中国地质大学网络教育《概率论与数理统计》模拟题

合集下载

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)《概率论与数理统计》模拟题一.单项选择题1. 掷一枚质地均匀的骰子,则在出现偶数点的条件下出现大于2点的概率为( ). A. 1/3 B. 2/3 C. 1/6 D. 3/62. 设,A B 为两随机事件,且A B ?,则下列式子正确的是( ). A. ()()P A B P B += B .()()()P AB P A P B ==C.()|()P B A P B = D. ()()()()()P B A P B P A P B P AB -=-=-3. 一批产品中有10%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为 ( ) A. 0.20B. 0.30C. 0.38D. 0.544. 设随机变量X 的分布律为,,2,1,2}{P N k Nak x ===则常数a 等于 ( ) A. 1 B. 2 C. 3 D. 4 5. 设随机变量X 与Y 相互独立,它们的概率分布依次为则下列各式正确的是 ( ) A. 1{}4P X Y ==B. {}0P X Y ==C. 1{}2P X Y ==D. {}1P X Y ==6. A 、B 为两个事件,则)(B A P -= ( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P -7. 设A 与B 相互独立,3.0)(=A P ,4.0)(=B P ,则=)(B A P( ) A .0.2B .0.4C .0.7D .0.88. 任意抛一个均匀的骰子两次,则这两次出现的点数之和为7的概率为() A .363 B .364 C .365 D .3669. 某一随机变量的分布函数为()4x xa be F x e +=+,则F (0)的值为()A. 0.2B. 0.5C. 0.25D. 都不对10. 设随机变量X 服从参数为3的指数分布,其分布函数记为)(xF ,则=)31(F ( ) A .e31B .3e C .11--e D .1311--e二.填空题1. A 、B 为两事件,6.0)(=B A P ,3.0)(=A P ,6.0)(=B P ,则=-)(A B P 。

概率论与数理统计阶段性作业31

概率论与数理统计阶段性作业31

中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业3(共 4 次作业)学习层次:专升本 涉及章节:第4章1.若随机变量X 的概率分布为求E (X )和D (X )。

2.某射手每次命中目标的概率为0.8,连续射击30次,求击中目标次数X 的期望和方差。

3. 设离散型随机变量X 仅取两个可能的值2121x x x x <,而且和, X 取1x 的概率为0.6, 又已知,24.0)(,4.1)(1==X D X E , 则X 的分布律为( )。

.0.40.6 (D) ,0.40.61 (C) ,0.40.621 (B) ,4.06.010 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b an n A )(4.对于任意两个随机变量()()()X Y E XY E X E Y =、,若,则( )。

() ()()(). () ()()(). () . () .A D XY D X D YB D X Y D X D YC X YD X Y =+=+与独立与不独立5.若随机变量X 的分布律为求E (X )、E (X 2)、E (3X 2+5)。

6.盒中有3个白球和两个黑球,从中任取两球,求取到的白球数X 的期望。

7.设随机变量X 的分布密度为⎩⎨⎧≤>=-.0,,0;0,)(x x Axe x f x (1)求系数A ;(2)求随机变量X 落在区间)1,0(内的概率;(3)求随机变量X 的分布函数;(4)求随机变量X 的数学期望与方差。

8.设随机变量X 的概率密度为:⎪⎩⎪⎨⎧≤≤-<≤-+=其它 ,010 ,101 ,1)(x x x x x f ,求)(),(X D X E 。

9.若随机变量X 服从参数为θ1的指数分布,求E (X )和D (X ).10.设市场对某商品的需求量X (单位:吨)是一个服从[2,4]上的均匀分布的随机变量,每销售一吨商品可赚3万元,但若销售不出去,每吨浪费1万元,问应组织多少货源,才能取得最大收益?参考答案1.若随机变量X 的概率分布为求E (X )和D (X )。

地大《概率论与数理统计》在线作业一答案

地大《概率论与数理统计》在线作业一答案

地大《概率论与数理统计》在线作业一-0008试卷总分:100 得分:0一、单选题(共25 道试题,共100 分)1.试判别下列现象是随机现象的为( )A.标准大气压下,水温超过100℃,则从液态变为气态B.在地球表面上,某人向空中掷一铁球,铁球落回地球表面C.掷一颗骰子出现的点数D.正常情况下,人的寿命低于200岁正确答案:C2.产品为废品的概率为0.005,则10000件产品中废品数不大于70的概率为()。

A.0.7766B.0.8899C.0.9977D.0.7788正确答案:C3.A.AB.BC.CD.D正确答案:B4.A.AB.BC.CD.D正确答案:D5.炮战中,在距离目标250米,200米,150米处射击的概率分别为0.1, 0.7, 0.2, 而在各处射击时命中目标的概率分别为0.05, 0.1, 0.2。

任射一发炮弹,则目标被击中的概率为()。

A.0.841B.0.006C.0.115D.0.043正确答案:C6.A.AB.BC.CD.D正确答案:B7.A.AB.BC.CD.D正确答案:D8.某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里恰好有10辆发生事故的概率是()A.0.0008B.0.001C.0.14D.0.541正确答案:A9.A.AB.BC.CD.D正确答案:D10.A.AB.BC.CD.D正确答案:B11.产品有一、二等品及废品3种,若一、二等品率分别为0.63及0.35,则产品的合格率为()。

A.0.63。

概率论与数理统计阶段性作业41

概率论与数理统计阶段性作业41

中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业4(共 4 次作业) 学习层次:专升本 涉及章节:第6章 --第8章1.),(~2σμi N X ,1,2,,10,i i μ= 不全等.试问1021,,,X X X 是简单随机样本吗?为什么?2.设2~(,)X N μσ,10,,2,1 =i .试问1021,,,X X X 是简单随机样本吗?为什么?3.设总体X 服从二点分布),1(p B ,p x P ==)1(其中p 是未知数,54321,,,,X X X X X 是从中抽取的一个样本.试指出在21X X +,}{min 51i i X ≤≤,p X 25+,215)(X X +,13+X ,44-X 中哪些是统计量,哪些不是统计量,为什么?4.对以下一组样本值,计算出样本平均值和样本方差:54,67,68,78,70,66,67,70,65,69.5.设车间生产一批产品要估计这批产品的不合格率p ,为此随机地抽取一个容量为n 的子样n X X X ,,,21 .用A 表示第i 次抽样为不合格品,求事件A 的概率p 的矩估计量。

6.设总体X 的期望)(X E 、方差)(X D 均存在, n X X X ,,,21 是X 的一个样本,试证统计量:(1)212114341),(X X X X +=ϕ; (2)212123231),(X X X X +=ϕ;(3)212138583),(X X X X +=ϕ.都是)(X E 的无偏估计,并说明哪个有效。

7.随机地从一批钉子中抽取16枚,测得其长度(以厘米计)为2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11。

设钉长服从正态分布.(1)若已知σ=0.01厘米;(2)若σ未知,分别求均值μ的置信度为90%的置信区间。

8.测量一孔直径六次,得到直径来均值495x来方厘米,样本方差=.120.00051S=平方厘米,设孔径服从正态分布,试求孔径真值的范围。

概率论与数理统计

概率论与数理统计

概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A += 0.5 。

2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()= 0.4 。

3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)= 0.7 。

4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。

则{}B C A )(P += 0.9 。

5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。

6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 12/35 。

7、袋中有4个白球,10个红球。

甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。

则甲取出的是白球,乙取出的是红球的概率是__________________。

8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 15% 。

9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。

则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。

10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。

则订甲报而不订乙报的住户的百分比(概率)是________。

11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。

又已知95)B A P(=。

则)(A P =__________。

概率论与数理统计期末考试模拟检测题03(含答案)

概率论与数理统计期末考试模拟检测题03(含答案)

概率论与数理统计期末考试模拟检测题03(含答案)一、填空题(每题5分)1、甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6,0.5。

现已知目标被命中,则它是甲射中的概率为( )。

2、设随机事件,A B 及其和事件A B ⋃的概率分别为0.4,0.3和0.6。

若B 表示B 的对立事件,那么积事件AB 的概率()P AB 为( )。

3、已知连续随机变量X 的概率密度函数为2211()xx f x e π-+-=,则X 的数学期望为( ),X 的方差( )。

4、若随机变量X 服从均值为2,方差为2σ的正态分布,且{24}0.3P X <<=,则{0}P X <=( )。

5、设由来自正态总体2(,0.9)XN μ容量为9的简单随机样本得样本得样本均值5X =,则未知参数μ的置信度为0.95的置信区间是( )。

二、选择题(单选,每题5分)1、对于任意二事件,A B ,同时出现的概率()0P AB =,则( ) (A ),A B 不相容(相斥) (B )AB 是不可能事件 (C )AB 未必是不可能事件 (D )()0,()0P A P B ==或2、设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( ) (A )()()P A B P A += (B )()()P AB P A =(C )()()P B A P B = (D )()()()P B A P B P A -=-3、已知随机变量X 服从二项分布,且 2.4, 1.44EX DX ==,则二项分布的参数,,n p 的值为( )(A )4,0.6n p == (B )6,0.4n p == (C )8,0.3n p == (D )24,0.1n p ==4、对于任意两个随机变量,X Y ,若()E XY EX EY =⋅,则( ) (A )()D XY DX DY =⋅ (B )()D X Y DX DY +=+ (C ),X Y 独立 (D ),X Y 不独立5、设随机变量X 的概率密度为()x ϕ,且()()x x ϕϕ-=,()F x 是X 的分布函数,则对任意实数a ,有( )(A )0()1()aF a x dx ϕ-=-⎰ (B )01()()2aF a x dx ϕ-=-⎰(C )()()F a F a -= (D )()2()1F a F a -=-三、计算题(每题10分)1、已知离散随机变量X 的概率分布为:{1}0.2,{2}0.3,{3}0.5P X P X P X ======。

《概率论与数理统计》练习题库及答案

《概率论与数理统计》练习题库及答案

一、填空题1、连续型资料的整理采用_组距式__ 分组法;间断性资料的整理采用单项式__ 分组法。

2、方差分析的三个前提条件是 正态性 、 可加性 、 和 同质性 。

3、随机变量x ~N (μ,σ2),通过标准化公式u = (x-_μ)/_δ 。

可将其转换为u ~N (0,1)。

4、在某地随机抽取13块样地,调查得到每块样地的玉米产量如下(单位:斤):1080、 750、1080、850、960、1400、1250、1080、760、1080、950、1080、660,其众数为 1080 ,中位数为 1080 。

5、多重比较的方法很多,常用的有 LSD 和 LSR 两种,后者又包括 SSR 法 和 q 法。

6、直线回归方程的一般形式为 ;其中 a 是回归截距, b 是回归系数。

7、χ2检验主要有三种用途,即同质性检验、 适合性 和 独立性 。

8、方差分析应该满足三个基本假定,正态性 、 可加性 、 和 同质性 。

若上述假定不能满足,则须采取数据转换,常用的转换方法有对数法 、平方根法和 反正弦法 。

9、在随机变量服从的正态分布中,当µ= 0 ,σ= 1 时,则为标准正态分布。

10、试验设计的三大基本原则是 随机 、 重复 和 局部控制 。

11、相关系数的取值范围是 【-1,1】 ;决定系数的取值范围是 【0,1】 。

12、随机抽取256个海岛棉和陆地棉杂交种单株,获得单铃籽棉平均重3.01克,标准差为0.27克,推断总体平均数的0.95置信区间 2.977~3.04。

13、两相关变量x 与y ,其SP xy = 0.36,SS X = 0.2, SS Y = 0.8,则其回归系数为 1.8 。

14、对于总观察数n 为500的2⨯2列联表的资料做χ2检验,其自由度为 1 。

15、设x 服从正态分布N(4,16),则P(x≥-1)等于 0.87493 。

16、在一组数据中,如果一个变量10的离均差是2,那么该组数据的平均数是 8 。

19秋地大《概率论与数理统计》在线作业二-0008参考答案

19秋地大《概率论与数理统计》在线作业二-0008参考答案

地大《概率论与数理统计》在线作业二-0008试卷总分:100 得分:100一、单选题(共25 道试题,共100 分)1.市场供应的某种商品中,甲厂生产的产品占50%,乙厂生产的产品占30%,丙厂生产的产品占20%,甲、乙、丙产品的合格率分别为90%、85%、和95%,则顾客买到这种产品为合格品的概率是()A.0.24B.0.64C.0.895D.0.985答案:C2.A.DB.CC.BD.A答案:C3.现抽样检验某车间生产的产品,抽取100件产品,发现有4件次品,60件一等品,36件二等品。

问此车间生产的合格率为()A.96﹪B.4﹪C.64﹪D.36﹪答案:A4.某单位有200台电话机,每台电话机大约有5%的时间要使用外线电话,若每台电话机是否使用外线是相互独立的,该单位需要安装()条外线,才能以90%以上的概率保证每台电话机需要使用外线时而不被占用。

A.至少15条B.至少14条C.至少13条D.至少12条答案:B5.设一百件产品中有十件次品,每次随机地抽取一件,检验后放回去,连续抽三次,计算最多取到一件次品的概率()A.0.972B.0.78C.0.45D.0.25答案:A6.把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为()。

A.8/9B.2/3C.1/9答案:C7.正常人的脉膊平均为72次/分,今对某种疾病患者10人测其脉膊为54,68,77,70,64,69,72,62,71,65 (次/分),设患者的脉膊次数X服从正态分布,则在显著水平为时,检验患者脉膊与正常人脉膊( )差异。

A.无B.有C.不一定D.以上都不对答案:B8.A.DB.CC.BD.A答案:B9.一部件包括10部分。

每部分的长度是一个随机变量,它们相互独立且具有同一分布。

其数学期望为2mm,均方差为0.05mm,规定总长度为20±0.1mm时产品合格,则产品合格的概率为()。

A.0.636B.0.527C.0.473D.0.364答案:C10.设随机变量X在区间(a,b)的分布密度f(x)=c,在其他区间为f(x)=0,欲使变量X服从均匀分布则c的值为( )A.b-aB.a-bC.1/(b-a)D.0答案:C11.设X,Y为两个随机变量,已知cov(X,Y)=0,则必有()。

概率论与数理统计-模拟题

概率论与数理统计-模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i =1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

概率论与数理统计综合测试2

概率论与数理统计综合测试2

中国地质大学(武汉)远程与继续教育学院概率论与数理统计课程综合测试2 学习层次:专升本 时间:90分钟一、单项选择题(每小题4分,共32分)1.从装有3个红球和2个白球的袋中任取两个球,记=A “取到两个白球”,则A =( )()A 取到两个红球 ()B 至少取到一个白球 ()C 没有取到白球 ()D 至少取到一个红球2.某人射击,中靶的概率是43,如果射击直到中靶为止,射击次数为3的概率是( ) ()A 343⎪⎭⎫ ⎝⎛ ()B 41432⎪⎭⎫ ⎝⎛ ()C 43412⎪⎭⎫ ⎝⎛ ()D 341⎪⎭⎫ ⎝⎛ 3.设事件B A ,互不相容,(),(),P A p P B q == 则()P AB =( )()(1) A p q - ()B pq ()C q ()D p4.设X 服从正态分布2(,)N μσ,则()P k X k μσμσ-≤≤+ =( )()A )1(2-Φk ()B 1)2(-Φk ()C )12(-Φk ()D 1)(2-Φk5.已知随机变量X 服从二项分布(,)B n p , 则()()E X D X += ( )()A np ()B p q + ()()C n p q + ()(2)D np p -6、现在有10张奖券,其中8张为2元,2张为5元,今某人从中随机地、无放回地抽取3张,则此人得奖金额的数学期望是( )()A 6 ()B 12 ()C 7.8 ()D 97.设随机变量X 的方差()E X 存在, (,Y aX b a b =+是常数),则( )()A ()()D X D Y = ()B ()()D Y aD X = ()C 2()()D Y a D X = ()D 2()()D Y a D X b =+8.若总体2~(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间 ( )()A 长度变大 ()B 长度变小 ()C 长度不变 ()D 长度不一定不二、填空题(每小题4分,共24分)9. 若事件A,B 互不相容,则P (A +B )= . 10.若事件,A B相互独立,()0.4,()0.5P A P B ==,则(),()P A B P A B=+=. 11.设X 是连续型随机变量,则对于任意实数a ,{}P X a == .12.设随机变量X 服从参数为λ的泊公分布,且已知[(1)(2)]1E X X --=,则λ= . 13.设12,,X X …60X 是来自总体X 的一个样本,则总体期望()E X 的无偏估计X = .14.对于相同置信度,参数估计的精确度越高,则相应置信区间长度就越 .三、计算题(每小题9分,共36分)15.10件产品中7件正品,3件次品,从中随机抽取2件,求(1)两件都是次品的概率(2)至少有一件是次品的概率.16.设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,)(3x Cx x f , 试(1) 确定常数C 的值; (2)求1()2P X <. 17.设随机变量X 的概率密度为:⎪⎩⎪⎨⎧≤≤-<≤-+=其它 ,010 ,101 ,1)(x x x x x f ,求)(),(X D X E .18.随机变量),(Y X 的联合分布如表所示,试求: (1),X Y 的边缘分布;(2) X Y ⋅的概率分布;(3) ,X Y 是否相互独立?四、证明题(本题8分)19.若()0,()0A A P B >>,且(|)()P A B P A >,证明:(|)()P B A P B >.答案一、单项选择题(每小题4分,共32分)1.从装有3个红球和2个白球的袋中任取两个球,记=A “取到两个白球”,则A =( D )()A 取到两个红球; ()B 至少取到一个白球; ()C 没有取到白球; ()D 至少取到一个红球。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

地大《概率论与数理统计》考试模拟题

地大《概率论与数理统计》考试模拟题
4 / 24
Word 文档下载后可自行编辑
11. 变量 X 的密度函数为,则常数 C=(). A.3 B.4 C.1/4 D.1/3 答:———— 12. 设随机变量 X~N(μ,σ2),则随着 σ 的增大, 概率为(). A.单调增加 B.单调减少 C.保持不变 D.增减不定 答:———— 13. 设随机变量 X 和 Y 均服从正态分布 X~ N(μ,42),Y~N(μ,52),记,则(). A.对任何实数 μ 都有 p1=p2 B.对任何实数 μ 都有 p1 C.仅对个别值有 p1=p2 D.对任何实数 μ 都有 p1p2 答:———— 14. 袋中有 50 个乒乓球,其中 20 个黄的,30 个白的,现在两个人不放回地依次从袋中随
6 / 24
Word 文档下载后可自行编辑
A.极大似然估计 B.矩法估计 C.相合估计 D.有偏估计 答:———— 18. 在对单个正态总体均值的假设检验中, 当总体方差已知时,选用(). A.t 检验法 B.u 检验法 C.F 检验法 D.σ2 检验法 答:———— 19. 设 A 和 B 为两个任意事件,且,P(B)0,则必 有().
A.A B.B C.C D.D 答:———— 20. 设 A 和 B 为两个任意事件,则下列关系成 立的是().
7 / 24
Word 文档下载后可自行编辑
A.A B.B C.C D.D 答:———— 21. 设 A 和 B 为两个任意事件,且,则必有().
A.A B.B C.C D.D 答:———— 22. 设每次实验成功的概率为 p(0 A.p3 B.1-p3 C.(1-p)3 D.1-(1-p)3 答:———— 23. 设一随机变量 X 的密度函数,F(x)是 X 的 分布函数,则对任意实数 a 有().

中国地质大学(北京)网络教育学院课程考试

中国地质大学(北京)网络教育学院课程考试

中国地质大学(北京)网络教育学院课程考试《概率论与数理统计》模拟题一、单项选择题1、设随机事件A 与B 互不相容,且P (A )>P (B )>0,则(D )A . P(A)=1-P(B)B .P(AB)=P(A)P(B)C .P(A ∪B)=1D .1AB P )=(2、设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有(A )A . P(A ∪B)=P (A )B .B A ⊃C .P (A )=P (B )D .P (AB )=P (A )3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( A )A .2242 B .2412C C C .24A 2! D .4!2!4、设X ~B (n ,ϕ),则有_______D_____。

A .E (3X -1)=n ϕ-1;B .E (3X -1)=3n ϕ;C .D (3X -1)=9n ϕ(1-ϕ)-1; D .D (3X -1)=9n ϕ(1-ϕ)。

5则a =__D______。

A .1/6;B .1/2;C .1/4;D .1/3。

6、若X ~N (0, 1 ),ϕ(x) 是它的密度函数,Φ(x)是它的分布函数,则下面叙述不正确的是____A____。

A .Φ (-x)= -Φ (x);B .ϕ(x)关于纵轴对称 ;C .Φ (0)=0.5;D .ϕ(-x)=ϕ(x)。

7、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,X 1 ,X 2 ,…X n 为其一个样本,样本平均值X =∑=n i i X n 11,样本方差S 2 =21)]([1X E X n n i i -∑=,修正样本方差S 2*=21)]([11X E X n ni i --∑=,下列叙述中不完全正确的是_D______。

A .X ,S2*分别是μ,σ2的估计;B . X ,S 2分别是μ,σ2的矩估计;C . X ,S2*分别是μ,σ2的无偏估计;D . X ,S 2分别是μ,σ2的无偏估计。

概率论与数理统计模拟试题5套带答案

概率论与数理统计模拟试题5套带答案

06—07—1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2。

已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________。

二、选择题(每题3分,共15分)1。

一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B ) (1)()(1)a a a b a b -++-;(C ) a a b +;(D ) 2a ab ⎛⎫ ⎪+⎝⎭。

2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X )= 【 】(A) 2; (B)12; (C ) 3; (D)13。

3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率。

概率论与数理统计模拟试题5套带答案

概率论与数理统计模拟试题5套带答案

06—07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2。

已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________。

3。

设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4。

设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布。

5。

设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________。

二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a ab a b -++-;(C ) a a b +;(D)2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A ) 2; (B)12; (C) 3; (D )13。

3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4。

设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5。

设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0。

地大《概率论与数理统计》在线作业二-0009.9B98A577-38F8-4978-9714-45567E826215(总4页)

地大《概率论与数理统计》在线作业二-0009.9B98A577-38F8-4978-9714-45567E826215(总4页)

地大《概率论与数理统计》在线作业二-0009A:A B:B C:C D:D 答案:B A:a B:b C:c D:d 答案:A A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:B A:A B:B C:C D:D 答案:B 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率()。

A:2/10! B:1/10! C:4/10! D:2/9! 答案:A 设试验E为的投掷一枚骰子,观察出现的点数。

试判别下列事件是随机事件的为( ) A:点数大于7 B:点数小于1 C:点数为9 D:点数为4 答案:D A:a B:b C:c D:d 答案:B 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。

则样本容量为( ) A:2 B:21 C:25 D:46 答案:DA:A B:B C:C D:D 答案:C 如果随机变量X服从标准正态分布,则Y=-X服从() A:标准正态分布B:一般正态分布 C:二项分布 D:泊淞分布答案:A 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然()。

A:不独立 B:独立 C:相关系数不为零 D:相关系数为零答案:D 电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通。

A:59 B:52 C:68 D:72 答案:C 设随机事件A与B相互独立,已知只有A发生的概率和只有B发生的概率都是1/4,则P(A)=() A:1/6B:1/5 C:1/3 D:1/2 答案:DA:A B:B C:C D:D 答案:A 设X,Y为两个随机变量,则下列等式中正确的是()。

A:E(X+Y)=E(X)+E(Y) B:D(X+Y)=D(X)+D(Y) C:E(XY)=E(X)E(Y) D:D(XY)=D(X)D(Y) 答案:A 设E为掷一颗骰子,以X表示出现的点数,则随机变量X的概率分布为() A:P{X=n}=1/6, (n=1,2,3,4,5,6) B:P{X=n}=n/6 (n=1,2,3,4,5,6) C:P{X=n}=(n-1)/6 (n=1,2,3,4,5.6) D:P{X=n}=1-n/6 (n=1,2,3,4,5,6) 答案:A。

地质大学《概率论与数理统计》

地质大学《概率论与数理统计》
试题1
满分值:12.0分状态:已答实际得分:12.0分
试题:已知随机变量X和Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=
3
6
10
12
[参考答案] 3
[我的答案] 3
试题2
满分值:12.0分状态:已答实际得分:12.0分
试题:X的概率函数表(分布律)是$4.jpg$则a=
二项分布
标准正态分布
指数分布
泊松分布
[参考答案]泊松分布
[我的答案]泊松分布
试题7
满分值:13.0分状态:已答实际得分:13.0分
试题:已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A B)=
0.65
1.3
0.9
0.3
[参考答案] 0.9
[我的答案] 0.9
试题8
满分值:13.0分状态:已答实际得分:13.0分
1/3
0
5/12
1/4
[参考答案] 1/3
[我的答案] 1/3
试题3
满分值:12.0分状态:已答实际得分:12.0分
试题:设X~B(n,p),则有
E(3X-1)=3np
E(3X+1)=9np+1
D(3X+1)=9np(1-p)
D(3X-1)=9np(1-p)+1
[参考答案] D(3X+1)=9np(1-p)
试题:设A,B,C表示三个随机事件,则A B C表示
A,B,C中至少有一个发生
A,B,C都同时发生
A,B,C中至少有两个发生
A,B,C都不发生
[参考答案] A,B,C中至少有一个发生[我的答案] A,,C中至少有一个发生试题5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》模拟题一. 单项选择题1. 掷一枚质地均匀的骰子,则在出现偶数点的条件下出现大于2点的概率为( ). A. 1/3 B. 2/3 C. 1/6 D. 3/62. 设,A B 为两随机事件,且A B ⊂,则下列式子正确的是( ). A. ()()P A B P B += B .()()()P AB P A P B ==C.()|()P B A P B = D. ()()()()()P B A P B P A P B P AB -=-=-3. 一批产品中有10%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为 ( ) A. 0.20B. 0.30C. 0.38D. 0.544. 设随机变量X 的分布律为,,2,1,2}{P N k Nak x ===则常数a 等于 ( ) A. 1 B. 2 C. 3 D. 4 5. 设随机变量X 与Y 相互独立,它们的概率分布依次为则下列各式正确的是 ( ) A. 1{}4P X Y ==B. {}0P X Y ==C. 1{}2P X Y ==D. {}1P X Y ==6. A 、B 为两个事件,则)(B A P -= ( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P -7. 设A 与B 相互独立,3.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2B .0.4C .0.7D .0.88. 任意抛一个均匀的骰子两次,则这两次出现的点数之和为7的概率为( ) A .363 B .364 C .365 D .3669. 某一随机变量的分布函数为()4x xa be F x e +=+,则F (0)的值为( )A. 0.2B. 0.5C. 0.25D. 都不对10. 设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( ) A .e31B .3e C .11--e D .1311--e二. 填空题1. A 、B 为两事件,6.0)(=B A P ,3.0)(=A P ,6.0)(=B P ,则=-)(A B P 。

2.设()0.4P A =,()0.6P B =,(|)0.5P B A =,则,A B 至少发生一个的概率为 。

3.设离散型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤--<=,2,1,21,32,1,0)(x x x x F则{}==2X P 。

4. 设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=,,0,10,10,1),(其他y x y x f 则=⎭⎬⎫⎩⎨⎧>≤21,21Y X P 。

5.设X 服从二项分布)6.0,4(B ,则=-)12(X D 。

6. 连续抛一枚均匀硬币6次,则正面至少出现一次的概率为 。

7.设3.0)(=A P ,P (B |A )=0.6,则=)(B A P 。

8.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(3x cx x f 则常数c = 。

9.设二维随机变量),(Y X 的联合密度为:f (x ,y )=⎩⎨⎧<<<<+其它010,20)(y x y x A ,则A= 。

10.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2=P Y = 。

三、计算题1. 袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.求第二次取出白球的概率.2. 设离散型随机变量X 的分布律为求3}X P{23},X P{2},2X 3P{},2P{X <≤≤≤≤<≤.3. 设随机变量X 的概率密度为:⎩⎨⎧≤≤=其他,00,sin )(πx x a x f ,求: (1)常数a ;(2)}40{π<<X P ; (3) X 的分布函数)(x F .4. 设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤≤=其它,0142122y x y x y x f分别求出求X 与Y 的边缘密度函数;判断随机变量X 与Y 是否相互独立?5. 设随机变量]3,1[~-U X ,随机变量⎪⎩⎪⎨⎧<-≤≤>=0110011X X X Y , 求(1)Y 的分布律; (2))(Y D .6. 一道选择题有四个答案,其中只有一个正确,某考生知道正确答案的概率为0.5,不知道答案乱猜而猜对的概率为41,求该考生答对这道题的概率. 7. 袋中有9个球(4白,5黑),现从中任取两个,求: (1)两球均为白球的概率;(2)两球中,一个是白球,一个是黑球的概率; (3)至少有一球是黑球的概率。

8. 设)2.0,10(~B X ,)10,1(~N Y ,(1)已知Y X ,相互独立,求)432(2X XY X E +-;(2)已知3.0=XY ρ,求)(Y X D -。

9. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=.1,0,1,1)(2x x x x f X ,(1)求X 的分布)(x F X ;(2)求⎭⎬⎫⎩⎨⎧≤<321X P ;(3)令Y =2X ,求Y 的密度)(y f Y 。

10.设随机变量()Y X ,的联合概率密度为()⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31,2y x xy x y x f 试求:(1)X 和Y 的边缘概率密度; (2)X 和Y 是否相互独立?请说明理由。

参考答案:二.填空题1. 0.32. 0.73. 1/34. 0.255. 16/36. 63/647. 0.288. 1/49. 1/3 10. 9/64 三.计算题1. 解:设{}第一次取出白球=A ,{}第二次取出白球=B .则由全概率公式,得()()()()()114104117103114=⨯+⨯=+=A B P A P A B P A P B P .2. 解: 41}21P {X =≤21}25X 32P{=≤<4341213}X P{2=+=≤≤213}X P{2=<≤3. 解: (1)由概率密度的性质⎰+∞∞-=1)(dx x f ,2110cos cos |cos sin 00==+=+-=-=⎰a a a a a x a xdx a 得πππ (2) 4221|cos 21sin 21}40{4040-=-==<<⎰πππx xdx X P(3) X 的概率分布为:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=ππx x x x x F ,10,)cos 1(210,0)(4. 解:当11≤≤-x 时,()()()4212-18214212x x ydy x dy y x f x f x X -===⎰⎰+∞∞, 所以,随机变量X 的边缘密度函数为()()⎪⎩⎪⎨⎧≤≤--=其它011182142x x x x f X ;当10≤≤y 时,()()25322727421y yx ydx x dx y x f x f yyy Y ====⎰⎰-+∞∞-, 所以,随机变量Y 的边缘密度函数为()⎪⎩⎪⎨⎧≤≤=其它102725y yy f Y ; ()()()y f x f y x f Y X ≠,,所以X 与Y 不独立.5. 解:(1)Y 的分布律为:41}0{}1{=<=-=X P Y P 41}01{}0{=≤≤-==X P Y P 21}1{}1{=>==X P Y P ;,(2)41211410411)(=⨯+⨯+⨯-=Y E , 43410431)(2=⨯+⨯=Y E所以 1611)()()(22=-=Y E Y E Y D . 6.解:设A 表示知道答案,B 表示猜对,C 表示答对这道题,则B A AC +=所求概率)|()()()(A B P A P A P C P +=625.0=7.解:从9个球中任取两球,取法总数为29C n =Ω。

(1)设A 表示“两球均为白球:,则24Cn A =,()612924==C C A P ;(2)设B 表示“两球中,一白一黑”,则1514C C n B =,则()95292514==C C C B P ;(3)设C 表示“至少有一球是黑球”,显然,A C =,则()()651=-=A P C P . 8.解:由题意知10,1,6.1,2====DY EY DX EX ,(1)6.546.1)(22=+=+=EX DX EX所以 22432)432(EX EXEY EX X XY X E +-=+-6.5412322⨯+⨯⨯-⨯=4.20=(2)2.1106.13.0),(=⨯⨯==DXDY Y X COV XYρ=-+=-+=-4.2106.1),(2)(Y X COV DY DX Y X D 9.29. 解:(1)因211111()()00x xX dt x F x f t dt t xx -∞⎧=-≥⎪==⎨⎪<⎩⎰⎰所以111()0X x F x xx ⎧-≥⎪=⎨⎪<⎩(2)13(3)(1/2)2/32P X F F ⎧⎫<≤=-=⎨⎬⎩⎭(3)Y 的分布函数(){2}{/2}Y F y P X y P X y =-∞<≤=-∞<≤=/2()y X f x dx -∞⎰所以2221()()(/2)202Y Y X x yf y F y f y x ⎧≥⎪'===⎨⎪<⎩.10.解:(1)()()x x dy xy x dy y x f x f X 32231,2202+=⎪⎭⎫ ⎝⎛+==⎰⎰∞+∞-()⎪⎩⎪⎨⎧≤≤+=∴其他,010,3222x x x x f X ()()()y dx xy x dx y x f y f Y +=⎪⎭⎫ ⎝⎛+==⎰⎰∞+∞-26131,102,()()⎪⎩⎪⎨⎧≤≤+=∴其他,020,261y y y f Y(2) 因为()),()(y x f y f x f Y X ≠,所以X 和Y 不相互独立。

相关文档
最新文档