简述电力系统运行控制目标及其控制自动化

简述电力系统运行控制目标及其控制自动化
简述电力系统运行控制目标及其控制自动化

简述电力系统运行控制目标及其控制自动化

发表时间:2018-06-22T14:16:41.007Z 来源:《电力设备》2018年第5期作者:吕平杰

[导读] 摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。

(身份证号码:33072219870826XXXX 浙江杭州 310000)

摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。虽然,电力自动化技术的应用是一项极为复杂且繁琐的工作,但只要科学运用,势必会提高供电的安全性以及稳定性,同时,还能为电力建设行业的发展创造有利条件,最终为老百姓谋福利。

关键词:电力系统;运行控制;自动化技术;应用

1 电力系统的自动化控制以及它的控制目标

1.1 保证电力系统运行的安全

安全是一切生产的前提。每一个电力企业在电力生产中最常提的口号是“安全第一”。安全,就是要杜绝事故的发生,这是电力企业的头等大事。大家都知道,电力系统一旦发生事故,那将会造成极其严重的后果,轻者造成电气设备不同程度的损坏,严重影响居民的正常用电,同时也会给生产厂家造成成一定的损失;重者更是波及到电力系统覆盖的广大区域,使生产设备受到大规模严重破坏,更会造成人员的伤亡,严重影响到国民经济的健康发展。因此,努力保证电力系统的安全运行是电力企业最重要的任务。

1.2 保证电能符合质量标准

与所有的商品一样,电能也是有一定的质量标准的,通常是指波形、电压和频率三项指标。通常,发电机产生电压的为正弦波,因为整个系统中许许多多的设备在一开始设计的时候都将波形问题进行了充分的考虑,通常情况下,底层用户所获得的电压波形一般也是正弦波。一旦波形不是正弦的,那么电压波形就会有许许多种高次波,这样的电波对于电子设备会产生不利影响,通讯的线路也会有一定的干扰,电动机的效率也会降低,影响正常的操作运行。更为严重的是,这还可能使电力系统发生危险的高次谐波谐振,使电气设备遭到严重破坏。

频率是电能质量标准中要求最严格的一项,频率允许的波动范围在我国是50+0.2Hz(有的国家是±0.1Hz)。使频率稳定的关键是保证电力系统有功功率的供求数量时时刻刻都要平衡。前已说过,负荷是随时变动的,因此,只有让发电厂的有功出力时时刻刻跟踪负荷舶有功功率,随其变动而变动。以往那种调度员看到频率表指示的频率下降之后再打电话命令发电厂增加发电机出力的时代早已进去了。现在调频过程是由自动装置自动进行的。但是负荷如果突然发生了大幅度的变化,超出了自动调频的可调范围,频率还会有较大变化。

1.3 保证电力系统运行的经济性

运行控制在电力系统中,一方面要在意电能质量问题和剧增安全问题,另一方面要将发电成本控制到最低,降低传输损失,从而将整个电力系统的运行成本进行优化。在已经正常运行的电力系统中,调度方案对于其运行经济性有着至关重要的作用。一定要在保证系统的安全的基础上,对于安排备用容量的分布和组合进行整体优化,考虑发电机组的效率和性能,水电厂水头以及燃料种类情况,加上负荷中心距离发电厂的远近等因素,选择一个经济性能最优的电力调度方案。

2电力自动化技术的应用

2.1现场总线技术在电力工程中的的应用

从电力企业现行的发展状况分析,现场总线技术在诸多电力工程中均有所涉及。现场总线技术,引入了数据模型。利用变送器,能够对电量数据进行搜集,发送具体的信号。根据该模型,还可对信号作出处理,最终给出精准的判断。现场总线技术,并非对现场数据或是信息作出分析,更多的是为了有效地控制各类数据。电子工程在日常的活动中,电力装置均有明显的综合性。它将传感器、控制系统、数字通信以及计算机技术集合起来。现场总线技术,可以适应系统以及不同数据提出的变化需求,为信息共享提供诸多的便利。

2.2电网调度技术的自动化

即以计算机为支撑的电网调度系统,可以对电网实际的运行状况作出动态地监控,对设备潜在的故障进行处理,并分析其安全情况。换言之,借助计算机技术处理各类信息,提出针对性的管理方案,使电网系统可以有效地运行。借助电网调度自动化技术,有助于防范和规避电力工程中不同类型的安全事故,同时还可减小电网损耗,将电网损伤降低至最小,使电网可以顺畅地工作。除上述外,电网调度技术同时也能够对某些突发事件进行处置。所以,促进电网调度技术日渐地走向自动化,这是必然的趋势。

2.3变电站技术的自动化

也就是将通讯技术、计算机进行全面地整合,对信息数据作出均衡地处理。同时,也可以对变电站相关信息加以搜集,使变电站设备以及整个电力系统均可完成重组。借助变电站技术,可以适应电网不同程度的建设需求,同时也可以让操作变得更为简单。监控某些数据时,也可以对系统中某些单元模块有无故障作出识别,使其能够在安稳的状态下运行。

2.4主动对象数据库技术在电力工程中的应用

主动对象数据库技术,引入了电力系统本身的监视功能。借助存储技术,结合对象函数,能够对电力工程进行自动化运用。利用主动对象数据库技术,电力工程可以得到较好地监控,增加对数据的输入以及传输速率,为数据管理降低额外的压力。所以,主动对象数据库技术已被视作监控系统中相当有利的主导技术,并受到广泛的认可。

2.5光互联技术在电力工程中的应用

光互联技术,借助电子交换以及电子传输技术,可以对网络作出拓展,同时对编程结构予以重组。该项技术,能够对数据进行采集、分析和控制,让电力系统变得相当的灵活。电容负载,对光互联技术有极大的影响,可以适应不同类型的监控需求。另外,光互联技术同时也能够进行高级应用或是对电网进行分析,为调度员日常的调度工奠定可靠的基础。电力工程中,光互联技术已有较为普遍的运用。它能够提升处理器本身的干涉力,让设备有相当高的抗磁干扰力。同时,电力系统也能够变得更为安全,拥有更完善的功能。可见,将光互联技术引入到电力工程中,有深刻的现实意义。

3电力系统自动化技术的发展趋势

电力系统自动化是我国电力系统的重要发展方向,现如今,我国的电力系统自动化主要体现在发电和配电两个方面。而电力系统自动化技术的未来发展上,还要求对电力系统能够进行远程的监控,并对电力系统的故障进行相应的解决,实现最少人管理甚至无人管理,降

《电力系统运行与控制》报告

电气工程学院电气工程专业

智能电网技术综述 摘要:阐述了智能电网的内涵和特点,总结了智能电网技术的国内外研究现状以及发展智能电网对中国的重要意义,分析了我国发展智能电网的条件,指出了建设智能电网在网络拓扑、通信系统、计量体系、需求侧管理、智能调度、电力电子设备、分布式电源接入等领域需要解决的关键技术问题。 关键词:智能电网;智能调度;节能减排;分布式发电 Survey on Smart Grid Technology Abstract:In this paper the connotation of smart grid is expounded, the present research status of smart grid home and abroad as well as the practical significance of developing smart grid in China are summarized. As a reference for relative researchers, this paper analyzes the conditions to develop smart grid in China, and points out the key technological problems to be solved for the development of smart grid in the fields of power network topology, communication system, metering infrastructure, demand side management, intelligent dispatching, power electronic equipments, distributed generation integration etc. Key words: smart grid;intelligent dispatching;energy-saving and pollutant emission reducing;distributed generation 0引言 近来国际上,特别是在北美和欧洲关于“智能电网”的研究和讨论很热。智能电网是使用健全的双路通信、高级的传感器和分布式计算机的电力传输与分配网络,其目的是改善电力传送和使用的效率、可靠性和安全。常用的英文术语有:Smart Grid,IntelliGrid,Self-Healing Grid,Modern Grid等。这些词具有相似的 内涵,目前使用较多的是Smart Grid。本文使用的“智能电网”与此词相对应[i ii iv]。1智能电网研究的目标和主要特征 1.1智能电网研究的目标 智能电网研究的目标是: 1)实现(以抵御事故扰动为目的)安全稳定运行,降低大规模停电的风险; 2)使分布式电源(DER,含分布式发电、分布式储能和电力用户的需求响应)得到有效的利用; 3)提高电网资产的利用率; 4)提高用户用电的效率、可靠性和电能质量。需要强调的是,驱使人们研究智能电网的,不是电的成本,而是由于缺乏合格电力所造成损失的成本。而通信和信息技术的长足发展已为实现这些目标准备好了良好的技术条件。 1.2智能电网的主要特征 同目前电网的功能相比较,将来智能电网的主要特征是: 1)激励节约用电——向用户提供充分的实时(或分时)电价信息,有许多方案和电价可供用户选择; 2)提供发电及储能——以大量“即插即用”的分布式电源补充集中式发电; 3)使市场化成为可能——末端用户可以积极参与成熟、健壮、很好集成的

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

电力系统运行和控制

考纲 稳态分析计算题从稳态分析出 1.潮流计算 2.稳态运行(本科教材,有功、无功调节) 3.故障分析(简单故障,对称分量法) 4.状态估计(基本概念) 暂态分析 1.同步电机模型(基本概念) 2.稳定性分析 1)主要是暂态稳定(时域法、直接法——基本概念) 2)低频振荡 重点内容 潮流计算 1.等值参数 变压器模型参数 本科教材上册,P23,2-3 变压器的等值电路和参数 变压器中心点接地方式,对应等值电路,有哪些参数,物理意义 本科教材上册,P126,图6-10、图6-11 变压器Y/△-11接法,原变、副边U、I相位关系 见本科教材上册P156,图7-15 输电线路等值电路,序阻抗怎么定义的,影响因素。各序阻抗大小关系,倍数关系。 见本科教材上册P130,6-4节

2.计算方法 1)基本要求 对于一个潮流算法,其基本要求可归纳成以下四个方面 1)计算速度 2)计算机内存占用量 3)算法的收敛可靠性 4)程序设计的方便性以及算法扩充移植等的灵活通用性 2)各种方法及特点 高斯-塞德尔法:优点是原理简单,程序设计十分容易,占用内存非常节省,且每次迭代所需计算量很小。缺点是收敛速度很慢,迭代次数与计算网络节点数密切相关;并且对于病态条件的系统,往往会收敛困难。 牛顿-拉夫逊法:最基本、最重要的一种算法,是其他一些派生算法的基础,具有快速的收敛性和良好的收敛可靠性。 快速解耦法(P-Q解耦):在计算速度、内存占用量及程序设计简单等方面的优异特性,已经使它成为当前使用最为普遍的一种算法。特别对在线计算,作为一种精确的算法,其计算速度更非其他算法所能比拟。 保留非线性算法:采用了更精确的模型,具有良好收敛可靠性、较快的计算速度。 最小潮流法:在处理病态潮流方面具有优越性。 另外, 随机潮流,直流潮流等,见研究生教材上册,P70 3)牛顿-拉夫逊法计算过程,存在问题 ——计算步骤,见本科教材下册,P43~44 ——性能和特点 突出优点是收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代4~5次便可以收敛到一个非常精确的解,且迭代次数与所计算网络的规模基本无关。牛顿法也具有良好的收敛可靠性,对于病态系统均能可靠地收敛。 缺点是牛顿法所需的内存量及每次迭代所需时间均较高斯-塞德尔为多,并与程序设计技巧密切相关。牛顿法的可靠收敛取决于有一个良好的启动初值,如果初值选择不当,算法

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

电力系统调度自动化控制技术探析 温进荣

电力系统调度自动化控制技术探析温进荣 发表时间:2019-07-19T13:42:27.863Z 来源:《基层建设》2019年第13期作者:温进荣 [导读] 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。 广东卓维网络有限公司广东佛山 528200 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。但也正是在这种社会发展的大背景下,我国的用电需求量也在逐步上升。所以保证供电的可靠性和用电安全是电力系统运行中重要的环节。也正是在这种情况下,电力系统调度自动化控制技术被研制并广泛应用,它的出现为电力系统的正常运行提供了良好的技术条件,使用这种技术可以对电网运行信息进行采集、监视和对运行状态进行控制。本文研究了这种技术应用的重要性以及它的突出特点,探讨了应该怎样对这种技术进行改造。 关键词:电力系统;自动化;控制技术 电力自动化控制技术是整个电力系统中必不可少的一项专业技术,它是电力系统能够正常运行的重要保障。电力自动化技术可以帮助调控人员对电力系统进行远程操控,可以监视电网的运行状态以及对它的安全性进行在线分析预控。因此,加强电力系统调度自动化控制技术的研究力度可以有效的提高电网运行水平并减轻调控人员的工作强度,相关的专业人员熟知此项技术,可以有效的提高自己在日常工作中的运行维护水平。 1电力系统调度自动化控制技术应用必要性以及它的功能特点 1.1电力系统调度自动化控制技术的应用必要性 当今时代人们的生活以及社会经济的发展对电力的依赖性越来越大,这也迫切要求电力系统网络迅速发展壮大并安全、优质、经济、可靠运行,但是整个复杂的电力系统只有靠调度自动化控制技术的不断发展应用才能实现对电网的有效监视、判断、分析、遥控(遥调)或自动控制,必须要使电力系统调度自动化控制技术符合目前的实际情况才能够确保电网正常运行供电,所以这就需要电力调度自动化控制系统工作人员不断提升自己的实力对其进行研究和深化应用。 1.2电力系统调度自动化控制技术的功能特点 1.2.1能够对电力网络进行安全分析 自动化控制技术网络分析包括状态估计、调度员潮流、静态安全分析、灵敏度分析等功能,网络分析功能是电网调度自动化控制系统重要功能模块,为调度员提供快速简便的计算分析手段,是调度运行值班必不可少的工具,在快速、准确计算的同时,有效地协助调度员及时掌握电网危险点,以便及时采取预控措施,可以有效减少事故的发生。 1.2.2变电站集中监控功能应用 变电站集中监控功能是监控员实时掌控所辖变电站设备运行工况的主要手段。实现设备运行信息的分类、分站、分电压等级的汇总与现实,并通过颜色、声音、文字等多种手段进行提示预警及远方遥控功能。能够快速、准确地向监控员提供当前变电站真实运行情况及故障异常情况下设备遥测、遥信信息,能够有效提升监控工作效率,缓解监控员工作压力,使监控功能成为调度的“眼睛和耳朵”,进一步提升变电站集中监控安全运行水平。 1.2.3自动电压控制功能应用 自动电压控制(A VC)应用是在满足电网安全稳定运行前提下,保证电压和功率因数合格,并尽可能降低系统因不必要的无功潮流引起的有功损耗。A VC从网络分析应用(PAS)获取控制模型、从电网稳态监控应用(SCADA)获取实时采集数据并进行在线分析和计算,对电网内各变电站的有载调压装置和无功补偿设备进行集中监视、统一管理和在线控制,实现全网无功电压优化控制闭环运行。 1.2.4能够有效的降低运行成本 电力系统调度自动化控制技术在保证电力系统能够安全运行的基础上,还能够保证整个系统在运行时的经济实用,保证电力有效性,防止浪费,从而节省了成本。 2电力系统调度自动化控制技术的应用 随着电力系统科技迅猛的发展,电力系统调度自动化控制技术也发生着日新月异的变化,目前我国的电力系统已经进入了一个全新的发展阶段,为适应“大运行”体系建设需求,电力公司非常注重自动化控制技术的研发及使用,并依托此技术实现省、地、县一体化运行,下面就让我们对以下几种不同阶段的自动化技术的使用有一个深入的了解。 2.1电力调度自动化控制系统的应用 此种电力自动化控制技术的具体应用就是在电力系统运行时对其进行数据采集,然后再通过各分布点的服务器对数据进行处理,并且根据这些数据分配所要负责的工作,在该技术下,电力系统会非常流畅的运行,在运行过程中很少出现事故,而且它的通用性比较广泛适应能力比较强,会使电力系统的运行更加稳定,更安全,因此在电力系统应用中十分受欢迎。 2.2能量管理系统的应用 该种系统的应用好处就是它具有很强的实时性以及开放性,这种系统的运行主要用系统中的卫星参与进行实时检测,从而保证运行的时效性。除此之外,人还可以与系统进行互动,以便实现对系统的控制,另外,此系统的其他几个功能也能够帮助电力系统更好的工作更好的运行,目前此种能量管理系统多应用于广州北京等几个城市。 这种管理系统是南京一家企业研制出来的,这种应用的具体操作以及它的特点结合了以上两种系统的优点,它既能够对数据进行收集并且整理,又可以对电力系统的工作人员进行培训,调控整个运行过程。这些是其他系统不能够做到的,除了这些特点,它的技术以及性能也比较突出,所以在使用时受到了广大电力企业的喜爱。 2.3智能电网调度控制系统的应用 智能电网调度控制系统,配置实时监控与分析、调度计划、调度管理及省地一体化、地县一体化系统应用功能,横向上,通过统一的基础平台实现三类应用的一体化运行;纵向上,通过基础平台实现省、地、县调系统一体化运行和电网模型、参数、画面的源端维护、全网共享。这是目前为适应“大运行”体系建设并全国推广使用的新型调度自动化控制技术。综合上面的内容,以上几种技术是我国电力调度自动化控制系统采用的比较广泛的,使用效果比较好的。除了这些国内的技术,一些国外的技术也具有极好的使用效果。所以在现在信息

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

电力系统运行和控制

考纲 稳态分析计算题从稳态分析出1. 潮流计算 2.稳态运行(本科教材,有功、无功调节) 3.故障分析(简单故障,对称分量法) 4.状态估计(基本概念) 暂态分析 1.同步电机模型(基本概念) 2. 稳定性分析 1)主要是暂态稳定(时域法、直接法——基本概念) 2)低频振荡 重点内容 潮流计算 1. 等值参数 变压器模型参数 本科教材上册,P23,2-3 变压器的等值电路和参数变压器中心点接地方式,对应等值电路,有哪些参数,物理意义 本科教材上册,P126,图6 —10、图6 —11 变压器Y/ △ -11接法,原变、副边U I相位关系见本科教材上册P156,图7—15 输电线路等值电路,序阻抗怎么定义的,影响因素。各序阻抗大小关系,倍数关系。 见本科教材上册P130,6 —4节 2.计算方法 1)基本要求 对于一个潮流算法,其基本要求可归纳成以下四个方面 1)计算速度

2)计算机内存占用量 3)算法的收敛可靠性 4)程序设计的方便性以及算法扩充移植等的灵活通用性 2)各种方法及特点 高斯-塞德尔法:优点是原理简单,程序设计十分容易,占用内存非常节省,且每次迭 代所需计算量很小。缺点是收敛速度很慢,迭代次数与计算网络节点数密切相关;并且 对于病态条件的系统,往往会收敛困难。 牛顿-拉夫逊法:最基本、最重要的一种算法,是其他一些派生算法的基础,具有快速的收敛性和良好的收敛可靠性。 快速解耦法(P- Q解耦):在计算速度、内存占用量及程序设计简单等方面的优异特性, 已经使它成为当前使用最为普遍的一种算法。特别对在线计算,作为一种精确的算法, 其计算速度更非其他算法所能比拟。 保留非线性算法:采用了更精确的模型,具有良好收敛可靠性、较快的计算速度。 最小潮流法:在处理病态潮流方面具有优越性。 另外, 随机潮流,直流潮流等,见研究生教材上册,P70 3)牛顿-拉夫逊法计算过程,存在问题 ――计算步骤,见本科教材下册,P43?44 ――性能和特点 突出优点是收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代4?5次便可以收敛到一个非常精确的解,且迭代次数与所计算网络的规模基本无关。牛顿法也具有良好的收敛可靠性,对于病态系统均能可靠地收敛。 缺点是牛顿法所需的内存量及每次迭代所需时间均较高斯-塞德尔为多,并与程序设计 技巧密切相关。牛顿法的可靠收敛取决于有一个良好的启动初值, 有可能不收敛 如果初值选择不当,算法 或收敛到一个无法运行的解点上。解决这个问题的办法可以先用高斯-塞德尔发迭代1?2次,以此迭代结果作为牛顿法的初值;也可以先用直流法潮流求解一次以求得一个较好的角度初值,然后转入牛顿法迭代。 4)潮流计算与状态估计的关系

电力系统自动化

实验一励磁控制基本特性实验 一、实验目的 1)加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。 2)了解微机励磁调节装置的基本控制方式。 3)掌握励磁调节装置的基本使用方法。 二、原理与说明 同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。 图1-1励磁控制系统示意图 TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调

差特性。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。 无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。 三、实验项目与方法 3.1不同α角对应的励磁电压测试 实验准备 1)将发电机组电动机三相电源插头与机组控制屏侧面“电动机出线”插座连接,发电机 三相输出电压插头与“发电机进线”插座连接,发电机励磁电源插头与“励磁出线”插座连接。 2)检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。 3)合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调 速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态! 4)检查调速、同期、励磁三个装置液晶显示屏显示和面板指示灯状态,正常情况下,

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

电力系统自动化完整版

1. 同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能的小,其瞬时最大值一般不宜超过 1~2 倍的额定电流( 2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。 9. 同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组 G 已经加上了 励磁电流,其端电压为 UG,调节待并发电机组 UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。 10. 发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。 11. 自同期并列:未加励磁电流的发电机组 12. 脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相角差。但 是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。 13. 励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈控制系统。 14. 同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3)提 高同步发电机并联运行的稳定性。 15. 为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是指电力 系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。 16. 对励磁系统的基本要求:(一)对励磁调节器的要求:O 1具有较小的时间常数,能 迅速响应输入信息的变化;② 系统正常运行时,励磁调节器应能反应 发电机电压高低,以维持发电机电压在给定水平;O 3励磁调节器应能合理分 配机组的无功功率;④ 对远距离输电的发电机组,为了能在人工稳定区域运 行,要求励磁调节器没有失灵区;◎励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求: ①要求励磁功率单元有足够的可靠性并具有一定的调节容量;② 具有足够的励磁顶值 电压和电压上升速度。 17. 同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁机励磁 系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统 18. 励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组间无功电 流的合理分配。 19. 励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比较、综 合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发单元相位控制所需的控制电压。移相触发单元是励磁调节器的输出单元,根 据综合放大单元送来的综合控制信号U SM的变化,产生触发脉冲,用以触发

《电力系统自动化》1_3

电力系统自动化(A) 一.填空 1.发电机准同期并列的实际条件为(1)相角差在5o以,(2)压差在5%~10%(3)频差在0.2~0.5%。如果发电机并列时满足理想准同期条件,即合闸瞬间,发电机电压和系统电压幅值相等、频率相等、相角差为零,则不会产生冲击电流。 2.合闸逻辑部分中,怎样判断滑差合格t恒定越前时间>t恒定越前相角。3.并联运行机组间无功负荷的合理分配取决于发电机外特性。可以利用自动调压器的调差接线达到这一目的。 4.励磁系统中,对励磁功率单元的要1.足够的调节容量2.较大的顶值电压和电压上升速度。 5.电压响应比是说明发电机转子磁场建立快慢的粗略参数。6.理想灭磁过程要求发电机转子电压保持最大值不变,放电电流直线下降。 7.自励式励磁机比他励式励磁机时间常数大。8.经济负荷分配的原则是等耗量微增率。

9.积差调频的调频方程式为 0=?+???c p k dt f 。 10.EMS 是Energy Management System 。DMS 是Distribution Management System 。SCADA 是Supervisory Control And Data Acquisition 。RTU 是Remote Terminal Unit 。 二.简答题: 1.什么是滑差周期?对它有什么要求 答:滑差周期:并列断路器两侧发电机电压与系统电压之间相角差变化的周期(或变化360度所用的时间)。我国在发电厂进行正常人工手动并列操作时,一般取滑差周期在10~16秒之间。 2.什么是发电机的单位调节功率? 答:频率变化1赫兹,发电机输出有功功率的变化量,称为发电机的单位调节功率。 3.画出并说明发电机自并励励磁方式的原理接线图。

浅谈电力系统自动化中的远动控制技术研究

浅谈电力系统自动化中的远动控制技术研究 发表时间:2018-06-15T10:02:08.890Z 来源:《电力设备》2018年第5期作者:韩振峰俞隆[导读] 摘要:远动控制技术是自动化系统实际运行过程中的关键点。自动化系统运行中,远动控制技术负责准确判断以及定位故障点,为快速有效地解决问题提供依据。 (国网山东省电力公司检修公司山东济南 250000) 摘要:远动控制技术是自动化系统实际运行过程中的关键点。自动化系统运行中,远动控制技术负责准确判断以及定位故障点,为快速有效地解决问题提供依据。因而,为了保证电力系统自动化运行平稳安全,必须关注远动控制技术的应用。本文将对远动控制技术的概念及实现原理进行简单了解,并重点对其在电力系统自动化中的应用进行深入探讨。 关键词:电力系统;自动化;远动控制技术 随着电网规模的不断扩大,对于电力系统的运行要求越来越高,在这种情况下,远动控制技术得到了广泛的应用,同时也为全面实现智能化、自动化打下了坚实的基础。社会中各个行业的发展都离不开用电,电力系统已经成为了社会生产生活中不可或缺的一部分。电力系统具有复杂多变的特点,电力系统的自动化运行,主要依赖于计算机和通信技术以及远动控制技术等综合应用。电力系统自动化功能的实现是提高电网供电安全性的基础,为此,必然需要关注各个技术中的自动检测和调节、自动安全保护和传输以及控制等功能。其中,远动控制技术的应用值得探究。通过对远动控制技术的深入分析,能够有助于我们将其更好的应用于电力系统各个运行环节。 1远动控制技术 1.1远动控制 远动控制作为自动控制领域的重要环节,是以通讯技术为基础,对远程的设备进行监视和控制,能够实现实时测量、远程信号、远程控制和远程调节等多项功能。在电力系统中,远动控制技术的应用是为了使调度实现对辖区内发电厂及变电站的集中控制管理。远动控制系统主要是由远动装置和应用程序组成,能够实现下列三项功能: (1)采集所有的相关设备数据及报文,并向这些设备传达控制指令。 (2)预处理传输的报文。 (3)通信功能。具体包括通道运行状况的自检、通道的自动切换、选择不同的通信规约等。 1.2远动控制的实现原理 远动控制技术主要是为了实现“四遥”,即遥测、遥信、遥控及遥调。远程控制技术作为连接变电站、发电厂与调度之间的桥梁,是相关信息传输的重要通道,控制系统主要包括集中监视和集中控制两个模块,其中集中监视即遥测和遥信功能,这一模块的实现的功能是数据采集站、厂将所需的运行参数和状态按照一定的规约上传到调度中心,为控制系统提供决策依据,当系统出现故障时,可以及时发现并解决,最大限度的保障系统的正常运行;集中控制模块是实现遥控和遥调功能,具体是指调度中心将相关操作命令(改变运行状态、修改设备运行参数)发到管辖站。远动控制技术的广泛应用,在保障电力系统运行效率及质量的前提下,能够有效地降低人力、物力成本。 2远控技术在电力系统自动化中的应用 在电力系统自动化的应用过程中,远程控制的实现需要多方面技术作为基础,概括起来主要包括数据采集技术、信道编码技术和通讯传输技术。下面我们对这三方面技术的应用进行简单探讨。 2.1数据采集技术的应用 数据采集是将外部信号采入计算机,并加以处理,最后输出。下图1为数据采集的流程图: 数据采集技术是信息科学的一个重要分支,主要是负责研究信息数据的采集、存储、处理及控制等。在电力系统监控系统中,监控分站的主要任务之一就是采集它所连接传感器送来的模拟量和开关量信息,转换为数字信号后再收集到计算机扑以显示、处理、传输和记录,这一过程即为数据采集。数据采集的成套设备被称为数据采集系统,可以对运行现场的相关模拟量(如压、电流、温度、压力、流量、位移等)进行采集、量化为数字量,以便于终端计算机的存储、处理、显示或打印。这一系统是计算机与运行现场联系的重要桥梁,是获取远动控制相关数据的重要途径。 在电力系统运行过程中,数据采集技术的关键是变送器及A /D转换技术。在系统运行过程中,鉴于设计及调试需求,其处理的信号主要是低于5V的电平信号,但是在电力系统中,相关的运行设备其工作电压都比较高,为了保证数据采集的准确可靠性,就需要利用变送器对照这些设备的相关运行参数进行转换,即将各种不同等级的电压、电流转换为合理的TTl电平信号。由于变送器采集的信号为模拟信号,为此还需要利用A /D转换技术将其转换为数字信号,以便于进一步对对遥信信息进行编码,对遥测信息进行采集。 2.2信道编码技术的应用 信道编码作为电力自动化系统的重要组成部分,其目的是对数码流进行一定的处理,使的整个系统具有一定的纠错能力和抗干扰能力,最大限度的避免码流传送中误码的发生。 通信信道是信息传输的重要载体,远控系统能够利用通信信道将运行现场采集到的信息上传至调度中心,由后台系统对其进行分析和解读。在信息传输过程中,为了保证信道的抗干扰能力,首先要做好信号的编码和译码,这一技术可以简单的理解为对数据信息进行编写、翻译和传输,目的是为了保证系统采集到的数据在传输过程中不会受到外界因素的干扰。对于电力自动化系统,在信道编译码过程中,通常情况下,利用线性分组码,能够增强抗干扰性。同时,还应该结合循环检错法、检错重发法、前后纠错法、反馈重发法对相关的信息进行检验,进而保证传输的顺利,避免出现差错。

电力系统自动化论文

新疆农业大学 课程论文 题目: 变电站遥视技术在电力系统自动化中的应用课程: 电力系统自动化 姓名: 胡旭涛 专业: 电气工程及其自动化 班级: 电气072 学号: 063736210 指导教师: 石砦职称: 讲师 20010年11月18 日

变电站遥视技术在电力系统自动化中的应用 作者:胡旭涛指导老师:石砦 摘要:变电站的遥视技术系统融合了网络视频和数据采集两大主要功能,本文介绍介绍当前无人值班变电站遥视系统的具体情况。此项技术为集控站的调度人员更好地掌握无人值班变电站的运行状况提供了一种新的技术,可确保变电所综合自动化系统安全可靠运行,充分发挥综合自动化系统的功能和作用。 关键词:变电站,电力系统自动化,监控系统 The unmanned substations remote viewing system of specific situation Author:Hu Xutao Academic advisor: Shi Zhai Abstract:This paper describes the unmanned substations remote viewing system of specific situation. The technology is collect control station of dispatching personnel to better understand the operation status of unmanned substations provides a new technology, which can ensure substation integrated automation system, give full play to the safe and reliable operation of the integrated automation system function and role[10]. Key words: dispatching personnel, the integrated automation system, viewing system 引言:变电站的遥视技术系统融合了网络视频和数据采集两大主要功能,集遥视系统、安全保卫系统、消防系统、环境监测系统和动力监测系统五大功能子系统于一身,构建多级监控网络系统构架,各级用户都能够实时、直接地了解和掌握其下属变电站的情况。一旦变电站内部发生安全或者设备数据的报警,系统可对发生的情况及时作出反应,并可通过系统中的调度视频会议功能,及时进行可视化调度处理,便于应急指挥,摆脱了传统系统相互独立、各自应用的非智能化模式,实现变电站多层次、立体化的安防自动化系统[1]。 1系统设计原则 遥视系统的设计原则是:建立以变电站为对象,以监控中心来实施监视和控制,并服务于各级主要生产管理部门的多级视频图像监控网络,并辅以适当的警戒功能以实现变电站“五遥”,为变电站实现真正的无人值守创造条件。在满足需要的前提下,保证系统的稳定可靠,节省投资,使系统发挥良好的经济效应。 1.1 可靠性 硬件可靠性:系统采用高性能的工业级设备,保证硬件的7×24小时不间断运行。软件可靠性:监控操作系统采用Windows操作系统,具有良好的稳定性。监控图像上通过软件叠加时间和地点防止非法篡改录像资料。供电可靠性:图像监控设备由UPS供电,在市电电压波动的情况下仍能够提供稳定的交流电压。用户管理用户等级管理和密码管理相结合,不同的操作人员具有不同的权限,禁止越权操作。用户操作有记录,系统过滤用户的错误操作。系统自检测与自恢复:前端系统可以启动自运行,无需现场人员维护。系统通过多种方式监视所有工作站和编码站的运行,并在发生故障时及时报警与恢复,保证系统

电力系统安全运行中负荷控制技术的研究与分析

龙源期刊网 https://www.360docs.net/doc/4c5709243.html, 电力系统安全运行中负荷控制技术的研究与分析 作者:董敏胡国顺 来源:《环球市场》2017年第12期 摘要:在电力网络迅速发展的今天,对我国电力系统安全运行的控制技术进行分析,能够提高我国电力系统安全控制的质量,提高电力输送的安全性,保证国家经济和人民生活不受影响。本文从三个方面对电力系统安全运行的控制技术进行深入分析,为电力系统的安全控制技术提供相应的意见,希望本文的分析能为以后的具体工作起到实际的参考作用。 关键词:电力系统;安全运行;控制技术; 1、电力系统负荷控制技术的探究 1.1电力系统负荷运行故障分析 电力系统运行过程中,由于受到诸多因素的影响,所以在先关的故障方面也比较严重,其中在电源因素的影响上,主要会造成电力负荷管理终端的GPRS掉线。终端系统电源不能够提供无线通信规模块瞬间大电流,这样就使得电压大幅下降对相关电力器件的正常运行就有着很大的影响。另外在网络影响因素层面会造成电力负荷管理终端掉线,在终端GPRS连接以及激活分组数据协议后,在定时超时的情况下先会进入到准备状态,然后就会进入到空闲状态,最后则会造成终端掉线。还有一个因素就是由于GPRS移动网络在信号上不佳也会使得覆盖面效果不能良好呈现。 除此之外,电力负荷系统的运行故障由于网络基站的业务量比较大,所以就需要网络加以管理,这在系统数据的通信方面就会受到运营商的限制。还有是在无线模块的优劣以及天线层面的因素上也会对运行系统造成影响。 1.2电力系统负荷控制技术类型分析 电力负荷控制技术在类型上是多方面的,其中的工频电力负荷控制技术主要是将配电网作为重要传输的渠道,在技术的应用过程中则是把工频信号发射机在每个变电站中进行装设,并要能结合控制中小传送信号,在电源电压过零点前二十五度产生畸变,然后再返送到lOkv侧传输给这一变电站的低压侧,从而就能够实现用户侧负荷的控制目标。而在无线电力负荷控制技术层面,则是通过中转站以及无线电台实施的无线电信息传输,这样就能达到信息交换的目的,通过这一方法也能够对电力的负荷控制技术得到作用的发挥。

相关文档
最新文档