Anderson型双亲催化剂(C21H46N)3[CoMo6O24H6]的制备及其应用

合集下载

一种Anderson型多酸与过渡金属铜形成的3D结构化合物,制备方法以及催化应用[发明专利]

一种Anderson型多酸与过渡金属铜形成的3D结构化合物,制备方法以及催化应用[发明专利]

专利名称:一种Anderson型多酸与过渡金属铜形成的3D结构化合物,制备方法以及催化应用
专利类型:发明专利
发明人:侯玉姣
申请号:CN202111500386.9
申请日:20211209
公开号:CN114011439A
公开日:
20220208
专利内容由知识产权出版社提供
摘要:本发明属于多酸化学新材料技术领域,一种基于Anderson型多酸{TeMo6}与过渡金属形成的3D无机框架结构化合物及其制备方法与催化应用。

3D结构多酸化合物为三斜晶系,空间群为
P‑1;化合物晶胞参数为α=70.858(2)°,β=71.465(3)°,γ=84.149(3)°;本发明方法采用钼酸钠、亚碲酸钠、氯化钾和氯化铜在常规水溶液中一锅法合成,原料价格低廉,合成产率较高,具有较好的选择性氧化硫醚类化合物的催化性能;制备工艺简单、产品纯度高,具有潜在的催化应用前景。

申请人:许昌学院
地址:461000 河南省许昌市八一路88号
国籍:CN
代理机构:安徽思沃达知识产权代理有限公司
代理人:唐明
更多信息请下载全文后查看。

四川省泸州市泸州老窖天府中学2024-2025学年高二上学期半期(期中)考试化学试题(含答案)

四川省泸州市泸州老窖天府中学2024-2025学年高二上学期半期(期中)考试化学试题(含答案)

泸州老窖天府中学高2023级高二上期半期考试化学可能用到的相对原子质量:H-1 Li-7 C-12 N-14 O-16 F-19 Na-23 S-32 Cl-35.5 Ca-40 Mn-55 Cu-64 I-127一、选择题(每小题3分,共42分)1.化学与生产、生活和科技息息相关,下列说法错误的是( )A.废旧钢材焊接前,可用饱和溶液处理焊点的铁锈B.高纯硅制成的太阳能电池可将太阳能转化为电能C.飞秒化学是用的时间分辨技术监测反应中寿命极短的中间体或过渡态的技术D.将草木灰与混合施用,可更好为植物全面提供N 、K 两种营养元素2.下列实验的对应的装置及叙述均正确的是()A.测定中和反应的反应热B.测量体积C.用标准溶液滴定锥形瓶中的盐酸D.测稀硫酸pHA.AB.BC.CD.D3.已知 。

下列说法正确的是( )A.恒温条件下增大压强,平衡正向进行,该反应的平衡常数K 增大B.使用高效催化剂,可降低反应的活化能,增大活化分子百分数C.温度越低越有利于该反应的进行,从而提高的生产效率D.若容器体积不变,再加入适量,可增大活化分子百分数,加快反应速率4.我国学者采用量子力学法研究了钯基催化剂表面吸附CO 和合成的反应,其中某段反应的相对能量与历程的关系如图所示,图中的TS1-TS5为过渡态,吸附在钯催化剂表面上的物种用*标注。

下列4NH Cl 15121010s -- 4NH Cl 3NH 23Na CO 2232SO (g)O (g)2SO (g)+ H 0∆<3SO 2O 2H 3CH OH说法正确的是( )A.该历程的最大能垒为178.3kJ/molB.历程中决速步骤的反应为:C.钯基催化剂可使反应的减小D.该历程中有极性键、非极性键的断裂与形成5.以下现象能用勒夏特列原理解释的是( )A.红棕色的加压时颜色变深 B.夏天打开啤酒盖,喷出大量泡沫C.合成氨一般选择400~500℃进行D.唾液可以使淀粉水解速率加快6.已知反应: ,则下列说法正确的是( )甲 乙 丙 丁A.由图甲知:,B.图乙中c 表示A 的浓度,则可推断出:、均未达平衡状态C.图丙纵坐标表示生成物C 的百分含量,E 点D.图丁中,曲线a 一定使用了催化剂7.常温下,下列各组离子在给定条件下可能大量共存的是( )A.滴加酚酞后呈红色的溶液中:、、、B.的透明溶液中:、、、C.由水电离出的的溶液中:、、、D.的溶液中:、、、***33CH O H CH OH +=H ∆2NO mA(g)nB(g)pC(g)+ 1H akJ mol -∆=⋅m n p >+a 0>1T 3T ()()v v >正逆3Al +Na +3CH COO -3HCO -pH 2=3HCO -K +Na +4MnO -13c(H )110mol/L +-=⨯2Ba +K +Cl -Br -2c(H ) 1.010c(OH )+-=⨯Na +3Fe +Cl -223S O -8.下列说法错误的是( )A.用湿润的pH 试纸测定稀盐酸溶液所得的pH 偏大B.结合的能力强弱顺序:C.的溶液加水稀释过程中,溶液中增大D.恒温恒压下,且的反应一定不能自发进行9.设为阿伏加德罗常数的值。

Anderson结构钼系过渡金属稀土盐的电化学性质研究

Anderson结构钼系过渡金属稀土盐的电化学性质研究

Anderson结构钼系过渡金属稀土盐的电化学性质研究董宏博;崔桂花;赵文秀【摘要】目的对具有Anderson结构的稀土元素钼系化合物进行电化学表征.方法采用电化学工作站三电极体系.结果首先合成了母核Na3[CrMo6O24H6]·8H2O,分别采用玻碳电极和制备的碳糊电极进行电化学表征.其次分别制备了Ce[CrMo6O24H6]、Sm[CrMo6O24H6]、Eu[CrMo6O24H6]的碳糊电极,测定了它们的循环伏安图.结论从循环伏安图中看出,使用两种电极时Na3[CrMo6O24H6]的氧化还原行为相似,均是单电子的一步不可逆还原.三种化合物的氧化还原行为与母核相似,说明这三种化合物均经历单电子的一步不可逆还原过程.【期刊名称】《吉林医药学院学报》【年(卷),期】2013(034)006【总页数】4页(P415-418)【关键词】Anderson结构;电化学表征;循环伏安【作者】董宏博;崔桂花;赵文秀【作者单位】吉林医药学院化学教研室,吉林,吉林,132013;吉林医药学院化学教研室,吉林,吉林,132013;吉林医药学院化学教研室,吉林,吉林,132013【正文语种】中文【中图分类】O614Anderson结构多金属氧酸盐的水溶性较差,对其研究相对较少,不及Keggin和Dawson结构化合物广泛[1]。

但是最近研究发现,它具有均相和多相催化作用[2]及抗病毒活性[3]。

同时发现Anderson结构多金属氧酸盐是合成三维有机-无机杂化晶体配合物的很好的建筑单元[4]。

Anderson结构多金属氧酸盐的表征有元素分析、热重-差热分析、红外光谱、紫外光谱、电化学等,但是在电化学表征方面文献很少。

因此选择对Anderson结构多金属氧酸盐进行电化学表征,为Anderson结构多金属氧酸盐的应用提供实验依据。

LG2005电化学工作站(天津兰力科公司),玻碳电极(GCE)为工作电极,Ag/AgCl 电极为参比电极,Pt片电极为对电极,碳糊电极(CPE,自制);分析纯Na2MoO4·2H2O、分析纯Cr(NO3)3·9H2O(国营集团化学试剂有限公司);石墨粉(光谱纯,国营集团化学试剂有限公司);液体石蜡(化学纯,国营集团化学试剂有限公司),实验中所用的水为去离子水。

双金属单原子负载型催化剂及其制备方法[发明专利]

双金属单原子负载型催化剂及其制备方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810387469.3(22)申请日 2018.04.26(71)申请人 深圳市国创新能源研究院地址 518000 广东省深圳市南山区科丰路2号特发信息港D栋一楼东侧二号(72)发明人 姚向东 贾毅 张龙舟 (74)专利代理机构 深圳市瑞方达知识产权事务所(普通合伙) 44314代理人 王少虹 杨波(51)Int.Cl.H01M 4/90(2006.01)(54)发明名称双金属单原子负载型催化剂及其制备方法(57)摘要本发明公开了一种双金属单原子负载型催化剂及其制备方法,制备方法包括以下步骤:S1、将金属有机骨架材料以及氰胺或其聚体作为原料,制备具有核壳结构的Me-NC,其中Me来源于所述金属有机骨架材料中的金属;S2、将所述Me-NC加入分散剂中,再加入粘结剂,超声分散,得到悬浊液;S3、取所述悬浊液均匀涂布在环盘电极上,置于电解液中,以Pt作为对电极连续进行多个伏安循环;S4、将经过伏安循环后的环盘电极上的材料进行超声分离,洗涤干燥,获得掺氮缺陷碳负载PtMe双金属单原子催化剂,即为双金属单原子负载型催化剂。

本发明将Pt与Me原子集中分散在碳载体的缺陷区域,金属原子之间的距离比普通单原子Pt催化剂小,产生了协同作用,提高了四电子反应的选择性。

权利要求书1页 说明书5页 附图5页CN 108682870 A 2018.10.19C N 108682870A1.一种双金属单原子负载型催化剂的制备方法,其特征在于,包括以下步骤:S1、将金属有机骨架材料以及氰胺或其聚体作为原料,制备具有核壳结构的Me -NC,其中Me来源于所述金属有机骨架材料中的金属;S2、将所述Me -NC加入分散剂中,再加入粘结剂,超声分散,得到悬浊液;S3、取所述悬浊液均匀涂布在环盘电极上,置于电解液中,以铂丝作为对电极连续进行多个伏安循环;S4、将经过伏安循环后的环盘电极上的材料进行超声分离,洗涤干燥,获得掺氮缺陷碳负载PtMe双金属单原子催化剂,即为双金属单原子负载型催化剂。

Anderson型杂多酸的可控烷氧化修饰及其催化性能研究

Anderson型杂多酸的可控烷氧化修饰及其催化性能研究

Anderson型杂多酸的可控烷氧化修饰及其催化性能研究Anderson型杂多酸是多酸(POM)中最灵活的基本拓扑结构单元。

其有机共价修饰化学是目前多酸化学领域的一个研究热点。

三羟甲基多元醇有机配体(简称triol)作为一类奇特的螯合配体,能够非常有效地稳定多酸的结构。

这种基于triol的POM-linker策略能有效地构筑稳定的多酸基功能材料,从而引起广泛关注。

本论文在前人研究的基础上,提出了直接修饰多酸的合成策略,并以此为基础合成了一系列Anderson型杂多酸烷氧衍生物及其相应的异构体。

在总结系列实验规律,综合运用理论计算方法的基础上,本文提出了Anderson型杂多酸烷氧化可控有机修饰的合成方法学,并对相应的反应机理、手性自拆分、异构体转变和催化性能进行了深入研究和系统探索。

本论文研究工作主要分为六个部分:(一)采用直接修饰法,利用triol配体对Anderson型杂多酸进行单侧烷氧化共价修饰,获得了δ型异构体,并成功实现其对映异构体的手性自拆分。

(二)通过质子化μ2-O形成反应位点,进而采用triol配体共价修饰,首次合成单侧烷氧化共价修饰χ异构体,开启了Anderson型杂多酸μ2-O反应化学研究新领域。

(三)首次制备了二醇共价修饰模式的Anderson型杂多酸烷氧衍生物,实现质子控制的可控的制备ψ,δ以及χ异构体。

并进一步拓展到带羧基二醇烷氧有机配体对Anderson型杂多酸的共价修饰。

(四)以单侧修饰的δ型异构体为前驱体,发展了一种逐步制备双侧不对称修饰的Anderson型杂多酸烷氧衍生物的高效可控的合成方法。

(五)首次从实验上证实1:6杂多酸也可以具有类似七钼酸的蝴蝶形拓扑构型,这一亚稳构型能够被triol配体稳定,形成Anderson型杂多酸烷氧衍生物的β型异构体。

研究发现以MnIII为中心杂原子的β型异构体可以作为高效的催化剂,有效地催化双氧水氧化KA油制备己二酸。

(六)发现单侧修饰的δ型异构体能够有效催化分子间交叉脱氢偶联,进而将一些简单的有机配体通过(CDC)[4+1]环加成反应生成不同五元杂环化合物。

催化剂制备方法大全【可编辑】

催化剂制备方法大全【可编辑】

催化剂的制备方法与成型技术总结应用化学系1202班王宏颖2012080201催化剂的制备方法与成型技术一、固体催化剂的组成:固体催化剂主要有活性组分、助剂和载体三部分组成:1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。

2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。

3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。

目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。

二、催化剂传统制备方法1、浸渍法(1)过量浸渍法(2)等量浸渍法(多次浸渍以防止竞争吸附)2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加)(1)单组分沉淀法(2)多组分共沉淀法(3)均匀沉淀法(沉淀剂:尿素)(4)超均匀沉淀法(NH4HCO3和NH4OH组成的缓冲溶液pH=9)(5)浸渍沉淀法浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。

此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。

(6)导晶沉淀法本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。

举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。

3、共混合法混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。

如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。

Anderson型催化剂

Anderson型催化剂

PAPER /greenchem|Green Chemistry Aerobic oxidative desulfurization of benzothiophene,dibenzothiophene and 4,6-dimethyldibenzothiophene using an Anderson-type catalyst[(C18H37)2N(CH3)2]5[IMo6O24]Hongying L¨u,*a Yongna Zhang,b Zongxuan Jiang b and Can Li*bReceived28th June2010,Accepted26th August2010DOI:10.1039/c0gc00271bBenzothiophene(BT),dibenzothiophene(DBT)and4,6-dimethyldibenzothiophene(4,6-DMDBT)are oxidized to their corresponding sulfones by an Anderson-type catalyst[(C18H37)2N(CH3)2]5IMo6O24using molecular oxygen as the oxidant under mild reactionconditions.These refractory sulfur-containing compounds can be oxidized completely in theabsence of any sacrificial agent.Solvents such as acetonitrile and water play a negative effect onthe oxidative desulfurization system.The catalytic activities of the amphiphilic Anderson catalystsdepend on the quaternary ammonium cations.The reactivity of the sulfur-containing compoundsfollows the order4,6-DMDBT>DBT>BT.IntroductionSulfur in transportation fuels,particularly in gasoline and diesel,is a major source of air pollution.Hydrodesulfurization (HDS)is highly efficient in removing thiols,sulfides and disulfides from fuels,however is less effective for refractory sulfur-containing compounds,such as dibenzothiophene(DBT) and its derivatives.1Developing non-HDS technologies for the production of clean diesel with extremely low concentrations of sulfur-containing compounds is still a challenge for both academia and industry.2One of the most promising alternative processes is the oxidative desulfurization(ODS)process,which includes the oxidation of sulfur-containing compounds to corresponding sulfones and their removal from diesel by extraction or ad-sorption.The ODS process offers several advantages over the HDS process.For example,refractory compounds,pre-dominantly4,6-dibenzothiophenes(4,6-DMDBT),can be ox-idized under mild conditions(ambient temperature and pres-sure)and are very difficult to remove through conventional HDS.3–6Up to now,many types of oxidative systems have been attempted,such as H2O2/inorganic acids,7H2O2/organic acids,8,9H2O2/heteropolyacid,10H2O2/Ti-containing zeolites,11 H2O2/ionic liquid12,13and other non-hydrogen peroxide systems (e.g.,t-butyl hydroperoxide,etc.).14,15Although catalytic ODS of these refractory sulfur-containing compounds can show high activity,most of these processes use hydrogen peroxide as the oxidant.The oxidation of these re-fractory sulfur-containing compounds using molecular oxygen a Science and Engineering College of Chemistry and Biology,Yantai University,32Qingquan Road,Yantai,264005,China.E-mail:lhrye@b State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,457Zhongshan Road,Dalian, 116023,China.E-mail:canli@;Web:;Fax:+86411-84694447;Tel:+86 411-84379070as the oxidizing agent under mild conditions has long been desired due to its low cost and green chemistry advantages.16 Nevertheless,it is difficult to oxidize these refractory sulfur-containing compounds present in diesel using molecular oxygen as the oxidant under mild conditions.The oxidation of these refractory compounds by molecular oxygen has been achieved at high temperatures or in the presence of a sacrificial agent in a few reports.17–19On the other hand,molecular oxygen takes part in preferably non-selective radical reactions,which results in the autooxidation of a large quantity of hydrocarbons present in diesel at high temperatures.20Another disadvantage is that using a large amount of sacrificial agent increases the operating cost and leads to difficulties in separation.Therefore,selective oxidation of refractory sulfur-containing compounds using molecular oxygen as the oxidant under mild conditions is still a highly challenging subject.Here,we report that an Anderson-type catalyst,[(C18H37)2N(CH3)2]5IMo6O24, can oxidize these refractory sulfur-containing compounds present in diesel to their corresponding sulfones without any sacrificial agent using molecular oxygen as the oxidant under mild conditions.Results and discussionStructure of the Anderson-type polyoxometalate catalyst Polyoxoanions,such as Keggin-type polyoxometalates,have been utilized widely as catalysts for both homogeneous and het-erogeneous reactions.21,22However,Anderson-type compounds have not received much attention as catalysts.23–25This is thefirst time that this kind catalyst has been utilized for the selective aerobic oxidation of sulfur-containing compounds present in diesel.As shown in Fig.1,the Anderson structure contains an IO6octahedron that is surrounding by six MoO6groups.The six Mo atoms form hexagons around the heteroatom,resulting in a structure with an approximate D3d symmetry structure.The Anderson structure may be described as an isopolyoxometalateFig.1The Anderson-type[IMo6O24]5-polyoxometalate. containing a crown of six octahedrons sharing an edge.In the Anderson structure,the oxygen atoms are classified into three groups,and the positions of these types are depicted in Fig.1.O a (I–O a–Mo2)is a bridge oxygen between the I octahedron and two Mo groups,O b(Mo–O b–Mo)is another bridge oxygen between two edge-sharing Mo groups and O t is the terminal oxygen that is bonded to each group.The aerobic oxidation of DBT using different Anderson species The catalytic activities of Anderson catalysts for the desulfu-rization of DBT using molecular oxygen the as oxidant are listed in Table1.DBT is not oxidized at all without the catalyst. Also,the DBT is hardly oxidized when using Na5[IMo6O24]as the catalyst without any surfactant because of the insolubility of the catalyst in the reaction system and the mass-diffusion limitations of the liquid–solid–gas three-phase system.It is worthwhile to note that the conversion of DBT can reach to 84%with the addition of the surfactant octadecyl trimethyl ammonium chloride(OTAC),suggesting that the surfactant plays an important role in this reaction.When the amphiphilic catalyst[(C18H37)N(CH3)3]5[IMo6O24]was used,the conversion of DBT increased to100%in10h,which is a little higher than the combination of Na5[IMo6O24]and surfactant.This result indicates that the amphiphilic catalyst is very active for the oxidation of DBT using O2as the oxidant.The oxidation of DBT was further confirmed by sulfur-specific gas chromatography (GC)analyses and the IR spectrum of the product after the aerobic oxidation of DBT(the infrared absorptions at1165and 1288cm-1are attributed to sulfones8),as shown in Fig.2.Fig.2(a)Sulfur-specific GC-FPD chromatograms of the oxidation of DBT in decalin and(b)spectroscopic characterization of pro-duction(DBTO2)after the aerobic oxidation of DBT.Conditions: [(C18H37)2N(CH3)2]5[IMo6O24](0.01mmol),DBT(S:500ppm)in50mL decalin,reaction temperature80◦C,oxidant O2(1atm).Effect of solvents on the aerobic oxidation of DBTThe solvent effect was also investigated for the oxidation of DBT using O2as the oxidant.As shown in Table1,DBT can be oxi-dized completely within8h using[(C18H37)2N(CH3)2]5[IMo6O24] as the catalyst.When acetonitrile was used,the activity of[(C18H37)2N(CH3)2]5[IMo6O24]decreased sharply,and only 23%conversion of DBT could be obtained after10h.A similar tendency was also observed for the combination of Na5[IMo6O24]and surfactant.If water was added to the reaction system,the conversion of DBT was less than5% over[(C18H37)2N(CH3)2]5[IMo6O24]after10h.This does not agree with our previous work in the emulsion system,19where acetonitrile was considered to be one of the most suitable solvents for ODS,probably owing to a different reaction mechanism.Intuitively,there is a strong interaction between the Anderson-type catalyst and acetonitrile or water,which occupies lots of the active sites of this polyoxometalate,leading to a decreased conversion of DBT.Effect of the quaternary ammonium cations on the aerobic oxidation of DBTAs is known,the catalytic activity of the amphiphilic cat-alysts depends on the quaternary ammonium cation and polyoxometalate anion.Three kinds of catalysts with different quaternary ammonium cations were synthesized in order to investigate the effect of the quaternary ammonium cationsTable1Oxidation of DBT by molecular oxygen with Anderson-type catalysts aEntry Catalyst OTAC/mmol Solvent/mL Time/h Conversion of DBT(%)TOF/h-1 1—00100—2Na5IMo6O240024<5—3Na5IMo6O240.0501084—4Q15IMo6O24001074 1.85Q25IMo6O240010100 3.76Q35IMo6O2400810012.87Na5IMo6O240.05CH3CN(50)1014—8Q35IMo6O240CH3CN(50)1023—9Q35IMo6O240H2O(5)10<5—a The conversion of DBT was calculated as follows:Q1:dodecyl trimethyl ammonium chloride(DTAC),Q2:octadecyl trimethyl ammonium chloride (OTAC),Q3:dioctadecyl dimethyl ammonium chloride(DODMAC).Conditions:catalyst(0.01mmol),DBT(147mg,0.8mmol)in50mL decalin, reaction temperature80◦C and O2(1atm).on the performance of the amphiphilic catalysts (Fig.3).From the TOF of the three catalysts,the reaction activity decreases in the order [(C 18H 37)2N(CH 3)2]5[IMo 6O 24]>[(C 18H 37)N(CH 3)3]5[IMo 6O 24]>[(C 12H 25)N(CH 3)3]5[IMo 6O 24],as shown in Table 1.[(C 18H 37)2N(CH 3)2]5[IMo 6O 24],with two C 18carbon chains,exhibits the highest activity among the three catalysts investigated.The catalyst [(C 12H 25)N(CH 3)3]5[IMo 6O 24],with the shortest carbon chain,exhibits the lowest DBT conversion.This may be ascribed to the effect of the nature of the quaternary ammonium cation,as surfactants were believed to activate oxygen in early literature.26–28The charge of the central atom is increased by electrons in-flowing from electron donor substituents,which has a great effect on the catalytic activity of the amphiphilic catalysts.26Detailed investigations on this result are inprogress.Fig.3The conversion of dibenzothiophene (S:500ppm)vs.reaction time.Conditions:Q 5[IMo 6O 24](0.01mmol),DBT (S:500ppm)in 50mL decalin,80◦C,oxidant O 2(1atm).The ODS of different sulfur-containing compoundsThe performance of catalyst [(C 18H 37)2N(CH 3)2]5[IMo 6O 24]for different sulfur-containing compounds,including benzothio-phene (BT),DBT and 4,6-dimethyldibenzothiophene (4,6-DMDBT),was evaluated using molecular oxygen as the oxidant (Fig.4).All the sulfur-containing compounds mentioned above can be oxidized to their corresponding sulfones.The catalytic activity for the oxidation of sulfur-containing compounds decreases in the order 4,6-DMDBT >DBT >BT.As calculated by Kabe et al.,8,9the electron density on the sulfur atoms is 5.739for BT,5.758for DBT and 5.760for 4,6-DMDBT.The result indicates that the reaction rates of these sulfur-containing compounds increases with the election density on the sulfur atom.Therefore,the reactivity trend reflects the intrinsic properties of the sulfur-containing compound.Gas chromatography (GC)analyses before and after the aerobic catalytic oxidation of sulfur-containing compounds in a model of diesel (decalin)was used to confirm that all the sulfur-containing compounds had been completely oxidized to sulfones (Fig.5).The conversion of different sulfur-containing compounds increased with increasing temperature,as shown in Fig.6.From the reaction rates determined at various temperatures,the appar-ent activation energies for the oxidation of the sulfur-containing compounds were derived from the Arrhenius equation (Fig.7).Fig.4The conversion of sulfur-containing compounds vs.reaction time at 80◦C.Conditions:[(C 18H 37)2N(CH 3)2]5[IMo 6O 24](0.01mmol),sulfur-containing compound (S:500ppm)in 50mL decalin,reaction temperature 80◦C,oxidant O 2(1atm).Fig.5Sulfur-specific GC-FPD chromatograms of the oxida-tion of sulfur-containing compounds in decalin.Conditions:[(C 18H 37)2N(CH 3)2]5[IMo 6O 24](0.01mmol),sulfur-containing com-pound (S:500ppm)in 50mL decalin,reaction temperature 80◦C,oxidant O 2(1atm).The activation energy data again showed the following reactivity order:4,6-DMDBT >DBT >BT.Possible mechanism of the aerobic oxidation of sulfur-containing compoundsThe ODS reaction mechanism was also investigated.Fig.8shows the UV-vis spectra of [(C 18H 37)2N(CH 3)2]5[IMo 6O 24]in decalin with and without the introduction of molecular oxygen;similar absorption bands at 201and 254nm are observed.Upon the addition of DBT,the band at 254nm disappears and a new band appears at 233nm.These results suggest that the Anderson-type polyoxometalate is easily coordinated by sulfur-containing compounds such as DBT,but not with molecular oxygen.This suggests a proposed mechanism,as shown in Scheme 1.The active sites of the Anderson-type polyoxometalate react with DBT,a transfer state is formed,and then the activated DBT is oxidized to the corresponding sulfone and the catalyst reduced.Subsequently,the reduced catalyst is recycled in pres-ence of dioxygen.During the process of the oxidation of sulfur-containing compounds,the Anderson-type polyoxometalates are reduced.However,the reduced polyoxometalates are oftenFig.6The conversion of sulfur-containing compounds vs.reaction time at different temperature.Conditions:[(C 18H 37)2N(CH 3)2]5[IMo 6O 24](0.01mmol);sulfur-containing compound (S:500ppm)in 50mL decalin;oxidant,O 2(1atm).Fig.7Arrhenius activation energies for sulfur-containing compound oxidation with Anderson catalyst [(C 18H 37)2N(CH 3)2]5[IMo 6O 24]using dioxygen as the oxidant.Conditions:[(C 18H 37)2N(CH 3)2]5[IMo 6O 24](0.01mmol),sulfur-containing compound (S:500ppm)in 50mL decalin,reaction temperature 80,85,90and 100◦C,oxidant O 2(1atm).Fig.8UV-vis spectra of [(C 18H 37)2N(CH 3)2]5[IMo 6O 24].All spec-tra were collected from 0.02mmol L -1solutions (including [(C 18H 37)2N(CH 3)2]5[IMo 6O 24]and DBT).(a)[(C 18H 37)2N(CH 3)2]5-[IMo 6O 24]dissolved in decalin at 80◦C for 0.5h,(b)[(C 18H 37)2N(CH 3)2]5-[IMo 6O 24]in decalin after treatment with 1atm of O 2at 80◦C for 4h,(c)[(C 18H 37)2N(CH 3)2]5[IMo 6O 24]in decalin after the addition of DBT at 80◦C for 4h under highly pure nitrogen and (d)DBT dissolved in decalin at 80◦C for 0.5h.Scheme 1The proposed mechanism for dioxygen activation and aerobic ODS.known to undergo re-oxidation in the presence of molecular oxygen to complete the catalytic cycle.ConclusionBenzothiophene,dibenzothiophene and 4,6-dimethyldibenzo-thiophene can be oxidized to their corresponding sulfones with an Anderson-type polyoxometalate,[(C 18H 37)2N(CH 3)2]5-[IMo 6O 24],as a catalyst under mild conditions.The catalytic activities of the amphiphilic Anderson catalysts depends on the nature of the quaternary ammonium cation.It provides a new possible method for the ODS of diesel with molecular oxygen as the oxidant.ExperimentalSynthesis of catalystsAll chemicals were used as received.Na 5IMo 6O 24was prepared according to procedures described elsewhere.23,29An aqueous solution was prepared by dissolving 13.5g of Na 2MoO 4·2H 2O in 50mL water and then heating it to 95◦C.6.2mL of HCl was added slowly to the solution,followed by the dropwise addition of a hot solution of periodic acid (1.759g in 10mL water).Half of the reaction solution was evaporated.Upon cooling,white platelet type crystals precipitated from the solution.Q 5IMo 6O 24was prepared as follows:a 20mL ethanolic solution with 5mmol of quaternary ammonium was added dropwise into 40mL of an aqueous solution of Na 5IMo 6O 24(1mmol)under stirring at room temperature.A snow-white precipitate was immediately formed.After continuously stirring for 4h,the resulting mixture was filtered and dried at 60◦C in avacuum for24h to obtain the catalyst.There were three kinds of quaternary ammonium,including[(C12H25)N(CH3)3]Cl, [(C18H37)2N(CH3)2]Cl and[(C18H37)N(CH3)3]Cl.The127I chemical shifts were referenced to solid NaI.d=3092, 3116ppm,IR:n=942,910,720,691,629cm-1 Characterization of the product after the aerobic oxidation of DBTAfter the oxidation of DBT,the water bath was cooled to room temperature and kept at this temperature for24h.Then,white needle-type crystals(dibenzothiophene sulfone)were formed. The crystals werefiltered and washed with n-heptane three times and dried at50◦C in a vacuum for24h.The infrared spectrum of the product,diluted with KBr and pressed into a pellet,was recorded on a Nicolet470FT-IR spectrometer.Oxidation of model sulfur-containing compoundsIn a typical experiment,a water bath was heated to80◦C. The model sulfur-containing compound(BT,DBT or4,6-DMDBT)was dissolved in50mL of decalin in aflask,the sulfur concentration being500ppm.The catalyst Q5IMo6O24 (0.01mmol)was added to the solution and the obtained mixture stirred at1000rpm for5min.Molecular oxygen was then bubbled through the reaction solution.The solution was periodically sampled,and the sulfur content of the upper clear solution was determined by microcoulometry after the catalyst and sulfones had been precipitated by centrifugation. Analysis of sulfur contentThe total sulfur content of the samples was determined by microcoulometry(detection limit:0.1ng m L-1).The sulfur-containing compounds present in diesel were analyzed by a gas chromatograph coupled to aflame photometric detector(GC-FPD).Gas chromatography:Agilent6890N equipped with a capillary column(PONA,50m¥0.2mm,id¥0.5m m),flame photometric detector(FPD):Agilent H9261.The analysis conditions were as follows:injection port temperature:280◦C, detector temperature:250◦C,oven temperature program: 100◦C,hold for1min,100–150◦C at a10◦C min-1gradient, hold for1min,150–280◦C at a5◦C min-1gradient,hold for12min,split ratio:1/100,carrier gas:ultra-pure nitrogen, columnflow:0.9mL min-1,reagent gases airflow:100mL min-1, hydrogenflow:75mL min-1,the injection volume of the sample was1m L.AcknowledgementsWe are thankful forfinancial support provided by the State Key Project(grant no.2006CB202506).This work also partly supported by the SKLC cooperation project(N-08-08)and the PhD fund of Yaitai University(HY07B33).References1A.Rothlisberger and R.Prins,J.Catal.,2005,235,229.2D.Chapados,S.E.Bonde,W.L.Gore,G.Dolbear and E.Skov, NPRA Annual Meeting,2000AM-00-25.3C.Li,Z.X.Jiang,J.B.Gao,Y.X.Yang,S.J.Wang,F.P.Tian,F.X.Sun,X.P.Sun,P.L.Ying and C.R.Han,Chem.–Eur.J.,2004,10, 2277.4H.Y.Lu,J.B.Gao,Z.X.Jiang,F.Jing,Y.X.Yano,G.Wang andC.Li,J.Catal.,2006,239,369.5J.B.Gao,Y.N.Zhang,G.Q.Jia,Z.X.Jiang,S.G.Wang,H.Y.Lu,B.Song andC.Li,mun.,2008,332.6J.M.Campos-Martin,M.C.Capel-Sanchez and J.L.G.Fierro, Green Chem.,2004,6,557.7J.Nehlsen,J.Benziger and I.Kevrekidis,Ind.Eng.Chem.Res.,2006, 45,518.8S.Otsuki,T.Nonaka,N.Takashima,W.H.Qian,A.Ishihara,T.Imai and T.Kabe,Energy Fuels,2000,14,1232.9Y.Shiraishi,K.Tachibana,T.Hirai and I.Komasawa,Ind.Eng.Chem.Res.,2002,41,4362.10F.M.Collins,A.R.Lucy and C.Sharp,J.Mol.Catal.A:Chem., 1997,117,397.11L.Y.Kong,G.Li and X.S.Wang,Catal.Today,2004,93–95, 341.12H.M.Li,W.S.A.Zhu,Y.Wang,J.T.Zhang,J.D.Lu and Y.S.Yan, Green Chem.,2009,11,810.13W.S.Zhu,H.M.Li,X.Jiang,Y.S.Yan,J.D.Lu,L.N.He and J.X.Xia,Green Chem.,2008,10,641.14A.Chica,A.Corma and M.E.Domine,J.Catal.,2006,242, 299.15K.J.Stanger and R.J.Angelici,Energy Fuels,2006,20, 1757.16F.Shibahara, A.Suenami, A.Y oshida and T.Murai,Chem.Commun.,2007,2354.17S.Murata,K.Murata,K.Kidena and M.Nomura,Energy Fuels, 2004,18,116.18J.T.Sampanthar,H.Xiao,H.Dou,T.Y.Nah,X.Rong and W.P.Kwan,Appl.Catal.,B,2006,63,85.19H.Y.Lu,J.B.Gao,Z.X.Jiang,Y.X.Yang,B.Song and C.Li, mun.,2007,150.20D.Lenoir,Angew.Chem.,Int.Ed.,2006,45,3206.21J.F.Liu,P.G.Yi and Y.S.Qi,J.Mol.Catal.A:Chem.,2001,170, 109.22D.Sloboda-Rozner and R.Neumann,Green Chem.,2006,8, 679.23A.M.Khenkin and R.Neumann,Adv.Synth.Catal.,2002,344, 1017.24S.D.Kadam,A.R.Supale and G.S.Gokavi,Z.Phys.Chem.,2008, 222,635.25A.R.Supale and G.S.Gokavi,Phosphorus,Sulfur Silicon Relat.Elem.,2010,185,725.26K.Ohkubo and T.Yamabe,Bull.Jpn.Petrol.Inst.,1970,12, 130.27K.Ohkubo and H.Kanaeda,Bull.Jpn.Petrol.Inst.,1971,13, 177.28K.Ohkubo and K.Y oshinaga,Bull.Jpn.Petrol.Inst.,1977,19,73.29M.Filowitz,R.K.C.Ho,W.G.Klemperer and W.Shum,Inorg.Chem.,1979,18,93.。

Ando催化剂催化合成2-硝基噻吩乙烯

Ando催化剂催化合成2-硝基噻吩乙烯

Ando催化剂催化合成2-硝基噻吩乙烯
黄敏;张庆;黄艳仙;程丽华;周如金
【期刊名称】《化学世界》
【年(卷),期】2007(48)2
【摘要】利用Ando催化剂合成了2-硝基噻吩乙烯。

其优化条件是:催化剂的负载量为每30 g Al2O3负载15 g KF,催化剂与2-噻吩甲醛的质量比为4.80∶1,硝基甲烷与2-噻吩甲醛质量比为1.09∶1,采用甲醇作催化剂的溶剂,反应温度控制在0-5℃之间。

反应时间1.4 h,产率可达95.91%。

【总页数】3页(P92-94)
【关键词】Ando催化剂;2-噻吩甲醛;硝基甲烷;2-硝基噻吩乙烯
【作者】黄敏;张庆;黄艳仙;程丽华;周如金
【作者单位】茂名学院应用化学系
【正文语种】中文
【中图分类】TQ251.2
【相关文献】
1.β-丙氨酸催化合成2-硝基乙烯噻吩 [J], 贾小棐;陈树伟;邢俊德
2.Cu-Sm-Cu三金属的配合物催化合成2-乙基-5-[2-硝基-1-(2-噻吩)]乙基-1H-吡咯 [J], 刘娥;杨洋
3.反式2-硝基噻吩乙烯的合成工艺改进 [J], 赵小艳;陈斐;颜秋梅;何斌
4.以碳酸钾为高效非均相催化剂合成2-氨基-3-氰基-4,5,6,7-四氢苯并[b]噻吩 [J],
谭小红;杨平;宋新建
5.利用Ando催化剂催化合成5,9-二氢化-3-[(2-羟基乙氧基)甲基]-6-对甲氧基苯基-9-氧代-5-氢-咪唑并[1,2-a]嘌呤的合成及其酰化的研究 [J], 照那斯图;沃联群;胡运昌;吴卫平
因版权原因,仅展示原文概要,查看原文内容请购买。

催化化学

催化化学

催化化学[填空题]1催化剂这一概念历史上最早是由哪个国家的哪位科学家于何年何刊物中正式提出的?参考答案:1836年,瑞典科学家贝采利乌斯(J.J.Berzelius)在《物理学与化学年鉴》中首次提出“催化剂”这一概念。

[填空题]2催化剂的本质是什么?它最早由哪个国家的哪位科学家于何年提出?参考答案:催化剂的本质是降低化学反应的活化能,把一个比较难发生的反应变成了两个很容易发生的化学反应。

在这两个反应中,第一个反应中催化剂扮演反应物的角色,第二个反应中催化剂扮演生成物的角色,所以说从总的反应方程式上来看,催化剂在反应前后没有变化。

[填空题]3工业合成氨催化剂的主要成分有哪些?历史上由于合成氨催化剂和工业化研究而获得诺贝尔化学奖的科学家是哪个国家的哪两位?参考答案:工业合成氨催化剂为铁触媒,其主要成分为Fe、Al2O3、K2O,由于合成氨催化剂和工业化研究,德国科学家哈伯(F.Haber)获得1919年诺贝尔化学奖,博什(C.Bosch)获得1931年诺贝尔化学工程、高压设备奖。

[填空题]4历史上最早模仿合成高压低密度聚乙烯的催化剂而发明聚丙烯合成催化剂的是哪个国家的哪位科学家。

他所发明的聚丙烯催化剂的组成为何?参考答案:历史上最早模仿合成高压低密度聚乙烯的催化剂而发明聚丙烯合成催化剂的是意大利科学家纳塔(G.Natta),他所发明的聚丙烯催化剂的组成为三氯化钛-三乙基铝[TiCl3-Al(C2H5)3]。

[填空题]5什么是催化剂?什么是催化作用?催化作用的本质是什么?催化作用的特征主要有哪四个方面?参考答案:催化剂是这样一种物质,由于它的存在,使化学反应趋于平衡的速度大大加快了,而它本身的组成、数量在反应前后没有发生变化。

根据IUPAC 于1981年提出的定义,催化剂是一种物质,它能够加速反应的速率而不改变该反应的标准Gibbs自由焓变化。

这种作用称为催化作用,即催化剂加速化学反应的现象。

其本质为改变了反应机理,降低了活化能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[在此处键入][在此处键入]文章编号: DOI:Anderson 型双亲催化剂(C 21H 46N)3[CoMo 6O 24H 6]的制备及其应用摘 要: 本文利用一系列含硫量为500ppm 的模型化合物进行了研究。

合成了一系列Anderson 型双亲催化剂(C 21H 46N)3[CoMo 6O 24H 6],并在H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6]体系下研究了影响氧化脱硫效果的因素。

并结合实验结果进行了分析。

通过实验探索出十八烷基三甲基氯化铵是最合适的表面活性剂;水乙醇相合成的(C 21H 46N)3[CoMo 6O 24H 6]在反应2h 后二苯并噻吩的脱硫率可以达到92.68%。

红外光谱分析结果表明:H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6]体系可以将油品中的噻吩类硫化物氧化成相应的砜或者亚砜。

关 键 词: 杂多酸;Anderson 型催化剂;氧化脱硫 中图分类号: TQ139.1 文献标识码: AThe Preparation and applications of the Anderson-type amphiphilic catalyst(C 21H 46N)3[CoMo 6O 24H 6]Abstract: In this paper, a series of model compounds were used with the sulfur content of 500ppm. Ander-son type amphiphilic catalyst (C 21H 46N )3[CoMo 6O 24H 6] was synthesized. and used as a catalyst to study the oxidative desulfurization of the sulfur-containing compounds.The experimental results show that Octadearyl di-methyl ammonium chloride is the most appropriate surfactant ;(C 21H 46N )3[CoMo 6O 24H 6] synthesized in the water-ethanol is the best preparation methods .,The the DBT conversion value can reach 92.68% in reaction for 2h.Infrared spectrum analysis results showed: in the H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6] system the sulfide com-pounds in oils could be oxidized into the corresponding sulfones.Key words: Heteropolyacids;Anderson-type Catalyst;Oxidative Desulfurization近年来在日益严格的环保要求趋势下,各国的汽柴油标准在不断改进。

因此,油品的清洁生产成为我们追求的目标,含硫量也成为衡量原油及其产品质量的重要指标之一。

如何实现既经济而又有效地清洁油品生产是石油炼制者们最大的挑战之一,非加氢脱硫技术逐渐成为突破口。

目前,国内为有文献[11-5]报道的汽柴油非加氢脱硫工艺主要有氧化脱硫(ODS )、萃取脱硫(EDS )、吸附脱硫(ADS )、生物脱硫(DBS )和离子液体脱硫等。

其中ODS 为国内外研究的热点。

自从1972年12-钨硅酸催化丙烯水合制异丙醇在日本成功工业化,杂多酸化学的研究越来越受到各国重视。

1984年,Pope 等[6]采用各种季铵盐,将杂多阴离子转移到非极性溶剂中。

针对杂多酸与油接触不充分会影响脱硫效果的问题,杂多酸季铵盐作为相转移催化剂是一个很好的解决方案。

后来,杂多酸季铵盐类催化剂被越来越广泛的应用于各类两相、三相反应中,并取得了一定的进展,并被视为一种环境友好型酸催化剂。

目前研究较多的是Keggin 结构杂多酸,但是对于Anderson 型研究较少,而将其应用到油品的氧化脱硫的报道更少,而它也是杂多酸盐一种常见的类型并具有以下其优点:合成方法简单以及合成周期短、可将过渡金属引入形成双金属型杂多酸阴离子簇。

李灿等[7]人利用杂多酸和季铵盐合成的相转移催化剂对柴油进行了氧化脱硫。

合成的催化剂是双亲性催化剂,它们可以介于在由氧化剂H 2O 2水溶液和柴油组成的相界面上。

氧化反应的条件较温和,柴油中的含硫分子能完全转化成相应的砜或亚砜,在氧化脱硫体系中双亲催化剂具有良好的催化性能。

氧化后的柴油经处理后硫含量由526µg/g 降低到小于10µg/g 。

因此选择合成(NH 4)3[CoMo 6O 24H 6]利用不同烷基链的铵盐对其进行包裹得到Anderson 型杂多酸季铵盐催化剂(简称SEP ),并将其应用到油品的深度氧化脱硫中以探索出SEP 的最佳合成方式以及最合适的表面活性剂.1 实验1.1原料七水和硫酸钴、四水合钼酸铵、四丁基氯化铵、十二烷基三甲基氯化铵、双十二烷基二甲基溴化铵、十六烷基三甲溴氯化铵、双十六烷基二甲基溴化铵、十八烷基三甲基氯化铵、无水乙醇,均为分析纯,购自国药集团化学试剂有限公司。

三氯甲烷、30%过氧化氢,均为分析纯,购自西陇化工股份有限公司.1.2催化剂的制备铵盐的制备:参考(NH4)3[CrMo6O24H6]•7H2O 的合成方法[8]探索出合成(NH4)3[CoMo6O24H6](简写为CoMo6-HPC)的方法,CoMo6-HPC由钼酸铵、硫酸钴以及双氧水制备而成,具体步骤为:称取30.9g(0.025mol)的(NH4)6 Mo7O24-4H2O溶于260mL 水中煮沸,称取4.2g(0.015mol)CoSO4-7H2O和2g(4mL)30%的H2O2,并将两者混合于30mL水中,混合均匀后将其缓慢滴加到煮沸的钼酸铵溶液中,在滴加的过程中保持钼酸铵溶液的沸腾状态。

滴加完成后继续煮沸1h,然后用水将混合物重结晶两次,放入60℃恒温箱中24h后得到蓝绿色晶体。

SEP的制备:1、水乙醇相合成SEP:称取0.25mmol合成的铵盐溶于20mL水中,按1:3的比例称取0.75mmol不同烷基链的表面活性剂(四丁基氯化铵、十二烷基三甲基氯化铵、双十二烷基二甲基溴化铵、十六烷基三甲溴氯化铵、双十六烷基二甲基溴化铵、十八烷基三甲基氯化铵)溶于20mL乙醇中,并将其滴加到铵盐溶液中,搅拌反应2h。

离心分离后用蒸馏水进行洗涤3次,然后在60℃恒温箱中干燥24h得到固体催化剂,然后对固体催化剂进行研磨得到粉末状催化剂。

2、水水相合成SEP:将乙醇换成水用1的方法合成水水相催化剂。

3、水氯仿相合成SEP:称取0.25mol合成的铵盐溶于10mL水中,按1:3的比例称取0.75mmol不同烷基链的表面活性剂(四丁基氯化铵、十二烷基三甲基氯化铵、双十二烷基二甲基溴化铵、十六烷基三甲溴氯化铵、双十六烷基二甲基溴化铵、十八烷基三甲基氯化铵),在通风橱中将其溶于氯仿中,并将其滴加到铵盐溶液中,搅拌反应2h。

用旋转蒸发器将氯仿溶液蒸发得到蓝绿色固体,在真空干燥箱60℃条件下干燥24h 得到固体催化剂,然后对固体催化剂进行研磨得到粉末状催化剂。

1.3氧化脱硫实验利用二苯并噻吩(DBT)配成含硫量为500μg/g 的模型化合物进行研究。

称取1.4395g DBT(常温下为固体)和1g的正十二烷,将两者溶于500mL 的正庚烷中,搅拌至DBT完全溶解。

量取30mL模型化合物于三口烧瓶中,向其加入一定量的H2O2并放入大小适中的磁子,将三口烧瓶安装在装有冷凝管的集热式磁力加热搅拌器中,采用丙三醇进行恒温,将搅拌速度控制在1000r/min左右。

然后将一定量的催化剂加入到三口烧瓶中,反应2h。

分别在5、10、30、60、90、120min取1-1.5mL样品于色谱瓶中,对油样进行离心分离取上清液。

利用气相色谱分析仪测定油样的硫含量,并与模型化合物标准样本进行比较。

1.4 SEP催化剂的表征利用荷兰Panalytical公司产的X’Pert ProMPD 型X射线衍射仪对合成的催化剂进行原子结构的分析。

利用美国尼高力Nicolet公司生产的Nicolet-58SXC型傅里叶变换红外光谱仪分析铵盐、Anderson型杂多酸催化剂和十八烷基三甲基氯化铵,KBr压片。

利用Panalytical Axios petro X 射线荧光光谱仪进行元素的定性和定量分析。

2催化剂的表征与分析2.1 X-射线衍射(XRD)表征10203040506070200040006000800010000120001400016000Intensity(counts))2Theta(°)图1 季铵盐的XRD谱图Fig.1 XRD image of quaternary-N图1为合成的CoMo6-HPC的XRD谱图。

经过检测,所制备的催化剂在2Ɵ为8°、18°附近有较强吸收峰表示合成的物质的主要成分为CoMo6-HPC。

2.2 X射线荧光光谱分析(XRF)表征分析表1为合成CoMo6-HPC的XRF结果,其中摩尔浓度=浓度/相对分子质量。

从表中可以看出Co/Mo接近6,证明合成的物质是铵盐。

结合XRD 的分析可以确定合成的铵盐确实为目标季铵盐CoMo6-HPC。

表1季铵盐的XRF 表征结果 Table1 XRF result of quaternary-N化合物 浓度 % 相对分 子质量 摩尔浓度 % MoO 3 90.41 240 0.38 Co 3O 49.13143.950.062.3红外光谱测试分析500100015002000250030003500100200T r a n s m i t t a n c e /%)Wavenumber/cm-1123图2 铵盐、SEP 和十八烷基三甲基氯化铵红外谱图 Fig.1 IR image of quaternary-N 、SEP 、Octadearyl di-methyl ammonium chloride1为合成的铵盐;2为Anderson 型杂多酸催化剂;3为十八烷基三甲基氯化铵。

(NH 4)3-的峰位置在3500~3100cm -1范围内,从图中可以发现合成的铵盐确实在3500~3100 cm -1范围内有特征峰,表明合成的确实是铵盐。

相关文档
最新文档