实数考点及题型.docx
(完整版)实数复习专题知识点及例题.doc
《实数》复习考点 1:简单计算:算术平方根,平方根,立方根。
1、 36 的算术平方根是; 16 的平方根是 ________; -8 的立方根是 _______2、 16 的算术平方根是;( 4)2 的平方根是 __________; 38 的立方根是 _______、计算 121 ______ ;327 =3;4、计算:( 6) 2 _____ ( 3)2____ ,(23)2 _______5、计算: 161 7389 276、解方程:( 1) 4x 29(2) 4 x 28 9( 3) 4(x 1)28 97、解方程:( 1) 8x 327( 2) 8x 326 27( 3) 8( x 1)327考点 2:实数的相反数,倒数,绝对值1、 3 7 的相反数是 ;绝对值等于3 的数是2、 2 3 的倒数的平方是, 2 的立方根的倒数的立方是 。
3、23 ______ , 3______4、计算:(1) 2 323 (2) 1223 3 2考点 3:实数的分类1、把下列各数分别填入相应的集合里:12,0,22,3?125,0.1010010001 , 10 2 ,0.3,72有理数集合:{ }; 无理数集合:{}; 负实数集合:{};考点 4:算术平方根,绝对值,平方的性质的应用1.已知一个数的平方根是 a 1和 2a 4 ,则这个数是多少。
2、已知a,b是实数,且有a 2 1 (b2) 20 ,求2a b 的值.1 y 4x 互为相反数,则-xy的平方根的值是多少?3、若 |2x+1| 与84.已知实数 x、 y、z 在数轴上的对应点如图x z 试化简:x y y z x z。
x zzx y 0【课堂练习】1.无限小数包括无限循环小数和,其中是有理数,2.如果 x 2 10 ,则 x 是一个数, x 的整数部分是.3. 64 的平方根是 ,立方根是 . 4. 1 5 的相反数是,绝对值是 .5.若 x6,则x.6.当 x _______时, x 3 有意义;7.当 x _______时,11有意义;x8.若一个正数的平方根是2a 1和a 2 ,则 a ____ ,这个正数是 9.当 0x 1时,化简 x 2 x1 __________;10. a,b 的位置如图所示,则下列各式中有意义的是() .A 、a bB 、a bC 、abD 、 b a11.全体小数所在的集合是() .A 、分数集合B 、有理数集合C 、无理数集合 12.若 (3x2) 31 61 ,则 x 等于() .64A 、 1B 、1C 、124413.计算:(1) 25 5 1(2) 10 310 4(3)2 3 2 4 2 3是无理数 .;ao bD 、实数集合9 D 、414.若x 4x y 50 ,求 xy 的值. 15.若m12n 1 0 ,求 m2000n4的值。
(完整版)实数知识点总结及习题练习,推荐文档
a a a a 2x x 1- x1、平方根实数知识点总结平方根、算数平方根和立方根 (3—10 分)如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 - a = -3 a ,这说明三次根号内的负号可以移到根号外面。
实数(平方根)单元习题练习思维启动如图是一块由两个正方形并排放在一起而成的硬纸板,请你用两刀把它裁成四块,然后拼成一个正方形,拼后的正方形边长为多少?综合探究探究一 由平方根和算术平方根的意义确定字母的取值范围 1.中被开方数为,根号下的被开方数必须是 才有意义,因此可列出不等式,x 的取值范围是.2. + 有意义,需要列出不等式组为. x 的取值范围a 2⎩是 .x3.x 的取值范围是 x +1答案:1. 2x ,非负数, 2x ≥ 0 , x ≥ 0 .⎧1- x ≥ 0,2. ⎨x ≥ 0. 3. x > -1 .0 ≤ x ≤ 1. 探究二 根据非负数性质求未知数的值已知 x 、 y 3(y - 2)2= 0 .1 3(y - 2)2+ 3(y - 2)2= 0 ,你能得到什么结论?.2.由 1,你能求出 x - y 的值吗?.答案:1.∵3(y - 2)2= 0 .≥ 0 , 3(y - 2)2≥ 0 , 3(y - 2)2= 0 = 0 ,2.由 1 得, x -1 = 0 , x = 1 ; y - 2 = 0 , y = 2 .∴ x - y = 1- 2 = -1. 探究三 平方根与简单的一元二次方程 1.由 x 2 -196 = 0 可得 , 2.据 1 得, x 是 196 的,所以 x =.3.由 1,2 的启示,请你试着求等式16 (x + 2)2- 81 = 0 中的 x 值..答案:1. x 2 = 196 . 2.平方根, x = ±14 .2 2 81 9 1 173.由16 (x + 2)-81 = 0 ,得(x + 2)=,∴ x + 2 =±16 4,∴x =或-.4 4探究四由平方根的意义确定字母的值3a - 22 和2a - 3 都是m 的平方根,求a 和m 的值.1.当3a - 22 与2a - 3 相等时,求a 和m 的值..2.当3a - 22 与2a - 3 互为相反数时,求a 和m 的值..3.讨论总结:m 的值为.答案:1.3a - 22 = 2a - 3 ,得a = 19 ,3a - 22 = 3⨯19 - 22 = 35 ,2a - 3 = 35 ,m = 352 = 1225 .2.3a - 22 + 2a - 3 = 0 ,得a = 5 ,3a - 22 = 3⨯ 5 - 22 =-7 ,2a-3=2⨯5-3=7,m=(-7)2= 72= 49 .3.m 的值为 1225 或49.探究五利用被开方数非负性求未知数的值已知x 、y 都是有理数,且y =+ 3 ,求y x+1 的平方根.1.表示x - 3 的,则x 的范围是.2.表示x - 3 的,则x 的范围是. 3.由1,2,得x =,y =. 4.讨论总结:y x+1 的平方根是多少?.答案:1.算术平方根,x ≥ 3 .2.算术平方根,x ≤3.3.x = 3 ,y = 3 .4.∵ y x+1 = 34 = 81,∴ y x+1 的平方根为±9 .探究六算术平方根与绝对值相综合题已知2009 -a +=aa - 2010 a - 2010 a - 20092 +15 a - 20092 +15 a - 2010 a - 2010 1. 由式子可以得出 a 的取值范围是什么?.2. 由 1,你能将等式 2009 - a + = a 中的绝对值去掉吗?.3. 由 2,你能求出 a - 20092 的值吗?.4. 讨论总结:求的值..答案:1.∵ a - 2010 ≥ 0 ,∴ a ≥ 2010 .2.原式变形为 a - 2009 + = a = 2009 .3. a - 2010 = 20092 , a - 20092 = 2010 .4. a - 20092 +15 = 2010 +15 = 2025 ,∴ = 45 . 探究七 平方根的实际应用一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个 36cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是 150cm 2,求原正方形的边长是多少?1. 由题意可知剪掉正方形的边长为cm .2. 设原正方形的边长为 x cm ,请你用x 表示盒子的容积..3. 由 1,2 的分析,请你列出方程,并解答,求原正方形的边长..答案:1.6.2. 6 (x - 6)2.3. 6 (x - 6)2= 150 , (x - 6)2= 25 , x - 6 = ±5 .∴ x = 11 或 x = 1 (舍去).即原25 121 25 121x 2 4 - y 29 - a 29 - a x - 4 a + b a +1 5正方形的边长为 11cm .随堂反馈251.的平方根的数学表达式是( )121A . = ±B .11= - 5 C . 11=5D . ± = ± 511112.9 的算术平方根是( )A . -3B .3C . ±3D .813. 当 x = -5 时,的值是()A .5B . -5C . ±5D .254. 正方形 M 的面积是正方形 N 的面积的 64 倍,那么正方形 M 的边长是正方形 N 的边长的( )A .4 倍B .8 倍C .16 倍D .2 倍5.一个数的算术平方根是它的本身,则这个数是. 6.= - ,则 xy 的算术平方根为.7. 代数式-5的最大值为.8. 已知 a , b+ b - 3a -1 = 0 ,求b 2 - 5a 的平方根.9. 如果 a的最大值及此时 a 的值.10. 已知2a -1 的平方根为±3 , 3a + b -1的平方根为±4 ,求 a + 2b 的平方根.参考答案25 121 25 121a +1 a +1 29 - a 7 79 352(-4)229 - a 9 9 (- 2)2⎩ ⎩1.D 2.B 3.A 4.B 5.0,1 6.4 7. -58.∵ ≥ 0 , b - 3a -1 ≥ 0 ,+ b - 3a -1 = 0 ,∴ 29 - a ≤ 29 , ≤ 5 .因此 的最大值为 5,此时 a 的值为 4.⎧2a -1 = 9,∴ = 0 , a = -1 ;b - 3a -1 = 0 , b - 3a -1 = 0 ,10.由题意,得⎨3a + b -1 = ⎧a = 5,⎨b = 2. 解得16. ∴ b = -2 .∴ b 2 - 5a = 9 , b 2 - 5a 的平方根为±3 . 9.∵ a 为正数,∴ a + 2b = 9 , a + 2b 的平方根为± 3.平方根跟踪练习(一)一、选择题1. 下列各式中无意义的是()A. - B . C. 12. 的算术平方根是()D . -41 111 A.B .C .16823. 下列运算正确的是()D . ±2A . -3 = 3B . -3 = -3C . = ±D . = -3二、填空题4. 若一个正方形的面积为 13,则正方形的边长为.5. 小明房间的面积为 10.8 米 2,房间地面恰好由 120 块相同的正方形地砖铺成,每块地砖的边长是.6. 计算:⑴=;⑵ =;⑶ =;⑷- =;⑸ ( 3)2 = .7. 若下列各式有意义,在后面的横线上写出 x 的取值范围:a +1 - 7(- 7)2x2 4 25 4 25 0.9 b -3 24 25 4 25 179⑴ ⑵8.若 a - 2 + = 0 ,则a 2 -b = .9. 一个正方形的面积扩大为原来的 4 倍,它的边长变为原来的倍,面积扩大为原来的 9 倍,它的边长变为原来的倍,面积扩大为原来的 n 倍,它的边长变为原来的倍.10.的算数平方根是它本身.三、解答题11. 求下列各数的算术平方根:⑴169⑵0.0256⑶124 25⑷ (- 2)212. 要种一块面积为 615.44 m 2 的圆形草地以美化家庭,它的半径应是多少米?(π 取3.14)平方根跟踪练习(二)一、选择题1. 下列说法中不正确的是()A. - 是 2 的平方根B. 是 2 的平方根C.2 的平方根是 12.的平方根是() D.2 的算术平方根是 41 111A.B.C.16 8 2423. “ 的平方根是± ”,用数学式子可以表示为()D. ±225A.= ± 55B. ±= ± 2C. = 25 5D. - = - 2 54. 下列各式中,正确的个数是()= ±42① = 0.3 ; ② ③ - 3 3 ;的平方根是-3; 5 - x222(- 5)216 (-9)21- a a -1 0.0004(- 0.1)20.81 0.04225713④ 的算术平方根是-5; ⑤ ± 是1 的平方根.6 36A.1 个B.2 个C.3 个D.4 个5.若 a 是(- 4)2的平方根,b 的一个平方根是 2,则代数式 a +b 的值为()A.8B.0C.8 或 0D.4 或-4 二、填空题6. 如果某数的一个平方根是-6,那么这个数为.7. 如果正数m 的平方根为 x + 1和x - 3 ,则m 的值是. 8.的算术平方根是, 的平方根是.9. 若b =+ + 4 ,则ab 的平方根是.三、解答题10. 求下列各式的值:⑴ ⑵ - ⑶ ±⑷ - ⑸ - ⑹一、选择题 1.C . 2.C .3.A . 二、填空题4.5.0.96.3;5;2;-4;3跟踪练习一答案7.x≥0;x≤58.19.2;3;10.0 和 1 三、解答题711.13;0.16; ;2512.14跟踪练习二答案12 1 4412 - 40213n一、选择题1.C2.D3.B4.A5.C二、填空题6.367.48.23 或-39.2 或-2三、解答题7 10.⑴15⑵-0.02⑶2⑷-0.1⑸0.7⑹9“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(完整版)实数知识点和练习
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc
2018年七年级数学下册实数知识清单+经典例题+专题复习试卷1、 定义:如果一个正数X 的平方等于a,即工=。
那么,这正数x 叫做a 的算术平方根。
记作氐 读作“根号屮。
a 叫做被开 算术平方根*方数,规定0的算术平方根还是0o2、 性质:双重非员性(a h 0,需X 0 )。
负数没有算术平方根。
'3、J 产=\a\ (a是任意数力(7^)2 =a (B 是非员数)。
1、定义:如果一个数X 的平方等于4即乂2 =4。
那么,这个X叫做a 的平方根。
记作土需,读作“正、员根号屮。
a 叫做被幵 方数。
规定0的算术平方根还是0o2、 性质:(1)正数有两个平方根,它们互为相反数。
(2) 0的平方根是0。
员数没有平方根。
3、 未知数次数是两次的方程,结果一般都有两个值。
72^1.414, 73^1.732,少恐2.236, J7俎26461、走义:如果一个数x 的立方等于匕 即x 3 =a o 那么,这个x 叫做a 的立方根。
记作砺,读作“三次根号护。
a 叫做被开方数。
2、性质:(1)正数的立方根是正数,员数的立方根是员数,0的立方根是0。
(2)1卜a 取任意数(3) (佝=° J分数(有理数和分数是相同的概念)rI 无限循环小数'1、开方开不尽的方根无理数无限不循环小数彳2、圆周率兀以及含有兀、3、具有特定结构的数(0.010010001……)有理数』r 正整数员整数(可以看成分母是1的分数)正实数o员实数有限小数平方根立方根【经典例题1】1、下列说法错误的是()4、若 a 2=4, b 2=9,且 ab<0,B. ±55、 设边长为3的正方形的对角线长为a.下列关于a 的四种说法: ®a 是无理数; ②a 可以用数轴上的一个点來表示;③3<a<4; ④a 是18的算术平方根.其中,所有正确说法的序号是 ( )A.①④B.②③C.①②④D.①③④ 6、 已知实数x 、y 满足心- l+|y+3|=0,则x+y 的值为( ) A. -2B. 2C.4D. -4【经典例题3】7、 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A. a+1B. a 2+lC.寸/+1Va+1f x 二 2f inx+ny=88、 已知■是二元一次方程组{、的解,则加・n 的算术平方根为( )\ y=l[nx - iny^lA. ±2B. V2C. 2D. 49、 有一个数值转换器,原理如下:A. 5是25的算术平方根 C. (-4)2的平方根是一4 2、下列各式中,正确的是()B. 1是1的一个平方根 D. 0的平方根与算术平方根都是0B.-佇二 _ 3C.寸(±3严二 ±3D.佇二 ±33、716的平方根是(A. ±2【经典例题2】B. 2C. — 2D. 16C. 5A. 2B. 8当输入的x=64时,输出的y 等于()【经典例题4】10、平方等于16的数是________ ;立方等于本身的数是_______________________ •11、一个数的立方根是4,这个数的平方根是______________ ,12、若一2x ra_n y2与3x7^是同类项,则m-3n的立方根是_____________ .【经典例题5】13、求x 的值:25(X+1)2=16;14、求y 的值:(2y-3) 2 - 64=0;15、计算:^4-23-|-2|X(-7+5) 16、计算:舗一血+ 乂-3)' -磁-2【经典例题6】17、已知实数a, b在数轴上的位置如图所示,化简:寸(fl) 4-1)并|a・b|. -------- ------- 1---------------- 1 ----- >・ 1^0 b 118、阅读理解7 >^<75 <79* 即2<V5<3» A1<V5-1<2-・••厉_1的整数部分为1,小数部分为厉_2・解决问题:己知a是JI7-3的整数部分,D是的小数部分,求(-a)"+(b + 4)2的平方根.参考答案1、c;2、B3、A4、B5、C6、A7、B8、C9、D10、±4, 0, ±111、&-812、213、x = -0. 2, x=-l. 8;14、y=5. 5 或y= - 2. 5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得-l<a<0<b<l.原式二a+1+2 - 2b - b+a=2a - 3b+3.18、由题意,得幺=1,i = T17-4 所以(一幺尸 + 0+4)2 = (-1尸 + (何_4+4)2 = 16 即+ @ + 4)2的平方根为±牛2018年 七年级数学下册 实数 期末复习试卷一、选择题:1、下列语句中正确的是(C. 9的算术平方根是±3D. 9的算术平方根是3设边长为3的正方形的对角线长为a.下列关于a 的I 川种说法: ①a 是无理数; ②a 可以用数轴上的一个点來表示; @3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是() A.①④B.②③C.①②④ D.①③④7、负的算术平方根是( )A. ±6B. 6C. ±A /6D. V68、下列各数中,3. 14159,-饭,0.3131131113- (2016春•潮州期末)下列各式表示正确的是9、己知实数x 、y 满足Jx=l+1 y+31二0,则x+y 的值为()10、若正数a 的算术平方根比它本身大,则( )A.・9的平方根是・3B. 9的平方根是3 2、下列结论正确的是(A- -{(-6)2二-6 B.(~{5)2二9 C. 7(~16) 2=± 16 D.-(2,16 ^25A- 4、 下列关于祈的说法中,错误的是( 灵是8的算术平方根 B. 2<品<3 下列各组数中互为相反数的一组是()C. 78= ±2^2D.灵是无理数A. ■⑵与寻PB.・4与・{(-4)2C.D. P 与法5^如果际〒二2. 872, ^3700 =28.72,则勺0・023厂(A. 0. 2872B. 28. 72C. 2. 872D. 0.02872 6、 B. ±725=5A. - 2B. 2C. 4( )lk •估计— 1在()A. 0〜1之间•B. 1〜2之间C. 2〜3之间D. 3〜4之间12、实数纸b在数轴上对应点的位置如图,则|a-b| -肯的结果是()•••Aa b0A. 2a - bB. b - 2aC. bD. - b二、填空题:13、(-9)2的算术平方根是_.14、如图,在数轴上点A和点B之间的整数是_________ .15^ 己知(x - 1) 2二3,则x= _ .16、如杲丽二1.732, A/30 =5.477,那么0. 0003的平方根是________ .17、若3、b互为相反数,c、d互为负倒数,则石匸尹+畅= _______________ •18、已知a, b为两个连续的整数,且a<V8<b,则a+b二____________ .三、解答题:19、求x 的值:9(3x - 2尸二64. 20、求x 的值:(5- 3x?=—4921、计算:7132-12222、计算:(亦尸+旷爾一加2一炉.23、已知x・1的平方根为±2, 3x+y・1的平方根为±4,求3x+5y的算术平方根.24、已知2a-l的平方根是±3, 3a+b_9的立方根是2, c是妬的整数部分,求a + 2D+f的值•25、阅读下面的文字,解答问题:大家知道迈是无理数,而无理数是无限不循环小数,因此迈的小数部分我们不可能全部写出来,于是小明用屁-1来表示典的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为近的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:・・・2'<7<3,即2<听<3,・••听的整数部分为2,小数部分为听・2.请解答:(1)Vio的整数部分是__________ ,小数部分是 _________ .(2)如果衍的小数部分为a, 荷的整数部分为b,求a+br/^的值;(3)己知:x是3+^5的整数部分,y是其小数部分,请直接写出X- y的值的相反数.26、若实数a, b, c 在数轴上所对应点分别为A, B, C, a 为2的算术平方根,b 二3, C 点是A 点关 于B点的对称点,(1) 求数轴上AB 两点之间的距离; (2) 求c 点对应的数;27、已知字母a 、b 满足亦二+的_21 1 1 1~ab @ + 1)@ + 1)@+2)@ + 2)… @ + 2011)@ + 2001)第X 页共1()页(3) 3的整数部分为x, c 的小数部分为y,求2x^+2》的值(结果保留带根号的形式)的值.1、 D2、 A3、 C4、 C5、 A6、 C7、 D8、 C9、 A 10、 11、 12、 C 13、 9.14、 答案为:2. 15、 答案为:土近+1. 16、 ±0.01732. 17、 -118、 答案为:5.149 19、 开平方得:3 (3x-2)二±8 解得:Xi=—, x 2= - -T .9920、§或兰7 2116 T -10; 23、5 24、a=5, b 二2, c 二7, a + 2&+u 二 16・(2) V4<5<9,・・・2<任<3,即沪旋 ・2, V36<37<49, A6<V37<7,即 b 二6,贝lj a+b ・ 丽二4;(3) 根据题意得:x=5, y=3+{^ - 5二- 2,・;x - y=7 - 其相反数是A /5 - 7.26、(1) 3; (2) 6;72 ⑶尸2—屈.21、参考答案21、22、25、 解: (1) V10的整数部分是3,小数部分是V10- 3;故答案为:3; V10- 3;•解;、「7/o,丑-1~ o且-f 二o'弋鳥解得伫°b十@H"賊斗3化X昭十• • •十莎丽莎和 -丄丄亠」一-2 +A3十3*卩十・・・十二卜亍+土一土+》* +・・•十二 /_ Zo/27。
(完整word版)七年级下册数学实数知识点归纳与考题
七年级数学(下)辅导资料【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.相反数:互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.倒数:(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数绝对值|a|≥0.11.有效数字和科学记数法(1)有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.(2)科学记数法:把一个数用(1≤a <10,n为整数)的形式记数的方法叫科学记数法.题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3意义的条件是a≥0。
实数复习专题知识点及例题(完整资料).doc
【最新整理,下载后即可编辑】实数习题集【知识要点】1.实数分类:2.相反数:b a, 0=+b a4.倒数:b a ,0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、的倒数的平方是 ,2的立方根的倒数的立方是 。
5、2-的绝对值是 ,11-的绝对值是 。
6、9的平方根的绝对值的相反数是 。
7的相反数是 ,-的相反数的绝对值是 。
实数有理数 无理数整数(包括正整数,零,负整数)分数(包括正分数,负整数) 正无理数 负无理数)0(>a 3.绝对值: =aaa -)0(=a)0(<a8+ 。
【典型例题】例1、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---•-有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与 (2)6756--与例3.化简: (1)233221-+-+-(2例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.例5 若|2x+1|与x y 481+互为相反数,则-xy 的平方根的值是多少?总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例6.已知b a ,为有理数,且3)323(2b a +=-,求b a +的平方根例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z---++++-。
【课堂练习】1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数.2.如果102=x ,则x 是一个 数,x 的整数部分是 . 3.64的平方根是 ,立方根是 . 4.51-的相反数是 ,绝对值是 . 5.若==x x 则6 . 6.当_______x 时,32-x 有意义; 7.当_______x 时,x-11有意义;8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.当10≤≤x 时,化简__________12=-+x x ;10.b a ,的位置如图所示,则下列各式中有意义的是( ). A 、b a +B 、b a -C 、abD 、a b -11.全体小数所在的集合是( ).0 y x za boA 、分数集合B 、有理数集合C 、无理数集合D 、实数集合12.等式1112-=+⋅-x x x 成立的条件是( ). A 、1≥x B 、1-≥x C 、11≤≤-xD 、11≥-≤或x13.若64611)23(3=-+x ,则x 等于( ).A 、21 B 、41C 、41-D 、49-14.计算: (1)21--(2)34+(324++-++(4)81214150232-+-15.若054=-++-y x x ,求xy 的值.16.设a、b是有理数,且满足(2a+=-,求b a的值117.若m++=,求2000410-的值。
实数_知识点+题型归纳
第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为 . 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,则称这个数为a立方根。
数a的立方根用表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根(三次方根)的运算,叫做开立方。
四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法则:减去一个数等于加上这个数的相反数。
3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。
专题01 实数(重点+难点)(解析版)
专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。
(完整word)实数知识点、典型例题及练习题单元复习,推荐文档
第六章《实数》知识点总结及典型例题练习题一、平方根1. 平方根的含义如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即a x =2,x 叫做a 的平方根。
2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ±表示,a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根。
⑵一个正数有两个平方根:a ±(根指数2省略)0有一个平方根,为0,记作00= ,负数没有平方根 ⑶平方与开平方互为逆运算开平方:求一个数a 的平方根的运算。
a a =2==⎩⎨⎧-a a00<≥a a()a a =2(0≥a )⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为____ 4的平方根为____ ____4=4开平方后,得____3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294*若0>>b a ,则b a >二、立方根和开立方1.立方根的定义如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a2. 立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3. 开立方与立方开立方:求一个数的立方根的运算。
()a a =33a a =33 33a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
三、推广: n 次方根1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。
当n 为奇数时,这个数叫做a 的奇次方根。
当n 为偶数时,这个数叫做a 的偶次方根。
2. 正数的偶次方根有两个。
n a ± 0的偶次方根为0。
(word完整版)七年级下册实数知识点总结及常见题,推荐文档
实数1•算术平方根:正数a的正的平方根叫做a的算术平方根,记作“ .a”。
2. 如果x2a,则x叫做a的平方根,记作“ 土,a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个且为正。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“储”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 实数:有理数和无理数统称为实数有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数)无理数:无限不循环小数(常见无理数有-2,,等)10. 数轴上的点和实数—对应。
题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和土1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3- a 本身为非负数,有非负性,即卩Va >0;有意义的条件是a> 0。
4、公式:⑴(j a)2=a (a>0);⑵(a 取任何数)。
5、区分a )2=a (a > 0),与a2=a6、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 (此性质应用很广,务必掌握)。
【典型例题】1. 下列语句中,正确的是()A •一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个2. 下列说法正确的是()2A. -2是(2)的算术平方根B. 3是-9的算术平方根C. 16的平方根是土4D. 27的立方根是土33. 已知实数x , y 满足 X 2+(y+1) 2=0,则x-y 等于 _________________4. 求下列各式的值(1) 、81 ;( 2) 16 ;( 3)、9 ;( 4) ... ( 4)2\25 '4、 3 4= ____________5、 若m 、n 互为相反数,则 m J5 n = ________________26、 若a a ,贝 V a ___ 03、已知一个正数的两个平方根分别是2a - 2和a - 4,贝U a 的值是 _______5. 已知实数x , y 满足x 2+(y+1) 2=0,则 x-y 等于6. (1) 64的立方根是 4(2) 下列说法中:① 3都是27的立方根,②3 y 3 y ,③.64的立方根是2, ④ -8 2 4。
(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档
实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同样的两个数叫做互为相反数〔零的相反数是零〕,从数轴上看,互为相反数的两个数所对应的点关于原点对称,若是 a 与 b 互为相反数,那么有 a+b=0, a=— b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。
零的绝对值时它自己,也可看作它的相反数,假设 |a|=a ,那么 a≥ 0;假设 |a|=-a ,那么 a≤ 0。
正数大于零,负数小于零,正数大于所有负数,两个负数,绝对值大的反而小。
3、倒数若是 a 与 b 互为倒数,那么有ab=1,反之亦成立。
倒数等于自己的数是 1 和 -1 。
零没有倒数。
二、平方根、算数平方根和立方根1、平方根若是一个数的平方等于a,那么这个数就叫做 a 的平方根〔或二次方跟〕。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a 〞。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a 〞。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a 〔 a0〕a0a 2a;注意 a 的双重非负性:- a〔a <0〕a03、立方根若是一个数的立方等于a,那么这个数就叫做 a 的立方根〔或 a 的三次方根〕。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:3a 3 a,这说明三次根号内的负号可以移到根号外面。
三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做 a 10n的形式,其中1a10 ,n是整数,这种记数法叫做科学记数法。
四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,要注意上述规定的三要素缺一不可以〕。
2、实数大小比较的几种常用方法(1〕数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
实数复习及习题.docx
实数复习及习题.docx知识要点:-。
平⽅根和⽴⽅根类型项⽬7^平⽅根⽴⽅根被开⽅数⾮负数任意实数符号表⽰ ± y[al/a 性质—个正数有两个平⽅根,且互为相反数;零的平⽅根为零;负数没有平⽅根; —个正数有⼀个正的⽴⽅根;⼀个负数有⼀个负的⽴⽅根;零的⽴⽅根是零;重要结论 (亦⼫=a(p. > 0) 圧科如0) ri [- a(a < 0) 阿=a ^ = a= -\[a⼆.实数有理数和⽆理数统称为实数.1. 实数的分类有理数:有限⼩数或⽆限循环⼩数⽆理数:⽆限不循环⼩数正数按与0的⼤⼩关系分:实数< 0负数2. 实数与数轴上的点⼀⼀对应.数轴上的任何⼀个点都対应⼀个实数,反之任何⼀个实数都能在数轴上找到⼀个点A/Z 对应.三、实数⼤⼩的⽐较对于数轴上的任意两个点,右边的点所表⽰的实数总是⽐左边的点表⽰的实数⼤.⽌实数⼤于0,负实数⼩于0,两个负数,绝对值⼤的反⽽⼩.四. 实数的运算:数4的相反数是⼀a ; —个正实数的绝对值是它本⾝;⼀个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成⽴.实数混合运算的运算顺序:先乘⽅、开⽅、再乘除,最后算加减?同级运算按从左到右顺序进⾏,有括号先算括号⾥.实数复习按定义分: 实数五.实数的⼤⼩的⽐较:有理数⼤⼩的⽐较法则在实数范围内仍然成⽴。
法则1.实数和数轴上的点⼀⼀对应,在数轴上表⽰的两个数,右边的数总⽐左边的数⼤;法则2.正数⼤于0, 0⼤于负数,⽌数⼤于⼀切负数,两个负数⽐较,绝对值⼤的反⽽⼩;法则3.两个数⽐较⼤⼩常见的⽅法有:求差法,求商法,倒数法,估算法,平⽅法。
例题分析J ⽆-3 + ^3 — |x| + 121、x-3求⽦⼙的值.练习1.已知y = &-2 + - x + 3,求严的平⽅根。
练习2?若勿3— 7和哥3⼙+ 4互为相反数,求x+y的值。
2、已知〃是满⾜不等式-巧X < ------2的最⼤整数.求』什"的平⽅根.3、已知a是怖的整数部分,&是它的⼒澈部分,求° f 1 b + 3 f 的值.练习:已知5 + TH的⼒澈部分为a, 5- VH的⼩数部分为b,则⾊+b的值是_______ ; a—b的值是__________4、阅读理解,回答问题.在解决数学问题的过程⼬,有时会遇到⽐较两数⼈⼩的问题,解决这类问题的关键是根据命题的题设和结论特征,采川相应办法,其中巧川“作差法”是解决此类问题的⼀种⾏之有效的⽅法:若 a —b>0,则 a 〉b ;若 a —b=0,则 a = b ;若 a —b<0,则 a 〈b.例如:在⽐较m2 + l 与m2的⼤⼩时,⼩东同学的作法是:T (陀$ +1)⼀(叨⼻)=叨2 * ] _ ⾎2 = 1 >:.m 2+1 > ^2.请你参考⼩东同学的作法,⽐较⼈⼩:4$ ----------- (2 + 练习: a 在数轴上的位置如图所⽰,则丄卫*的⼤⼩关系是:a.----- * ----- ? ------------------- * ---------------------------------- > -1 a 05、L 2? 知 a 、b ['两⾜ +8 + |b — = 0解关于x 的⽅程 @ + 2)兀+沪=么-1练习:设a 、b 、c 都是实数’且满⾜(2_拧+』/+⼼+以+ * +別=0 求代数式 2a-3b-c 的值。
专题01 实数(重点)(解析版)
专题01 实数(重点)一、单选题1.下列实数中:2π,2,00.8080080008…,﹣227,中,无理数的个数是( )A .3B .4C .5D .62182=-2==4=±,⑥2=-;正确的有( )A .4个B .3个C .2个D .1个【点睛】此题考查求一个数的算术平方根及立方根,正确掌握算术平方根定义及立方根定义是解题的关键.3.关于2描述错误的是( )A是无理数B表示2的算术平方根C无法在数轴上表示出来D.面积为24+的值应在()3A.5和6之间B.6和7之间C.7和8之间D.8和9之间5.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23p -是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .66.下列计算正确的是( )A 2=±B 2==C 12=D .2=7.若,x y为实数,且x+=,则y x=()|1|0C.3D.3-A.1B.1-【答案】B【分析】根据绝对值和算术平方根的非负性,求出x、y的值,代入计算得到答案.【解析】解:由题意得,x+1=0,y-3=0,解得,x=-1,y=3,∴()311yx=-=-,故选:B.【点睛】本题考查的是绝对值的性质、算术平方根的概念和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.8)A.a的正的n次方根B.a的n次方根C.当0a£时,且n为奇数时,表示a的n a³时,表示a的正的n次方根D.当0次方根9.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数2P应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上102.938= 6.329==( )A .632.9B .293.8C .2938D .6329二、填空题11.填空①=______,②0.001-的立方根是____________;______0;⑤34-______56-;⑥______4-.12.25的算术平方根为x ,4是1y +的一个平方根,则x y -=______.13________,2________.14表示成幂的形式是________.15.设a ,b 是一个无理数,若a b<<,是,则a b =____.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.16.计算:213331218æöæö´=ç÷ç÷èøèø______.17.若ab 的整数部分,则a b -=______.18=____________________.三、解答题19.把下列各数写入相应的集合内:21,3205p -&&(1)有理数集合:{ …}(2)正实数集合:{ …}(3)无理数集合:{ …}(4)负实数集合:{20.计算题:)2;.21.计算:(1)129()25;(2)111344(882-´;(3)11123227()([(]64----+;(4)11222[(23)(23)]-+.22.计算:;.23)11642¸.24.回答下列问题:(1)若一个数的平方根是31m -和42m -,求m 的值,并求出该数;(2)已知26x -的一个平方根是225x y ++,的立方根是3,求22x y +的平方根.∴22x y +=22512+=169,则22x y +的平方根为±13.【点睛】本题考查立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.25.已知a 的立方根是2,b 是13的整数部分,c 是9的平方根,求a +b +c 的算术平方根.26.实数10的整数部分是x ,小数部分是y .(1)求x y -的值;(2)求||1|x y +-的值.27.如图,一辆小车从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所Array表示的数为m(1)求m的值;(2)求()0-++的值.m m1628.小军做了两个正方体纸盒,已知第一个正方体纸盒棱长为3厘米,第二个正方体纸盒比第一个纸盒体积大189立方厘米,试求第二个正方体纸盒的棱长.29.如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点BA所表示的数为m.(1)实数m的值是_______;(2)求2+++的值;m m(2)|1|(3)在数轴上还有,C D两点分别表示实数c和d,且有|24|c+与4d-互为相反数,求23+的平方根.c d30.如图1,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1)拼成的正方形的面积是 ,边长是 ;(2)仿照上面的做法,你能把下面这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图2中画出拼接后的正方形,并求边长;若不能,请说明理由.31.一个数值转换器,如图所示:(1)当输入的x为81时.输出的y值是_________;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值;(3)若输出的y,请写出两个满足要求的x值.32.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.22﹣=0.2.(1)仿照以上方法计算:]= {5}= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=[],y 3=],…,以此类推,直到yn 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = .分,理解定义内容是解题关键.。
实数知识点和典型例题练习题总结(超全面)
实数知识点和典型例题练习题总结(超全面).doc实数知识点和典型例题练习题总结(超全面)引言实数是数学中最基本的数的概念之一,它包括有理数和无理数。
掌握实数的知识点对于解决各种数学问题至关重要。
本文档旨在全面总结实数的知识点和典型例题,以帮助学生深入理解和掌握实数的概念、性质和运算。
实数的定义与分类实数的定义实数是可以在数轴上表示的数,它包括有理数和无理数。
有理数有理数是可以表示为两个整数的比的数,即形式为 ( \frac{p}{q} ) 的数,其中 ( p ) 和 ( q ) 是整数,且 ( q \neq 0 )。
无理数无理数是不能表示为两个整数比的实数,例如圆周率 ( \pi ) 和黄金分割比 ( \phi )。
实数的性质有序性实数具有有序性,即对于任意两个实数 ( a ) 和 ( b ),要么 ( a < b ),要么 ( a > b ),或者 ( a = b )。
完备性实数的完备性指的是,任意实数的上界和下界都存在极限点。
稠密性实数具有稠密性,即在任意两个不同的实数之间,都存在无穷多个实数。
实数的运算加法实数的加法满足交换律和结合律。
减法实数的减法是加法的逆运算。
乘法实数的乘法同样满足交换律、结合律和分配律。
除法实数的除法是乘法的逆运算,但除数不能为零。
乘方实数的乘方表示将一个数自乘若干次。
开方实数的开方是乘方的逆运算,表示求一个数的 ( n ) 次根。
典型例题例题1:实数的比较给定两个实数 ( a = \sqrt{2} ) 和 ( b = \sqrt{3} ),比较它们的大小。
解答:由于 ( 2 < 3 ),因此 ( \sqrt{2} < \sqrt{3} ),即 ( a < b )。
例题2:实数的运算计算 ( (-3)^2 + \pi - \frac{1}{2} ) 的值。
解答:根据实数的运算法则,我们有 ( (-3)^2 = 9 ),所以 ( 9 + \pi - \frac{1}{2} )。
实数【9个考点知识梳理+题型解题方法+专题过关】
专题02 实数【9个考点知识梳理+题型解题方法+专题训练】考点一:算术平方根算术平方根的定义:一个正数x 的平方等于a ,即()02>x a x =,则x 是a 的算术平方根。
表示为a 。
算术平方根的性质:①算术平方根的双重非负性:算术平方根本身大于等于0,算术平方根的被开方数也大于等于0。
即a ≥0,a ≥0。
非负性的应用:几个非负数的和等于0,则这几个非负数分别等于0。
即若0...=+++m b a ,则====m b a ...0。
②一个正数的算术平方根的平方等于这个数本身。
即()=2a a 。
③一个数的平方的算术平方根等于这个数的绝对值。
再根据这个数的正负去绝对值符号。
即=2a a 。
④规定0的算术平方根是0。
⑤算术平方根等于它本身的数有0和1。
算术平方根的估算:利用夹逼法对算术平方根进行估算。
【考试题型1】求一个数的算术平方根【解题方法】根据定义以及表示方法求一个数的算术平方根。
注意这个数本身是算术平方根时要先计算出它的值在求它的算术平方根。
例题讲解:1.(2022春•汶上县期中)9的算术平方根是( )A .﹣3B .3C .±3D .81【分析】首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.【解答】解:∵=3,∴9的算术平方根是3.故选:B .(2022春•哈巴河县期中)16的算术平方根是( )A .4B .2C .±4D .±2【分析】利用算术平方根的意义解答即可.【解答】解:∵=4,4的算术平方根为2,∴的算术平方根是2,故选:B .【考试题型2】算术平方根的非负性【解题方法】根据几个非负数的和等于0,则这几个非负数分别等于0进行求解。
注意非负数还有绝对值,偶次方。
例题讲解:2.(2022春•镜湖区校级期中)若01=++-y x x ,则x +y 的值为( )A .﹣1B .0C .1D .2【分析】根据二次根式的定义可知被开方数必须为非负数,由此得到x ﹣1=0,x +y =0,然后即可求解.【解答】解:∵,∴x ﹣1=0,x +y =0,所以x +y =0.故选:B .【考试题型3】算术平方根的性质【解题方法】根据一个算的算术平方根的平方等于这个本事,一个数的平方的算术平方根等于这个数的绝对值,在根据绝对值求解。
(完整word版)实数章节常见题型归纳-推荐文档
实数章节常见题型一、实数的有关概念及分类1.实数 , 0, .,3.1415926, , , 中无理数有 个, 则 ---.. )A 1B 2C 3D 42.下列各数中, 不是无理数的是 ( )A 7B 0.5C 2D 0.151151115…)个之间依次多两个115(3.下列说法正确的是....).A.有理数只是有限小...B.无理数是无限小.C.无限小数是无理.....D. 是分数4.下列语句中正确的是【 】(A)带根号的数是无理数 (B)不带根号的数一定是有理数(C)无理数一定是无限不循环的小数 (D)无限小数都是无理数5. - 的相反数是________, - 的相反数是____________。
6. 以下说法错误的是( )A. 是无理.B. 是无限不循环小.C. 是实..D. 是无限循环小数7.若a 是1- 的相反数, 则a 的值为( )A.1+B.—1—C.—1+D.以上都不是8. 边长为2的正方形的对角线长是( )A.整数B.分数C.有理数D.无理数9 _________的相反数等于它本身;_________的绝对值等于它本身;_________的倒数等于它本身;_________的平方等于它本身;_________的立方等于它本身;_________的平方根等于它本身; _________的立方根等于它本身;_________的偶次方根等于它本身; _________的奇次方根等于它本身;10、 、 分别介于哪两个正整数间?请写出3个大小在3和4之间的无理数。
二、平方根、立方根定义及求法1. 的平方根...... .42的平方根......2. 的被开方数......;根指数..... ;3.14.....个平方根,它们....... ;它们的和......;它们互....... ;4.16的算术平方根是( )A ,4 B,±4 C ,2 D,±25, 下列等式中: ①, ②, ③, ④, =0.001 ⑤, ⑥, ⑦, — 中正确的有( )个。
(最新最全)实数知识+经典例题+习题(全word已整理)
第二章 实数知识点:1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______.3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______.5. 一般的,如果______,那么这个数叫做a 的立方根或三次方根。
这就是说,如果______,那么x 叫做a 的立方根,a 的立方根记为________.6.求一个数a 的______的运算,叫做开立方.7.正数的立方根是______数;负数的立方根是______数;0的立方根是______. 8.一般的,=-3a ______.9. ______叫无理数,______统称实数. 10.______与数轴上的点一一对应.类型一.有关概念的识别例1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=± 1 D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、 1.4C、D、【变式3】类型二.计算类型题例2.设,则下列结论正确的是()A. B.C. D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合例3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.- 1 B.1-C.2-D.-2类型四.实数非负性的应用例4.已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
核心考点01 实数(原卷版)
核心考点01 实数目录考点一:近似数和有效数字考点二:平方根考点三:算术平方根考点四: 非负数的性质:算术平方根考点五:立方根考点六:无理数考点七:实数考点八:实数的性质考点九:实数与数轴考点十:实数大小比较考点十一:估算无理数的大小考点十二:分数指数幂一、实数的概念ììììïïíïíïïîíïïíîïïïîïïî正整数自然数整数零有理数实数负整数分数无理数或者:ììïïíïïïíîïìïíïîî正有理数有理数零负有理数实数正无理数无理数负无理数1.有理数:有理数就是能表示成两个整数之比的数;有理数包括:整数和分数; 有理数是有限小数或无限循环小数。
2.无理数:无理数是无限不循环小数。
3.实数:有理数和无理数统称为实数,实数与数轴上的点是一一对应的。
二、数的开方4.若2x a =,则x 叫做a 的平方根;正数a有两个平方根是表示正的平方根;表示负的平方根;零的平方根记作=0;负数没有平方根。
考点考向求一个数a 的平方根的运算叫做开平方,a 叫做被开方数;5.平方根与开平方的性质(1)当0a >时,2=a,2(= a (2)当0a ³a =,当0a <a=-6. 若3x a =,则x 叫做a 的立方根,记作:,a 叫做被开方数,3叫做根指数.正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零。
即:任意一个实数都有立方根,而且只有一个。
求一个数a 的立方根的运算叫做开立方.7.立方根与开立方的性质:3,()a a a ==为一切实数;8.若n x a =(1n >的整数),则x 叫做a 的n 次方根;当n 为奇数是,x 叫a 的奇次方根;当n 为偶数是,x 叫a 的偶次方根;实数a正数a 的偶次方根有两个,它们互为相反数, 正nn次方根表示为:负数的偶次方根不存在.零的偶次方根为零,表示为0=.求一个数a 的n 次方根的运算叫做开n 次方.a 叫做被开方数,n 叫做根指数.9.估计无理数的范围三、实数的运算1.实数范围内绝对值、相反数、倒数等概念(1)绝对值:一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数知识网络结构图算术平方根的概念:若x 2= ( > 0) ,则正数x 叫做a 的算术平方根a x平方根的概念:若 x 2= a ,则 x 叫做 a 的平方根表示: a 的平方根表示为a ,a 的算术平方根表示为a只有非负数才有平方根,0 的平方根和算术平方根都是 0平方根( a )2a(a 0) 意义a( a 0)a 2aa( a <0)实数定义:若 x 3= a ,则 x 叫做 a 的立方根 表示: a 的立方根表示为3a立方根意义3a 3 a(3 a )3 a整数有理数有限小数实数分数无限循环小数无理数:无限不循环小数一、知识性专题专题 1 无理数与有理数的有关问题例 1在- 2, 0, 2,1,3,-中,正数有( )4A.2个B. 3 个C .4个D .5 个例 2 请写出两个你喜欢的无理数, 使它们的和为有理数, 你写的两个无理数是 .专题 2 平方根、立方根的概念例 3要到玻璃店配一块面积为1.21 m 2 的正方形玻璃, 那么该玻璃的边长为m .11例 4计算 8 (20103)0.2例 5 已知 b = a 3+2c ,其中 b 的算 平方根19, c 的平方根是± 3,求 a 的 .3 数的有关概念及 算例 6把下列各数分 填入相 的集合里:38 ,3 ,-,,22,32 ,7 ,3780,- 0. ? ?7 ,⋯ ( 每两个相 的02 ,,2 中 依次多1个 1).(1) 正有理数集合: {⋯ } ; (2) 有理数集合: { ⋯ } ;(3)无理数集合: { ⋯} ; (4)数集合: {⋯ } .例 7 如 13-13 所示,在数 上点 A 和 B 之 的整数点有 __ 个.a b例 8已知 a ,b 数 上的点,如13-14 所示,求的 .a b4 非 数的性 及其 用例 9若 ( 3 a)2与 b1 互 相反数,2的 .a b例 10 已知 a ,b ,c 都是 数,且 足 (2 - a ) 2+ a 2 b c c 8 =0,且 ax 2+ bx +c = 0,求代数式3x 2+6x + 1 的 .例 11 已知 数x , y 足 2x 3y 1 x 2 y 2 0 ,求 2x4y 的平方根.522例 12 若 a , b 为实数,且 ba11 aa,求a b 3 的值.a 1二、规律方法专题专题 5实数比较大小的方法1.平方法当 a >0, b > 0 时, a > ba >b .例13比较 2 3和3 2的大小.2.移动因数法利用 a =a 2 ( a ≥ 0) ,将根号外的因数移到根号内,再比较被开方数的大小.例14比较 4 3和5 2的大小.3 .作差法当 a -b = 0 时,可知 a =b ;当 a -b > 0 时,可知 a >b ;当 a -b < 0 时,可知 a <b .例15比较4 3与3 6的大小.4.作商法若A1 ,则A =B ;若 A > 1.则A >B ;若A<1.则 A <B .( A ,B >0 且B ≠0)BBB例 16比较45和11的大小.3三、思想方法专题专题 6分类讨论思想【专题解读】当被研究的问题包含多种可能情况,不能一概而论时,应按所有可能的情况分别讨论.实数的分类是这一思想的具体体现.要学会运用分类讨论思想对可能存在的情况进行分类讨论.要不重不漏.本章在研究平方根、立方根及算术平方根的性质以及化简绝对值时均用到了分类讨论思想.例 17已知数轴上有A B两点,且这两点之间的距离为4 2,若点A在数轴上表示,的数为 3 2 ,则点B在数轴上表示的数为.专题 7 数形结合思想【专题解读】实数与数轴上的点是一一对应的,实数在数轴上的表示是数形结合思想的具体表现,通过把实数在数轴上直观地表示出来,可以形象、直观地感受实数的客观存在.为理解实数的概念及其相关性质提供了有力的帮助.例 18 a,b在数轴上的位置如图13 - 15 所示,那么化简 a b a2的结果是( )A.2 -b B .baC.-b D .- 2a+b专题 8 类比思想【专题解读】本章在学习实数的有关概念及性质、运算时,可以类比已学过的有理数加以理解和运用.例 19已知四个命题:①如果一个数的相反数等于它本身,那么这个数是0;②若一个数的倒数等于它本身,则这个数是1;③若一个数的算术平方根等于它本身,则这个数是1或 0;④如果一个数的绝对值等于它本身.那么这个数是正数.其中真命题有( ) A.1个B.2 个 C .3个 D .4个例 20设 a 为实数,则a a 的值( )A .可以是负数B.不可能是负数C.必是正数D.正数、负数均可中考题精选1. 设a19 1,a在两个相邻整数之间,则这两个整数是()A、1 和2B、2 和3C、3 和4D、 4 和52. (2011?宁夏,10, 3 分)数轴上A、 B 两点对应的实数分别是 2 和2,若点 A 关于点B 的对称点为点C,则点 C 所对应的实数为3.( 2011 山西, 13, 3 分)计算:4.( 2011 贵州毕节, 18, 5 分)对于两个不相等的实数、,定义一种新的运算如下,,如:,那么=。
5.( 2010 重庆, 17, 6 分)计算: | - 3| + ( - 1) 2011×( π- 3) 0-+6. 已知a、b为有理数,m、n分别表示57的整数部分和小数部分,且amn bn21,则2a b.作业一、选择题 ( 每小题 3 分,共 30 分 )1.9的平方根是()A .81B.± 3 C .3 D .-32.计算( 3)2的结果是( )A . 9B .-9C .3D .-33.与 10 最接近的两个整数是()A .1和2 B.2和3 C.3和4 D .4和54.如图 13- 16 所示,数轴上的点 P 表示的数可能是( ) A. 5 B.- 5C .-D.- 105.下列实数中,是无理数的为( )A .B .1C . 3D . 936.1的平方的立方根的相反数为()8A.4B .1C .87. 64 的算术平方根是 ( )1D . 144A . 8B .± 8C .22D .228 .如图 13- 17 所示,数轴上 A ,B 两点表示的数分别为-1 和 3 ,点 B 关于点 A 的对称点为 C ,则点 C 所表示的数为 ()A.- 2- 3B.- 1- 3C .- 2+ 3D .1+ 39.已知 ,b 为实数,则下列命题中,正确的是()aA.若>,则2>2B .若a >b ,则a 2>b 2a ba bC.若 a < b ,则 a 2> b 2 D .若 3 a > 3,则 a 2< b 210 .下列说法中,正确的是( )A .两个无理数的和是无理数B .一个有理数与一个无理数的和是无理数C .两个无理数的积还是无理数D .一个有理数与一个无理数的积是无理数 二、填空题 ( 每小题 3 分,共 30 分 )11.已知 a 为实数,那么a 2 等于.12 .已知一个正数的两个平方根分别是3x - 2 和 5x + 6,则这个数是.13.若 x 3= 64,则 x 的平方根为 .14.若 5 是 a 的平方根,则 =, a 的另一个平方根是.a15. 52 的相反数为.16.若 x7 3 ,则 x =.17.若 < 0.则化简mm 23 m 3=.m18.若15 ,则 x =.x19.设 a , b 为有理数,且 a b 2 3 2 2 ,则 a b 的值为.20 .若 3 对应数轴上的点 A ,- 5 对应数轴上的点B ,那么 A ,B 之间的距离为.三、解答题 ( 每小题 10 分,共 60 分)21.已知 x , y 满足 y < x1 1 x11 y,化简 y .2 122.已知 9x 2- 16=0,且 x 是负数,求323x 的值.23 .设 2+ 7 的小数部分是 a ,求 a ( a + 2) 的值.1224.计算230.125 20040( 1)2 .225.用 48 米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.26.已知△ ABC 三边长分别为 a ,b ,c ,且满足 a1(b 2) 2 0 ,试求 c 的取值范围.。