《分层抽样》教案设计-张桂伟
2024分层抽样说课稿范文
2024分层抽样说课稿范文课程名称:2024分层抽样一、说教材1、《2024分层抽样》是XXXX版小学数学六年级下册第X单元第X课时的内容。
它是在学生已经学习了XXXX并掌握了一些XXXX的基础上进行教学的,是小学数学领域中的重要知识点,而且在实际生活中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解分层抽样的概念与意义,掌握使用分层抽样进行统计调查的方法。
②能力目标:在实际问题中,培养学生识别抽样层次、确定抽样比例,并进行有效抽样的能力。
③情感目标:在统计调查中,让学生体会到数学与现实的联系,培养他们对统计学的兴趣与积极参与的态度。
三、说教法学法有这样一句话:“听见了,忘记了;看见了,记住了;体验了,理解了。
”可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:情境教学法,启发式教学法;学法是:实践探究法,合作学习法。
四、说教学准备在教学过程中,我将采用多媒体辅助教学,通过图表、图片、案例等直观形象地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
五、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。
本着这个教学理念,我设计了如下教学环节。
环节一、情境引入,导入新课。
课堂伊始,我将以大家熟悉的“体育锻炼”为情境引入分层抽样的概念。
通过问学生在学校中不同年级的体育课锻炼情况,引导学生思考如何进行统计调查并得出结论。
通过这个情境引入,让学生产生对分层抽样的兴趣和好奇心。
环节二、探究新知,突破难点。
1、理解分层抽样的概念与意义:通过给学生展示一组数据,并引导他们思考如何进行抽样,进而引导学生发现不同层次的数据,在统计调查中的重要性。
通过讨论,帮助学生理解分层抽样的概念与意义。
2、使用分层抽样进行统计调查的方法:我将分层抽样的方法分为几个步骤,如确定抽样层次、确定抽样比例、进行抽样等。
人教A版高中数学必修三213《分层抽样》教案
人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。
二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。
三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。
2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。
2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。
2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。
3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。
4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。
4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。
5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。
四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。
2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。
五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。
六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。
但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。
分层抽样课程设计
分层抽样课程设计一、教学目标本节课的教学目标是让学生掌握分层抽样的概念、原理和方法,并能够运用分层抽样解决实际问题。
具体来说,知识目标包括:了解分层抽样的定义、特点和适用条件;掌握分层抽样的步骤和方法;理解分层抽样在实际应用中的重要性。
技能目标包括:能够正确选择分层抽样的分层标准;能够独立进行分层抽样并解释结果;能够评价分层抽样的优缺点。
情感态度价值观目标包括:培养学生的数据分析意识,提高学生解决实际问题的能力;培养学生团队合作的精神,提高学生的沟通能力和合作意识。
二、教学内容本节课的教学内容主要包括以下几个部分:首先,介绍分层抽样的概念和原理,通过具体案例让学生理解分层抽样的基本思想;其次,讲解分层抽样的步骤和方法,包括如何选择分层标准、如何确定每层的样本容量等;然后,通过实际案例分析,让学生学会如何运用分层抽样解决实际问题;最后,对分层抽样的优缺点进行讨论和评价。
三、教学方法为了实现本节课的教学目标,采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,系统地讲解分层抽样的概念、原理和方法,让学生掌握基本知识;其次,采用案例分析法,让学生通过分析实际案例,加深对分层抽样的理解和应用;然后,采用讨论法,让学生分组讨论分层抽样的优缺点,培养学生的批判性思维;最后,采用实验法,让学生亲自动手进行分层抽样实验,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,准备了一系列的教学资源。
主要教材为《统计学原理》一书,辅助教材有《分层抽样技术及其应用》等。
参考书包括《现代统计学》、《抽样技术》等。
多媒体资料有分层抽样的教学视频、PPT课件等。
实验设备包括计算器、统计软件等。
这些教学资源将有助于丰富学生的学习体验,提高学生的学习效果。
五、教学评估本节课的教学评估将采用多元化的方式进行,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业和考试等。
平时表现主要考察学生在课堂上的参与程度、提问回答和团队协作等情况;作业包括课后练习和案例分析报告等,以巩固学生的知识和提高应用能力;考试分为期中和期末两次,主要考察学生对分层抽样概念、原理和方法的掌握程度。
数学《分层抽样》教案
数学《分层抽样》教案1. 教学目标:了解分层抽样的概念、特点和方法,掌握其中常见的几种方法。
2. 教学重点:掌握分层抽样的方法。
3. 教学难点:如何根据实际情况选择合适的分层抽样方法。
4. 教学内容:4.1 分层抽样的概念和特点。
4.2 分层抽样的方法。
4.2.1 基本分层抽样法。
4.2.2 无重复抽样法。
4.2.3 系统抽样法。
4.2.4 分层整群抽样法。
4.2.5 整群随机抽样法。
5. 教学方法:讲授、演示、讨论。
6. 教学步骤:6.1 引入:教师简要讲解分层抽样的概念和作用。
6.2 分层抽样的方法:6.2.1 基本分层抽样法:按照某些特征将总体分为若干层,从每层中抽取若干单位进行抽样。
6.2.2 无重复抽样法:从所有单位中随机抽取若干单位,再将这些单位按照所属层来进行分类,以保证每层都有样本。
6.2.3 系统抽样法:从第一个单位开始按照固定间隔进行抽样,以保证每个单位有被抽中的机会。
6.2.4 分层整群抽样法:将总体按照一定比例分成若干群,在每个群中选择全部的单位作为样本。
6.2.5 整群随机抽样法:将总体按照一定比例分成若干群,随机选择若干个群,再从每个群中随机抽取一定数量的单位作为样本。
6.3 讨论:讨论在不同情况下,如何选择合适的分层抽样方法,以保证样本的质量。
7. 教学总结:对分层抽样的概念、特点和方法进行简要总结,并引导学生思考如何灵活应用分层抽样的方法。
8. 课后作业:完成指定的分层抽样练习题,掌握分层抽样的操作技巧。
《分层抽样》教案
《分层抽样》教案【教学目标】1、正确理解分层抽样的概念;掌握分层抽样的一般步骤.2、通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法.3、通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观.【教学重点】分层抽样的概念和步骤;应用分层抽样方法解决部分实际问题.【教学难点】对分层抽样方法的理解.【教学过程】一、创设情境,温故求新1、复习提问(1)为了了解我班65名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?(2)为了了解我校高二年级1403名学生的近视情况,准备抽取100名学生进行检查,应怎样进行抽取?通过对学生采用不同抽样方法的原因进行提问,归纳总结:当总体中的个体数较少时采用简单随机抽样的方法,当总体中的个体数较多时采用系统抽样的方法.2、新课引入(3)为了了解我区高中生2400人,初中生10900人,小学生11000人的近视情况,要从中抽取1%的学生进行检查,应怎样进行抽取?对于这个问题,我们还能不能采用前两节所学的简单随机抽样或系统抽样呢?样本中应该高中生、初中生和小学生都有,那么他们应该按照什么比例来抽取呢?为了尽可能地保证样本结构和总体结构的一致性,我们可以按各部分所占的比例进行抽取,抽取高中生、初中生和小学生各1%的人,即抽取高中生:2400×1%=24(人)初中生:10900×1%=109(人)小学生:11000×1%=110(人)然后再在各个学段用简单随机抽样或系统抽样的方法把这24人、109人和110人抽取出来,最后再将这些抽取出来的个体合在一起,即构成了我们所要调查的样本.二、启发引导,形成概念1、分层抽样的定义根据刚才的分析,让学生思考讨论,引导学生给出分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2、强调定义关键词分成互不交叉的层:将相似的个体归入一类,即为一层;分成互不交叉的层是为了抽取过程中既不重复也不遗漏,从而确保了抽取样本的公平性;比例:按照一定的比例抽取是指所有层都采用同一抽样比等可能抽样,这样可以保证样本结构与总体结构的一致性,从而提高了样本的代表性;各层独立地抽取:在分层抽样中,每一层内部都要独立地进行抽样,并且为了确保抽样的随机性,各层应分别按简单随机抽样或系统抽样的方法抽取,因此,分层抽样也是一种等概率抽样.三、新知初用,示例练习例某单位有500名职工,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的职工;(2)确定样本容量与总体的个体数之比100:500=1:5;(3)利用抽样比确定各年龄段应抽取的个体数:1 =25(人)不到35岁的职工:125×51 =56(人)35~49岁的职工:280×51 =19(人)50岁以上的职工:95×5(4)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人;(5)然后将抽取的25,56,19人合在一起,就是所抽取的样本.四、 掌握步骤,巩固深化1、分层抽样的步骤根据上例的分析,请同学们归纳整理出分层抽样的步骤.1、分层——根据已有信息,将总体分成互不相交的层;2、定比——根据总体中的个体数N 与样本容量n 确定抽样比Nn k =; 3、定量——确定第i 层应该抽取的样本数k N n I i ⨯≈(i N 为第i 层所包含的个体数)使得各i n 之和为n ;4、抽样——在各个层中,按步骤3中确定的数目在各层中随机抽取个体;5、组样——综合每层抽样,得到容量为n 的样本.2、应用举例,巩固新知1、下列问题中,采用怎样的抽样方法比较合理:①从10台冰箱中抽取3台进行质量检查; 简单随机抽样 ②某电影院有32排座位,每排有40个座位,座位号为1~40。
招教《分层抽样》教学设计
《分层抽样》教案
《分层抽样》教案
一、教学目标
【知识与技能】
了解随机抽样中的分层抽样的特点和适用情况,并会用分层抽样解决实际问题。
【过程与方法】
在经历分层抽样的特点的探索过程中,提升概括能力和应用能力。
【情感、态度与价值观】
在探索的过程中,体会数学与生活的紧密联系。
二、教学重难点
【教学重点】
分层抽样的特点及步骤。
【教学难点】
分层抽样特点的探究过程。
三、教学过程
(一)引入新课
思考:如果要调查某校高一学生的平均身高应该怎样调查?
预设:男生女生身高有很大差别,简单随机抽样和系统抽样都不能够使样本具有代表性。
讲解:选择抽样方法之前,充分利用事先对总体情况的已有了解是非常重要的。
教师直接引出新的抽样方法的学习《分层抽样》。
(二)探索新知
1.探索分层抽样
出示书上探究的问题情境:某地区有高中生2400人,初中生10900人,小学生11000人。
此地区教育部门为了了解本地区中小学生的近视情况及其形成的原因,要从本地区的中小学生中抽取1%的学生进行调查。
你认为应当怎样抽取样本?
提问:你认为哪些因素可能影响学生的视力?设计抽样方法时需要考虑这些因素吗?
预设:不同年龄阶段的近视情况可能存在明显差异,三个部分的人数相差较大,我们需要考虑到三个年龄段各自的情况。
提问:根据前面的问题情境,如果让你来抽样你会如何进行?。
人教版高中数学必修3《分层抽样》课程设计(全国一等奖)
人教版高中数学必修3《分层抽样》课程设计(全国一等奖)课程概述本课程设计是针对人教版高中数学必修3中的《分层抽样》内容而设计的。
通过该课程的研究,学生将了解到分层抽样在实际生活和应用领域中的重要性和作用,并学会如何进行分层抽样的设计方法和步骤。
课程目标- 理解分层抽样的概念和基本原理- 学会选择适当的分层抽样方法和样本规模- 掌握分层抽样的设计步骤和具体操作- 了解分层抽样在实际调查和研究中的应用课程安排第一课时:引入与概念解析- 介绍分层抽样的定义和基本概念- 解析分层抽样的优点和作用- 分层抽样的实例分析和讨论第二课时:分层抽样方法- 介绍几种常见的分层抽样方法,如整群抽样、相对等额抽样等- 分层抽样方法的适用场景和特点- 分层抽样方法的选择和判断标准第三课时:样本规模的确定- 讲解如何确定分层抽样的样本规模- 分层抽样的误差控制和置信度计算- 样本规模的计算公式和实际应用示例第四课时:分层抽样的设计步骤- 介绍分层抽样的设计步骤和流程- 讲解分层抽样设计中的注意事项和常见问题- 使用实例进行分层抽样设计的演练和实践教学方法本课程设计采用多种教学方法和手段,包括讲解、示范、讨论、实践等。
通过理论和实践相结合的教学方式,提高学生对分层抽样知识的理解和应用能力。
评估方式学生的评估将主要通过以下几个方面进行:- 平时作业完成情况- 课堂讨论和互动参与度- 实际案例综合分析能力- 考试或小测验成绩参考资料1. 人教版高中数学必修3教材2. 相关数学教育研究论文3. 分层抽样实践案例参考书目以上为《人教版高中数学必修3《分层抽样》课程设计(全国一等奖)》的简要内容介绍,希望能对教学工作有所帮助。
如需深入了解详细课程设计,请参考相关教材和参考资料。
人教A版高中数学必修三 2.1.3《分层抽样》教案
人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
必修3《分层抽样》教学设计
高中数学必修3《分层抽样》教学设计一、教材分析(一) 本节的作用和地位本节是高中数学必修3第二章《统计》的第一节。
通过本节学习,学会分层抽样,灵活应用分层抽样抽取样本,感知应用数学知识解决问题的方法。
(二) 本节主要内容分层抽样的定义、灵活应用抽样进行样本抽取二、教学过程(一) 复习提问[教师]问题1:一般在什么条件下用系统抽样?系统抽样有哪些步骤?若分段间隔不足整数的时候如何处理?问题2:尝试设计从804名高一学生中抽取40人进行调查的抽样方案。
[学生]回顾系统抽样的特点,回答问题。
[教师]幻灯片出示探究问题:<探究>某地区准备调查中小学学生的视力状况。
已知高中生2400名,初中生有10900名,小学生有11000人,如果要从本地区的中小学中抽取1%进行调查,该如何抽取样本?问题(1)你认为哪些因素可能影响学生的视力?(2)设计抽样方法要考虑这些因素吗?设计意图:运用具有现实意义的案例,激发学生的学习兴趣。
[学生]讨论用过去所学的两种方法不可取,指出由于不同年级学生的视力状况有一定的差异,用简单随机抽样成系统抽样不能准确反映客观实际。
在抽样时,不仅要使每个个体被抽到的机会均等,还要注意总体中个体的层次性。
(二) 引入定义[教师](如果没有预习,可以让学生阅读教材体会定义)若学生对总体情况了解不够,用系统抽样,样本的代表性可能会很差。
比如抽取的对象可能都是男生或者都是女生,而且有时一些问题,农村和城市、老人和孩子都有很大的差异,不同学生的视力状况有一定的差异。
若总体差异很大,我们该如何处理?今天我们一起学习抽样方法中的分层抽样。
(三) 教学过程1. 给出分层抽样的定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定比例,从各层独立地抽取一定数量的个体,将各层抽取的个体合在一起作为样本,这种抽样方法,叫做分层抽样。
注:分层抽样,又叫类型抽样,尽量利用了调查者对调查对象(总体)实现所掌握的各种信息,并充分考虑了保持样本结构与总体结构的一致性,这堆提高样本的代表性是非常重要的。
2019-2020年人教B版必修3高中数学2.1.3《分层抽样》word教案
2019-2020年人教B版必修3高中数学2.1.3《分层抽样》word教案教学目标:1.结合实际问题情景,理解分层抽样的必要性和重要性2.学会用分层抽样的方法从总体中抽取样本教学重点:学会用分层抽样的方法从总体中抽取样本教学过程:1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
课堂练习:第55页,练习A,练习B小结:本节重点介绍分层抽样的方法及其局限性课后作业:第58页,习题2-1A第5、6题,。
《分层抽样》设计2
(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.
(2)确定每层抽取个体的个数.抽样比为 ,则在不到35岁的职工中抽125× =25人;在35岁至49岁的职工中抽280× =56人;在50岁以上的职工中抽95× =19人.
(2)想一想为什么这样取各个学段的个体数?
(3)请归纳分层抽样的定义.
(4)请归纳分层抽样的步骤.
(5)分层抽样时如何分层?其适用于什么样的总体?
三、质疑探究
讨论结果:(1)分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.
①简单随机抽样 ②系统抽样 ③分层抽样
A.②③B.①③C.③D.①②③
答案:D
2.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________.
答案:5
(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.
(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.
(4)3)在各层分别按抽签法或随机数表法抽取样本.
(4)综合每层抽样,组成样本.
点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.
高中数学必修三《分层抽样》优秀教学设计
2.1.2系统抽样2.1.3分层抽样●三维目标1.知识与技能(1)了解系统抽样和分层抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样和分层抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.●重点难点重点:系统抽样和分层抽样的定义及操作步骤.难点:分层抽样每层应抽取的样本数;系统抽样中的“个别案例”的处理办法.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】 可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取? 【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.1.某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生抽取1%的学生进行调查,你认为应当怎样抽取样本?【提示】 应分高中、初中、小学三个层次进行抽取.2.在高中、初中、小学三部分学生中都按1%的比例抽取,应各抽取多少人? 【提示】 高中生抽取2 400×1%=24(人), 初中生抽取10 900×1%=109(人), 小学生抽取11 000×1%=110(人). 1.分层抽样的定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件当总体是由差异明显的几个部分组成时,往往用分层抽样的方法.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.【思路探究】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【自主解答】按照1∶5的比例抽取样本,则样本容量为15×295=59.步骤是:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤:①将总体中的个体编号;②将整体编号进行分段,确定分段间隔k(k∈N*),在确定分段间隔k时应注意:分段间隔k为整数,当Nn不是整数时,应采用简单随机抽样剔除部分个体,以获得整数间隔k;③在第一段内采用简单随机抽样的方法确定起始个体编号;④按照事先预定的规则抽取样本.从含有100个个体的总体中抽取10个入样,请用系统抽样法给出抽样过程.【解】(1)将100个个体编号,00,01,02,03,04, (99)(2)分段,将总体平均分成10段,每段10人;(3)在第一段即00~09号用简单随机抽样,抽取一个号码如08;(4)以08为起始数,依次抽取18,28,…,98,这样便得到容量为10的一个样本.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【思路探究】【自主解答】(1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.【解】第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每=10个个体;段含k=80080第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及以上的有95人,为了了解与身体状况有关的某项指标,要从所有职工中抽取100名职工作为样本,若职工年龄与这项指标有关,应该怎样抽取?【思路探究】由于职工年龄与该项指标有关,而年龄由差异明显的几部分组成,故采用分层抽样.【自主解答】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数法抽取样本.(4)综合每层抽样,组成样本.1.分层抽样的前提和遵循的两条原则(1)前提:分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占比例抽取.(2)遵循的两条原则:①将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.2.分层抽样的操作步骤第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合成一起,就得到所取样本.某工厂有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级部门为了了解机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.【解】因机构改革关系到每个人的不同利益,故采用分层抽样方法较妥.∵10020=5,∴10 5=2,705=14,205=4.∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01, (69)号,然后用随机数法抽取14人.这样便得到了一个容量为20的样本.对系统抽样操作失误致错中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.【错解】(1)将303盒月饼用随机的方式编号;(2)从总体中剔除3盒月饼,将剩下的分成10段;(3)在第一段中用简单随机抽样抽取起始号码l;(4)将编号为l+30,l+2×30,…,l+9×30的个体取出,组成样本.【错因分析】在第二步剔除3盒月饼后没有对剩下的月饼进行从000,001,…,299重新编号.【防范措施】在系统抽样中,若Nn不是整数,则需剔除几个个体使得总体中剩余的个体数能被样本容量整除,那么,从总体中剔除一些个体后,剩余个体应重新编号.【正解】(1)将303盒月饼用随机的方式编号;(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;(3)在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码l;(4)将编号为l,l+30,l+2×30,l+3×30,…,l+9×30的个体抽出,组成样本.三种抽样方法的比较1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为()A.简单随机抽样B.抽签法C.随机数表法D.系统抽样【解析】符合系统抽样的特征.【答案】 D2.为了解2 400名学生对某项教改的意见,打算从中抽取60名学生调查,采用系统抽样法,则分段间隔k为()A.40B.30 C.20D.60【解析】k=2 40060=40.【答案】 A3.某单位有职工200人,35岁以下有40人,35岁到50岁的有120人,51岁及以上的有40人,用分层抽样的方法从中抽取40人,各年龄段分别抽取人数为()A.8,24,8 B.4,12,20C.24,28,30 D.16,16,32【解析】各年龄段的比为1∶3∶1,∴各段人数分别为40×15=8,40×35=24,40×15=8.【答案】 A4.某运输队有货车1 200辆,客车800辆,从中抽取110调查车辆的使用和保养情况,请给出抽样过程.【解】利用分层抽样.第一步,确定货车和客车各应抽取多少辆.货车:1 200×110=120(辆),客车:800×110=80(辆);第二步,用系统抽样法分别抽取货车120辆,客车80辆;第三步,把抽取的货车和客车组成样本.一、选择题1.现有60件产品,编号从1到60,若用系统抽样方法从中抽取6件检验,则所抽到的个体编号可能是()A.5,10,15,20,25,30B.2,14,26,28,42,56 C.3,13,23,33,43,53 D.1,12,23,34,45,56【解析】抽样间距为k=606=10,故C正确.【答案】 C2.(2014·绵阳高一检测)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行()A.每层等数量抽样B.每层不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽同样多的个体等可能抽样【解析】要保证每个个体等可能入样,需要在所有层都按照同一抽样比等可能抽样.故选C.【答案】 C3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为() A.30 B.36C.40 D.无法确定【解析】分层抽样中抽样比一定相同,设容量为n,由题意得n120=2790,解得n=36,故选B.【答案】 B4.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24 B.18C.16 D.12【解析】依题意可知三年级学生人数为500,即总体中各年级的人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×28=16,故选C.【答案】 C5.(2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9C.10 D.15【解析】由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.【答案】 C二、填空题6.(2012·江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【解析】设应从高二年级抽取x名学生,则x∶50=3∶10.解得x=15.【答案】157.某单位有27名老年人,54名中年人,81名青年人.为了调查他们的身体情况,用分层抽样的方法从他们中抽取了n个人进行体验,其中有3名老年人,那么n=________.【解析】由题意可知抽样比为327=19,所以中年人应抽取54×19=6(人),青年人应抽取81×19=9(人),所以n=3+6+9=18.【答案】188.某单位200名职工的年龄分布情况如图2-1-1所示,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取__________人.图2-1-2【解析】由于系统抽样的方法在第一段实施简单随机抽样得一个起始编号,其余的编号是在此基础上加上分段间隔的整数倍得到的,第5组为22,分段间隔为5,故第一段为2,第8段为37,由分层抽样40岁以下占50%,故按比例应抽取40×50%=20(人).【答案】3720三、解答题9.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).【解】该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤.可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l,则每个班的l,10+l,20+l,30+l,40+l(如果l=6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.10.某企业共有3 200名职工,其中,中、青、老年职工的比例为5∶3∶2,从所有职工中抽取一个容量为400的样本,采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?【解】由于中、青、老年职工的比例不同,故用分层抽样的方法更合理.=200(人);中年职工抽取人数为400×55+3+2青年职工抽取人数为400×3=120(人);5+3+2=80(人).老年职工抽取人数为400×25+3+211.某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.【解】(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生;(5)从第一段即1~5号中随机抽取一个号作为起始号,如l;(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?【思路探究】该题实际上是考查系统抽样的特征——等距离抽取样本.【自主解答】交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.某单位有工人18人,技术人员12人,工程师6人,现需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样的方法抽取,都不用剔除个体;如果样本容量增加1个,则用系统抽样时,需要在总体中剔除1个个体,求样本容量n.【解】总体中个体总数N=18+12+6=36,当抽取n个个体时,不论是系统抽样还是分层抽样,都不需要剔除个体.所以n应为2或3或6(取36,18,12,6的公约数).当n=2或3时,既不符合题意,也不满足n+1时,系统抽样需要剔除.当n=6时,符合题意,也满足n+1时系统抽样需要剔除1个,所以n=6.。
高中数学分层抽样教案
高中数学分层抽样教案
主题:分层抽样
目标:了解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
知识点:
1. 分层抽样的定义和特点
2. 分层抽样的步骤
3. 分层抽样的计算方法
教学步骤:
一、导入:
教师通过引导学生回顾上节课的内容,并提出问题:为什么我们需要进行抽样调查?什么是分层抽样?
二、讲解:
1. 介绍分层抽样的定义和特点,说明其优点和适用范围。
2. 分层抽样的步骤:确定抽样目标、确定抽样框架、确定分层变量、划分层次、计算每层样本量、随机抽样。
三、练习:
1. 根据一组数据,让学生计算每层的样本量。
2. 制定一个抽样计划,包括确定抽样目标、确定抽样框架和分层变量等。
四、讨论:
学生根据实际情况进行讨论,分享自己的抽样经验,讨论分层抽样的优缺点及应用情况。
五、总结:
对分层抽样的重点知识进行总结,巩固学生的理解。
六、作业:
布置作业,让学生自行设计一个分层抽样计划,并写出具体步骤和计算过程。
七、展示:
学生将自己的作业展示给全班同学,进行互评和讨论。
教学反思:
通过本节课的教学,学生应该能够理解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
同时,能够灵活应用分层抽样进行实际调查,并能够理解其在实际应用中的优势和局限性。
分层抽样(翻转课堂) 优秀教案
《分层抽样(翻转课堂)》教学设计1. 教学内容解析内容:人教A版必修3第二章“集合与函数概念”第一节第3部分作用与地位:本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;为下节“用样本估计总体”的学习打下了基础.因此本节内容具有承前启后的作用,地位重要.重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题;难点:恰当的选择三种抽样方法解决现实生活中的抽样问题。
2.教学目标设置【知识与技能】1.学生通过微课自学“分层抽样”概念;2.掌握分层抽样的一般步骤;3.区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
【过程与方法】1.通过对实际问题进行分层抽样,感知应用数学知识解决实际问题的方法;2.感悟由具体到一般的研究方法,培养学生的归纳概括能力。
【情感、态度与价值观】1.通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一;2.培养学生的辩证唯物主义的世界观与价值观。
3.学生学情分析1.本节授课对象是高一的学生,此前他们已学习过简单随机抽样、系统抽样,对随机抽样有一定的了解。
采用翻转课堂的形式(微课自学分层抽样定义),提高学生的自主探究能力。
2.我校为面上中学,学生的思维能力属于中等水平,因此在习题设置以及作业中都保持了适度的难度,让学生收获成功的喜悦,从而提高学生学习数学的兴趣。
4.教学策略分析采用翻转课堂的形式:先让学生通过微课自学,课堂上再解决问题。
通过思维引导、案例分析、师生互动、生生互动、学生练习(风险题游戏形式)等教学环节,达到本节课的教学目标。
自评与互评:在概念形成及辨析过程中让学生相互指正、完善,共同促进,将“评价的尺子”交回给学生自己,让学生进行自我评价,自我反思。
5.教学媒体支持PPT ,相机,微课,视频播放软件,相关多媒体课件6.教学过程设计课前自主学习任务单(学生自学)一、学习先行——微课要求:利用课余时间在手机上观看微课,根据自身情况来安排和控制自己的学习,懂了的快进跳过,没懂的倒退反复观看,也可停下来仔细思考或笔记,有需要的可以通过微信或是QQ 向老师和同伴寻求帮助。
北京市2014-2015学年高一数学(新人教A版必修3)教案《分层抽样》
分层抽样开篇语我们知道:当总体容量较小时,我们可以用简单随机抽样的方法进行抽样,简单易行,也容易保证抽样时的“均匀”,当总体容量较大时,简单随机抽样就会操作不方便,而且样本的代表性不容易很好,此时我们会选择系统抽样.实际生活中,我们还会遇到一些容量较大,有明显“层”的总体,为了更好的保证样本的代表性,我们考虑使用分层抽样.重难点易错点解析题一:一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ).A.12, 24, 15, 9 B.9, 12, 12, 7 C.8, 15, 12, 5 D.8, 16, 10, 6题二:某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是_______.金题精讲题一:某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是_____.若用分层抽样方法,则40岁以下年龄段应抽取________人.题二:从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示.男女能178278不能2321则该地区生活不能自理的老人中男性比女性约多________人.题三:某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a :b :c =2:5:3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A .15人B .30人C .40人D .45人题四:某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( ).90件 D .80件题五:在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( )A .等于15B .等于310C .等于23D .不确定思维拓展题一:某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且2b=a +c ,则第二车间生产的产品数为( )A .800B .1000C .1200D .1500学习提醒分层抽样是按比例抽样;分析清楚各种比例,就可以较好的完成各类问题.分层抽样讲义参考答案重难点易错点解析题一:D 题二:5.7%金题精讲题一:37; 20 题二:60 题三:D 题四:B 题五:A思维拓展题一:C。
《分层抽样》教学设计
《分层抽样》教学设计分层抽样是人教版必修三第二章第一节的内容,教材在前面的两个课时学习了简单随机抽样和系统抽样后接着讲述的第三种随机抽样方法.一.教学目标1.知识技能目标:(1)理解什么是分层抽样;会用分层抽样方法从总体中抽取样本;(2)通过学习本节知识,进一步提高学生对统计的认识;通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力.2.过程与方法目标:(1)通过探索、研究、归纳、总结,形成科学的知识结构体系,并了解知识之间的内在联系;(2)增强学生数学应用意识和数学审美能力的培养,进一步激发学生学习数学的积极性.3.情感与价值观目标(1)通过学生的自主参与,加强学生对数学的体验,让学生在探索中体会成功的愉悦,提高其学习数学的热情;(2)激励学生勇于自我创新,培养学生的科学探索精神;(3)有意识、有目的的培养学生自主学习的良好习惯与合作交流的团队精神。
二.教学重点与难点教学重点:分层抽样的方法的应用;教学难点:分层抽样方法的合理性与公平性;三.教学方法本节课的课型为“新授课”,但学生已经学习了前面的简单随机抽样和系统抽样,并对统计知识有了一定的了解,所以本节课运用讨论法、阅读指导法、讲授法等从学生的认知规律出发,能充分调动学生学习的积极性的教学方法,并在教学过程中层层设疑,充分调动发挥学生的主体作用,引导学生在自主学习与分组讨论中体会知识的构建,感受知识的无穷魅力.四.教学过程复习引入提出问题概念的形成概念深化反馈练习归纳小结教学环节教学内容师生互动设计意图复习引入通过上面两个课时的学习,我们知道统计中如何科学的抽取样本,以便使样本能更好的反映总体的情况时统计学的关键.前面我们学习了两种常用的随机抽样方法:一、简单随机抽样;二、系统抽样.[问题1]回顾什么是简单随机抽样和系统抽样,他们的优缺点分别是什么?通过教师的提问引导学生一起回顾总结学过的知识,并根据学生回答的情况进行补充总结,使知识更加的系统,并且为下一步新知识的学习打下基础.因为学生对知识的掌握是建立在认知结构的基础上的,因此,新课前的复习回顾既有利于学生知识的系统化,又为学生学习接下来的新知识打下基础.提出问题[思考实例]某校高一学生共有500人,经调查,喜欢数学的学生占全体学生的,不喜欢数学的占,介于两者之间的占,为了考察学生的期中考试的数学成绩,应该采用哪种抽样方法?以划分的小组为单位进行对实例问题的讨论.让学生从具体的问题入手,有利于学生的主动参与,同时也让学生初步接触分层抽样能够解决的实际问题.教学环节教学内容师生互动设计意图提出问题学生们会用前面学过的简单随机抽样(抽签法,随机数表法)、系统抽样法等去尝试.[教师点拨]抽签法操作起来非常的费事,而其他的两种方法考虑不到高一、高二、高三同学体重的不同情况,所以在抽样的时候应该考虑到样本中三个层次的同学应该合理的分配。
高中数学 6.1.3《分层抽样》教案 苏教版必修3
第18课时分层抽样【学习导航】学习要求1.体会分层抽样的的概念及如何用分层抽样获取样本;2.感受分层抽样也是等可能性抽样,它适用于总体由差异明显的几部分组成的;3.简单随机抽样、系统抽样、分层抽样的特点及适用范围。
【课堂互动】自学评价案例1某校高一、高二和高三年级分别有学生1000,800和700名,为了了解全校学生的视力情况,欲从中抽取容量为100的样本,怎样抽样较为合理.【分析】如果在2500名学生中随机抽取100名学生作为样本,或者在三个年级中平均抽取学生组成样本,这样的样本是否合理?能否反映总体情况?由于不同年级的学生视力状况有一定的差异,为准确反映客观实际,不仅要使每个个体被抽到的机会均等,而且要注意总体中个体的层次性,从而使抽取的样本具有良好的代表性. 对于这种容量较大、个体差异较大且明显分成几部分的总体,就考虑用分层抽样来抽取样本.1.分层抽样分层抽样的概念:当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样,这样的抽样方法称为分层抽样(stratified sampling)分层抽样的步骤为:(1)将总体按一定标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样)。
【小结】①分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等可能抽样,它也是客观的、公平的;②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的抽样方法,因此在实践中有着非常广泛的应用.2.【精典范例】例1某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取。
《分层抽样》教案设计-张桂伟
问题1:这6组数据产生差异的原因是什么?预设的答案:抽取样本的方法不同造成差异。
教师引导:对比这6种抽样方法和调查结果,请同学们以小组为单位进行组内反思和组间评价,看看哪组的抽样方法更加合理。
预设的答案:第一组样本中全是男生,第五组的样本中女生偏多,都属于方便样本。
其实,无论是简单随机抽样还是系统抽样,都有可能导致方便样本(男生偏多或女生偏多),所以第二组、第三组的抽样方法也不够合理。
第四组和第六组在抽样是注意到了影响平均身高的因素----性别,这样抽取样本具有合理性。
问题2:从统计数据来看,哪些因素可能影响我们的平问题3:第四组抽取的样本中,男女比例为1:1,第六组抽取的样本中,男女比例为3:2,哪个更加合理呢?预设的答案:第六组的更为合理,因为我们班的男生有30人,女生20人,男女生比例为3:2,按照这个比列抽取了男生6人,女生4人,这样的样本和咱班的实际情况一样,所以更合理。
事实是本班学生实际平均身高169.8 cm,第四组结果为168.9cm,第六组的结果为169.3 cm,显然第六组的结果更接近实际平均值,所以第六组的抽样方法更合理。
问题4:像这样抽取样本的方法叫做分层抽样.那么你能对分层抽样加以描述吗?预设的答案:分层抽样:(1)总体分层,互不交叉;(2)按照比例在各层内独立抽取;(3)将各层取出的个体合在一起.获得定义:阅读教材第61页第三段分层抽样的定义,并背会.分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(分析关键词)问题5:梳理抽样的过程,思考要完成一个分层抽样,有哪些步骤?预设的答案:先根据对总体的了解进行分层,确定比例后,再各层抽取.可分为四步:(1)分层——根据已有信息,将总体分成互不相交的层;(2)定比——根据总体中的个体数N与样本容量n确活动案例2:小组合作讨论以下问题:(上课前已经下发班级学生信息表)(1)在本班选10人,参加对本班数学教师教学方法的测评,应该如何抽取?(2)在本班选10人,参加团委组织的各类学生社团发展规划的研讨活动,应该如何抽取?预设的答案:问题(1)采用分层抽样,全班同学按成绩分层,定比抽取;问题(2)采用分层抽样,全班同学按特长爱好不同分层,定比抽取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:这6组数据产生差异的原因是什么?
预设的答案:抽取样本的方法不同造成差异。
教师引导:对比这6种抽样方法和调查结果,请同学们以小组为单位进行组内反思和组间评价,看看哪组的抽样方法更加合理。
预设的答案:第一组样本中全是男生,第五组的样本中女生偏多,都属于方便样本。
其实,无论是简单随机抽样还是系统抽样,都有可能导致方便样本(男生偏多或女生偏多),所以第二组、第三组的抽样方法也不够合理。
第四组和第六组在抽样是注意到了影响平均身高的因素----性别,这样抽取样本具有合理性。
问题2:从统计数据来看,哪些因素可能影响我们的平
问题3:第四组抽取的样本中,男女比例为1:1,第六组抽取的样本中,男女比例为3:2,哪个更加合理呢?
预设的答案:第六组的更为合理,因为我们班的男生有30人,女生20人,男女生比例为3:2,按照这个比列抽取了男生6人,女生4人,这样的样本和咱班的实际情况一样,所以更合理。
事实是本班学生实际平均身高169.8 cm,第四组结果为168.9cm,第六组的结果为169.3 cm,显然第六组的结果更接近实际平均值,所以第六组的抽样方法更合理。
问题4:像这样抽取样本的方法叫做分层抽样.那么你能对分层抽样加以描述吗?
预设的答案:
分层抽样:(1)总体分层,互不交叉;
(2)按照比例在各层内独立抽取;
(3)将各层取出的个体合在一起.
获得定义:阅读教材第61页第三段分层抽样的定义,并背会.
分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(分析关键词)
问题5:梳理抽样的过程,思考要完成一个分层抽样,有哪些步骤?
预设的答案:先根据对总体的了解进行分层,确定比例后,再各层抽取.
可分为四步:
(1)分层——根据已有信息,将总体分成互不相交的层;
(2)定比——根据总体中的个体数N与样本容量n确
活动案例2:
小组合作讨论以下问题:(上课前已经下发班级学生信息表)
(1)在本班选10人,参加对本班数学教师教学方法的测评,应该如何抽取?
(2)在本班选10人,参加团委组织的各类学生社团发展规划的研讨活动,应该如何抽取?
预设的答案:问题(1)采用分层抽样,全班同学按成绩分层,定比抽取;问题(2)采用分层抽样,全班同学按特长爱好不同分层,定比抽取。
活动案例3:
回顾本节阅读与思考——一个著名的案例(抽样中的泰坦尼克事件),分析预测结果出错的原因是什么.
预设的答案:未考虑总体的结构,只对富人做了调查.这个案例再次说明了分层抽样的必要性与合理性.从这个案例可以总结三点经验:
第一,分层抽样的必要性与合理性;
第二,掌握知识的重要性,使用正确的方法可以节省物力
问题9:结合本课涉及的案例,谈谈你对分层抽样的认识.预设的答案:知道了为什么要进行分层抽样以及分层抽样的概念、步骤.
分层抽样的适用范围.
教师讲解:经过今天学习,在“大数据”的今天,收集数据的方法至此我们有了三种方法——简单随机抽样、系统抽样、分层抽样.。