=CD.AD=2.求AB的长.25.勾股定理的证明方法是多样的.其中“面积法”是常用的方法.小丽发现:当四个全等的直角三角形如图摆放时.可以用“面积法”来证明勾股定理.请写出勾股定理的内容.并利用给定的图形进行证明.26.如图.连接四边形ABCD的对角线AC.已知△B=90°.BC=3.AB=4.CD=5.AD=5√2.求证:(1)AC=CD;(2)△ACD是直角三角形.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】C9.【答案】C10.【答案】C11.【答案】√1312.【答案】2√513.【答案】2514.【答案】√515.【答案】√17−116.【答案】如果三角形的两条边的平方和等于第三边的平方.那么这个三角形是直角三角形17.【答案】918.【答案】90或21019.【答案】1020.【答案】2521.【答案】证明:连接CE.如图所示.∵DE是BC的垂直平分线∴EC=BE=5∵△AEC中.AE=3.EC=5.AC=4又∵42+32=52.即AC2+AE2=EC2∴△AEC是直角三角形∴∠A=90°∴△ABC是直角三角形.22.【答案】解:如图∵AB=12.BC=16.AC=20∴AB2+BC2=400=AC2∴△ABC=90°由题知△1=32°∴△2=180°-△ABC-△1=58°.∴该船从B到C沿着南偏西58°方向航行.C岛距离B岛16海里.23.【答案】解:设AC=x m.则AE=AC=x m.AB=AE-BE=(x-0.5)m由题意得:△ABC=90°在Rt△ABC中.AB2+BC2=AC2.即(x-0.5)2+1.52=x2解得x=2.5∴AC=2.5m.24.【答案】解:∵AD⊥BC∴∠ADB=∠ADC=90°∴△BDF和△ADC是直角三角形∵BF=AC.FD=CD∴Rt△BDF≌Rt△ADC(HL)∴BD=AD=2∴AB=√BD2+AD2=√22+22=2√225.【答案】解:若直角三角形的两条直角边分别为a、b.斜边为c.则a2+b2=c2如图.这个多边形的面积为2×12ab+c2=12b(b+b+a)+12a(a+b+a)整理得ab+c2=12ab+b2+12ab+a2故a2+b2=c2.26.【答案】(1)证明:∵△B=90°.BC=3.AB=4.∴AC=√AB2+BC2=√32+42=5.∵CD=5.∴AC=CD.(2)解:∵AC=CD=5 .AD=5√2.∴AC ²+CD ²=5 ²+5 ²=50.AD²=(5√2)2= 50.∴AC2+CD2=AD2.∴△ACD是直角三角形.。

勾股定理练习题(含答案)_初二数学_数学_初中教育_教育专区

勾股定理练习题(含答案)_初二数学_数学_初中教育_教育专区

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D.222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k>1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周S d 长为( )(A (B2d +d -(C ) (D )2d +d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为()A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是()2(6)100a -=A :底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19.一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?AE B4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8.解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.卡祖玛咖,卡祖玛咖官网 lxMQovlLvRTh。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者
高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离 竹子底部 4 尺远(如图),则折断后的竹子高度为多少尺?(1 丈=10 尺)( )
A.3
B.5
C.4.2
D.4
7.在直角三角形 ABC 中, C 90 ,两直角边长及斜边上的高分别为 a,b, h ,则下列
22.如图,在△ABC 中,AB=30 cm,BC=35 cm,∠B=60°,有一动点 M 自 A 向 B 以 1 cm/s 的速度运动,动点 N 自 B 向 C 以 2 cm/s 的速度运动,若 M,N 同时分别从 A,B 出 发. (1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.
C.如果 a2:b2:c2=9:16:25,那么△ ABC 是直角三角形
D.如果 a2=b2﹣c2,那么△ ABC 是直角三角形且∠A=90°
9.如图,已知△ABC 中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线
l1,l2,l3 上,且 l1,l2 之间的距离为 2,l2,l3 之间的距离为 3,则 AC 的长是( )
20.四边形 ABCD 中 AB=8,BC=6,∠ B=90°,AD=CD= 5 2 ,四边形 ABCD 的面积是
_______.
三、解答题
21.如图,一架长 25 米的梯子,斜靠在竖直的墙上,这时梯子底端离墙 7 米. (1)此时梯子顶端离地面多少米? (2)若梯子顶端下滑 4 米,那么梯子底端将向左滑动多少米?
18.已知 Rt△ABC 中,AC=4,BC=3,∠ACB=90°,以 AC 为一边在 Rt△ABC 外部作等腰直 角三角形 ACD,则线段 BD 的长为_____.
19.如图,直线 l 上有三个正方形 a,b,c,若 a,c 的边长分别为 5 和 12,则 b 的面积为 _________________.
12.如图,AB=12,AB⊥BC 于点 B, AB⊥AD 于点 A,AD=5,BC=10,E 是 CD 的中点, 则 AE 的长是____ ___.
13.将一副三角板按如图所示摆放成四边形 ABCD,发现只要知道其中一边的长就可以求出
其它各边的长,若已知 AD= 3 2 ,则 AB 的长为__________.
14.如图,在 Rt ABC 中, ACB 90 , AC 4 , BC 2 ,以 AB 为边向外作等腰 直角三角形 ABD ,则 CD 的长可以是__________.
15.如图,有一个圆柱,它的高等于 12 厘米,底面半径等于 3 厘米.在圆柱的下底面 A 点有一只蚂蚁,它想吃到上底面上与 A 点相对的 C 点处的食物,需要爬行的最短路程是 ___________________(π 的值取 3).
16.在 ABC 中, BAC 90,以 BC 为斜边作等腰直角 BCD ,连接 DA ,若 AB 2 2 , AC 4 2 ,则 DA 的长为______.
17.如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形 ABCD 和 EFGH 都是正方形.如果 AB=13,EF=7,那么 AH 等于_____.
A.①②③
B.①②③④
C.②③④
D.①③④
2.如图,在平行四边形 ABCD 中,∠DBC=45°,DE⊥BC 于 E,BF⊥CD 于 F给出四个结论:① BD 2BE ; ②∠A=∠BHE;
③AB=BH; ④△ BCF≌△DCE, 其中正确的结论是( )
23.如图,在等腰直角三角形 ABC 中,∠ACB=90°,AC=BC,AD 平分∠BAC,BD⊥AD 于点 D,E 是 AB 的中点,连接 CE 交 AD 于点 F,BD=3,求 BF 的长.
24.如图,在边长为 2 的等边三角形 ABC 中, D 点在边 BC 上运动(不与 B , C 重 合),点 E 在边 AB 的延长线上,点 F 在边 AC 的延长线上, AD DE DF . (1)若 AED 30 ,则∠ADB ______. (2)求证:△BED≌△CDF . (3)试说明点 D 在 BC 边上从点 B 至点 C 的运动过程中, BED 的周长 l 是否发生变 化?若不变,请求出 l 的值,若变,请求出 l 的取值范围.
八年级初二数学 勾股定理练习题含答案
一、选择题
1.如图:在△ABC 中,∠B=45°,D 是 AB 边上一点,连接 CD,过 A 作 AF⊥CD 交 CD 于 G,交 BC 于点 F.已知 AC=CD,CG=3,DG=1,则下列结论正确的是( )
①∠ACD=2∠FAB ② SACD 2 7 ③ CF 2 7 2 ④ AC=AF
A. 2 17
B. 2 5
C.4 2
D.7
10.已知三角形的两边分别为 3、4,要使该三角形为直角三角形,则第三边的长为
()
A. 5
B. 7
C.5 或 7
D.3 或 4
二、填空题
11.如图,在矩形 ABCD 中,AB=10,BC=5,若点 M、N 分别是线段 AC、AB 上的两个动 点,则 BM+MN 的最小值为_____________________.
股定理,如图所示的矩形由两个这样的图形拼成,若 a=3,b=4,则该矩形的面积为( )
A.20
B.24
C. 99 4
D. 53 2
5.一个直角三角形两边长分别是12 和 5 ,则第三边的长是( )
A.13
B.13 或15
C.13 或 119
D.15
6.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体
A.①②③
B.①②④
C.②③④
D.①②③④
3.已知三角形的三边长分别为 a,b,c,且 a+b=10,ab=18,c=8,则该三角形的形状是
()
A.等腰三角形
B.直角三角形
C.钝角三角形
D.等腰直角三角形
4.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形
和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾
关系式成立的是( )
A.
2 a2
2 b2
1 h2
B.
1 a2
1
b2
1 h2
C. h2 ab
D. h2 a2 b2
8.在△ ABC 中,∠A,∠B,∠C 的对边分别记为 a,b,c,下列结论中不正确的是( )
A.如果∠A﹣∠B=∠C,那么△ ABC 是直角三角形
B.如果∠A:∠B:∠C=1:2:3,那么△ ABC 是直角三角形
相关文档
最新文档