高中数学知识点考点大总结(清单)

合集下载

高中数学259个知识点

高中数学259个知识点

高中数学259个知识点一、集合与函数概念。

1. 集合。

- 集合的定义:把一些元素组成的总体叫做集合。

- 集合元素的特性:确定性、互异性、无序性。

- 集合的表示方法:列举法、描述法、韦恩图法。

- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。

- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。

- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是中学数学的延伸和深化,内容较为广泛且复杂。

在这篇文章中,我们将全面总结归纳高中数学的各个知识点,帮助读者理清数学学科的脉络,更好地掌握数学知识。

本文将按照数学的不同分支来进行内容的整理,包括数学分析、几何与图形、概率与统计、数论以及代数与函数等。

一、数学分析1. 函数与极限函数是数学研究中的基本概念,而极限则为函数的重要性质之一。

我们需要了解函数的定义、性质,以及极限的概念、运算法则和重要性质。

2. 微积分微积分是数学分析的重要组成部分,主要包括导数、积分以及微分方程等知识点。

我们需要掌握导数的计算、应用,积分的概念和运算法则,以及微分方程的基本求解方法。

3. 级数级数是由数列部分和的序列构成,主要有等差级数、等比级数等。

我们需要了解级数的定义、性质以及常见级数的求和方法。

二、几何与图形1. 平面几何平面几何是研究平面点、线、面之间位置关系的数学分支。

我们需要了解平面几何的基本概念、性质,以及平面图形的判定和计算方法。

2. 立体几何立体几何是研究空间中点、线、面之间位置关系的数学分支。

我们需要掌握立体几何的基本概念、性质,以及常见立体图形的计算方法。

三、概率与统计1. 概率概率是研究随机事件发生可能性的数学分支,主要包括基本概率、条件概率、概率分布以及统计推断等。

我们需要了解概率的基本概念、性质,以及概率计算和统计推断的方法。

2. 统计统计是研究收集、整理、分析和解释数据的数学分支,主要包括数据的收集整理、描述性统计、参数估计和假设检验等。

我们需要掌握统计学的基本概念、性质,以及统计分析和统计推断的方法。

四、数论数论是研究整数性质和整数运算规律的数学分支,主要包括整数的性质、最大公因数、模运算以及数论中的应用等。

我们需要了解整数的基本性质、运算规律,以及数论在密码学等领域的应用。

五、代数与函数1. 代数运算代数是数学的基础,包括代数运算、方程和不等式、数列和数学归纳法等内容。

高中数学必考知识点

高中数学必考知识点
高中数学必考知识点
章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。

高中数学知识点考点大总结清单

高中数学知识点考点大总结清单

函数定义域的求法根式分式对数抽象函数定义域函数解析式求法(代入配凑换元待定系数方程赋值)函数的图像描点画图函数图像的变换(平移对称翻折)分段函数画图求值函数单调性定义一次函数二次函数反比例函数值域问题二次函数区间内值域问题(区间定轴定、区间定轴动、区间动轴定)函数的值域与最值求法(分别常数判别式换元中间量图像不等式配方)证明函数单调性定义法因式分解推断函数单调性的结论复合函数单调性问题抽象函数单调性函数奇偶性的定义与巧解奇函数与偶函数的图像与单调性特征奇函数与偶函数的性质奇偶性与分段函数解析式指数函数运算指数函数图像变换指数函数图像特征指数型复合函数的单调性与值域比拟大小对数运算对数函数图像特征对数函数图像的变换对数型复合函数的单调性及值域问题反函数几种简洁幂函数图像幂函数单调性与奇偶性幂函数的定义域与值域比拟大小函数在定义区间内零点的存在性和唯一性探讨推断函数零点所在区间零点—根—交点三者转化(个数)一元二次方程根的区间分布简洁恒成立问题处理(图像、转化为一次函数、变量分别)三角函数随意角的概念终边一样的角象限角与轴线角弧度制弧长与面积公式三角函数的概念单位圆与三角函数线各象限正负单位圆应用给值求角,给角求值,范围问题同角三角函数根本关系切求弦的巧解三角函数整体代换三角函数图像三角函数定义域、值域单调性、奇偶性、对称轴、对称中心、最值、周期y=A sin(ωx+φ)的图像平移与伸缩的先后y=A sin(ωx+φ)解析式确实定φ的求法探讨三角恒等变换熟记公式逆用三角形变换规则角的变换类型题协助角公式的推导与应用正余弦定理的各种变形向量定义几何表示与相对位置关系向量的线性运算加法(三角形平行四边形)减法(加法逆运算)规律:首尾相接后者居前化减为加数乘与共线定理三角形、四边形中简洁线性运算与肯定值平面对量根本定理(存在、唯一、不确定)三点共线(共线、有公共点)正交分解与坐标表示坐标运算(加、减、数乘、共线、垂直、模、数量积)数量积几何意义几何运算数列由数列前几项写出数列通项公式通项公式与简洁根本量计算性质(等差中项、数列的复合抽取)推断或证明一个数列是等差数列的方法等差数列的设项方法等差数列前n项和的两个公式与Sn有关计算性质等差数列依次得到k项和还是等差数列等差数列前n项和与二次函数单调性求Sn最值方法(图像、二次函数解析式、正负分解)附加性质(偶数项和与奇数项和)含有肯定值的数列前n项和处理等比数列通项公式和计算等比数列单调性等比中项复合新等比数列相邻K项的和相邻K项的积推断与证明数列是等比数列等比数列的设项方法等比数列前n项和公式由递推公式求通项公式(加、减、乘、除、倒数、构造)数列求和(公式法、聚合法、倒序相加、错位相减、裂项相消不等式线性规划问题线性目的函数可行域固定(不含参-可行解代入;含参-含参数的可行解代入或关键点代入)可行域不固定(关键点代入)非线性目的函数斜率类;间隔类等根本不等式证明常用结论利用不等式求最值举例常数的代换;平方处理;分别常数;构造;配凑用根本不等式求最值时留意等号成立的条件整体代换空间几何体柱锥台球的构造特征主要几何体的截面问题三视图解题策略平面图形大总结空间几何体外表积体积公式棱锥复原到正方体、长方体中问题空间几何体与球的接切问题球面间隔问题体积比问题平行与垂直问题(两个图形)间隔问题(等体积法)角度问题(平移法、补形法、垂线法)空间向量与立体几何加减、数乘、数量积运算线性运算坐标运算向量法解决平行、垂直坐标求法法向量求法向量法解决间隔问题(异面直线、点面、线面、面面)向量法解决角度问题(异面直线、线面角、面面角)探究、存在问题解析几何倾斜角与斜率直线平行与垂直的斜率关系直线的方程间隔公式两点间隔公式的目的函数问题直线系及其用法对称问题最值问题圆的两个方程几种特别位置圆的方程的设法圆心所在直线圆的弦相关问题直线与圆位置关系圆系方程圆的切线方程最值问题(点、直线与圆)图像法解决直线与圆交点个数问题对称相关的最值问题轨迹方程的几种求法定义、干脆、代入、参数、交轨椭圆的相关概念定义、图像、方程、统一方程椭圆的几何性质坐标、长度、范围、对称、离心率、通经、点到椭圆间隔最值(原点、焦点、坐标轴上的点)利用椭圆定义求轨迹方程焦点三角形离心率的各种求法直线与椭圆位置关系弦长公式中点弦问题(点差法)椭圆定义在图形问题中的应用直线与椭圆间隔的最值(未相交)韦达定理的应用与设而不求双曲线的相关概念定义、图像、方程、统一方程双曲线几何性质坐标、长度、范围、对称、离心率、通经双曲线的渐近线共渐近线的双曲线方程表示焦点三角形双曲线定义在求轨迹方程的应用直线与双曲线的位置关系弦长公式与点差法抛物线相关概念定义、方程、图像、焦点、准线抛物线的焦半径抛物线定义的应用抛物线的焦点弦问题长度、倾斜角、定值、圆直线与抛物线位置关系弦长、弦中点(点差法)韦达定理应用统计简洁随机抽样(抽签、随机数表)系统抽样分层抽样频率分布表频率分布直方图茎叶图纵数、中位数、平均数方差、标准差回来直线方程概率事务频率与概率的定义事务的各种关系(相等、包含、并、交、互斥、对立)古典概型定义古典概型公式列表与数状图几何概型定义几何概型公式几何概型求法(长度,角度,面积,体积)计数原理加法原理(分类)思想乘法原理(分步)填空问题巧解涂色问题排列数公式与实际意义在与不在问题(干脆法-元素-位置)(间接法)相邻问题间隔问题定序问题三法错排问题数字问题间接法组合数公式与实际意义分类语言:至多、至少摸球问题分组问题安排问题(投球入盒)挡板法二项式定理二项绽开式通项最大二项式系数与二项式系数最大的项二项式系数和赋值法求绽开式系数和整除问题随机变量及其分布随机试验与随机变量分布列性质两点分布摸球与超几何分布条件概率的理解条件概率性质独立事务的理解与概率公式A、B同时发生、同时不发生、不同时发生、至少、至多、恰有独立重复试验二项分布以超几何分布概率为根底的二项分布均值求法与两点、二项分布均值方差求法与两点、二项分布方差正态分布曲线与性质3c原则正态分布应用回来直线方程、相关分析、独立性检验等公式应用。

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。

掌握实数的分类和复数的基本概念。

1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。

包括因式分解、公式法解方程、分式方程的解法等。

1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。

理解不等式的性质和解不等式的一般步骤。

1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。

了解函数的极限和连续性概念。

1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。

掌握无穷等比数列的和的计算方法。

1.6 排列组合与概率排列、组合的基本概念和公式。

概率的定义、性质及计算方法。

理解条件概率和独立事件的概念。

二、几何与测量2.1 平面几何点、线、面的基本性质。

掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。

2.2 空间几何空间直线和平面的位置关系。

柱面、锥面、旋转体等常见立体图形的性质和计算。

2.3 解析几何坐标系的建立和应用。

通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。

2.4 三角学三角比的概念、三角函数的定义和性质。

掌握正弦定理、余弦定理及其在解三角形中的应用。

2.5 向量向量的基本概念、线性运算、数量积和向量积。

理解向量在几何和代数中的应用。

三、统计与概率3.1 统计基本概念数据的收集、整理和描述。

理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。

3.2 概率分布离散型随机变量和连续型随机变量的概念。

熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。

3.3 抽样与估计抽样方法、样本容量的确定。

参数估计的基本概念和方法,包括点估计和区间估计。

3.4 假设检验假设检验的基本思想和步骤。

理解显著性水平、第一类错误和第二类错误的概念。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

75个高中数学高考知识点总结

75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。

2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。

4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。

5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。

6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。

7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。

8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。

9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。

10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。

11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。

12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。

13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。

14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。

15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。

以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)1. 数的性质在高中数学中,我们首先要了解数的性质。

数的性质分为四个方面:整数性质、有理数性质、实数性质和复数性质。

1.1 整数性质整数是数的一种,包括正整数、负整数和零。

整数有以下性质:•整数加法和乘法封闭性:两个整数相加或相乘的结果仍然是整数。

•整数加法和乘法结合律:a+(b+c)=(a+b)+c 和a(b c)=(a b)c。

•整数加法和乘法交换律:a+b=b+a 和 a b=b a。

•整数加法有单位元素0:a+0=0+a=a。

•整数乘法有单位元素1:a1=1a=a。

•整数加法有逆元素:对于任意的整数a,存在一个整数b,使得a+b=b+a=0。

•整数乘法有逆元素:对于任意的整数a(a≠0),存在一个整数b,使得a b=b a=1。

•整数加法和乘法分配律:a(b+c)=a b+a*c。

1.2 有理数性质有理数是可以表示为两个整数的比值的数,包括整数和分数。

有理数有以下性质:•有理数加法和乘法封闭性:两个有理数相加或相乘的结果仍然是有理数。

•有理数加法和乘法结合律、交换律、分配律等性质与整数性质相同。

1.3 实数性质实数是包括有理数和无理数的数,具有以下性质:•实数可以通过实数的加法、减法、乘法和除法运算得到。

•实数加法和乘法封闭性、结合律、交换律、分配律等性质与有理数性质相同。

1.4 复数性质复数是形如a+bi的数,其中a和b是实数,i是虚数单位,有以下性质:•复数加法和乘法是封闭的,满足结合律、交换律和分配律。

•复数乘法有单位元素1,满足任一复数a与1相乘仍得a。

•复数乘法的交换律成立,即a b=b a。

•复数乘法有逆元素,对于任一非零复数a,存在一个复数b,使得a b=b a=1。

2. 代数运算代数运算是指利用代数式进行加法、减法、乘法和除法等运算的过程。

2.1 代数式的加法和减法代数式的加法和减法遵循相同的规则,即同类项相加或相减。

同类项指的是具有相同字母和相同指数的项。

高中数学必考知识点归纳整理

高中数学必考知识点归纳整理

高中数学必考知识点归纳整理高中数学必考知识点必修一:1、集合与函数的概念 (部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

高中数学知识点完全总结(打印版)

高中数学知识点完全总结(打印版)

高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。

【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。

【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。

【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。

【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

高中数学知识点全总结

高中数学知识点全总结

高中数学知识点全总结1. 集合与简易逻辑- 集合的概念:集合是具有某种特定性质的事物的全体,用大写字母表示。

- 集合的表示法:列举法和描述法。

- 集合之间的关系:子集、真子集、相等。

- 集合的运算:并集、交集、差集、补集。

- 简易逻辑:命题、逻辑连接词、真值表、逻辑等价式。

2. 函数- 函数的概念:函数是定义域到值域的映射。

- 函数的表示法:解析式、图象、列表。

- 函数的性质:单调性、奇偶性、周期性。

- 基本初等函数:幂函数、指数函数、对数函数、三角函数。

- 函数的图像变换:平移、伸缩、对称。

3. 数列- 数列的概念:数列是一列按照一定规则排列的数。

- 数列的表示法:通项公式、递推公式。

- 等差数列:通项公式、求和公式。

- 等比数列:通项公式、求和公式。

- 数列的极限:极限的概念、性质、运算法则。

4. 三角函数- 三角函数的概念:正弦、余弦、正切。

- 三角函数的图像:周期性、奇偶性、单调性。

- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。

- 解三角形:正弦定理、余弦定理、三角形的解法。

5. 向量- 向量的概念:具有大小和方向的量。

- 向量的表示法:坐标表示、单位向量。

- 向量的运算:加法、减法、数乘、点积、叉积。

- 向量的应用:向量在几何中的应用、向量在物理中的应用。

6. 立体几何- 空间几何体:多面体、旋转体。

- 空间直线与平面:位置关系、方程、夹角。

- 空间向量:空间向量的坐标表示、运算。

- 空间几何体的体积:多面体、旋转体的体积计算。

7. 解析几何- 直线:直线的方程、位置关系、交点、平行与垂直。

- 圆:圆的方程、圆与直线的位置关系。

- 圆锥曲线:椭圆、双曲线、抛物线的定义、方程、性质。

- 参数方程与极坐标:参数方程的表示、极坐标的表示、转换。

8. 概率与统计- 随机事件:事件的分类、概率的计算。

- 离散型随机变量:概率分布、期望、方差。

- 连续型随机变量:概率密度函数、期望、方差。

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是学生们必修的一门主科,涵盖了许多重要的数学知识点。

下面是对高中数学知识点的全面总结和归纳。

一、数与代数1. 数的性质与运算- 自然数、整数、有理数、实数、复数的概念和性质- 加法、减法、乘法、除法的运算规则- 指数与根的运算- 绝对值与不等式的性质2. 代数式与方程- 代数式的定义与展开公式- 一次方程、二次方程的概念和解法- 不等式的解法二、函数与图像1. 函数的概念与性质- 定义域、值域、单调性、奇偶性、周期性等性质- 线性函数、二次函数、指数函数、对数函数、三角函数的图像和性质2. 函数的运算和复合- 函数的加减、乘除、复合运算- 复合函数的定义和性质三、几何与空间1. 平面几何- 点、线、面的概念和性质- 图形的相似与全等- 三角形、四边形、圆的性质和计算方法2. 空间几何- 线段、射线、角的概念与性质- 球体、棱柱、棱锥、圆柱、圆锥的性质和计算方法- 三棱锥、四棱锥、四面体、五、六、八面体的性质和计算方法四、概率与统计1. 概率- 随机事件与概率的概念- 基本事件、对立事件、互斥事件的概念和计算方法- 随机事件的依赖关系和计算方法2. 统计- 数据的收集、整理与展示方法- 均值、中位数、众数的概念和计算方法- 方差与标准差的概念和计算方法以上是高中数学的主要知识点总结归纳,通过学习这些知识点,学生们能够系统地掌握高中数学的基础知识并且能够应用于实际问题的解决中。

掌握好这些知识点不仅能在高中阶段取得好成绩,还能为将来的学习和职业发展打下坚实的数学基础。

希望学生们能够认真学习并善于运用这些数学知识,不断提高自己的数学素养。

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是一门重要且具有一定难度的学科,涵盖了众多的知识点和概念。

以下是对高中数学主要知识点的全面总结归纳。

一、集合与函数1、集合集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。

集合的表示方法有列举法、描述法和图示法。

集合的运算包括交集、并集和补集。

2、函数函数是两个非空数集之间的一种对应关系。

函数的三要素是定义域、值域和对应法则。

常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。

一次函数的一般形式为 y = kx + b(k ≠ 0),其图像是一条直线。

二次函数的一般形式为 y = ax²+ bx + c(a ≠ 0),其图像是一条抛物线。

通过配方法可以将其化为顶点式 y = a(x h)²+ k,从而确定其顶点坐标和对称轴。

指数函数的形式为 y = a^x(a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。

对数函数是指数函数的反函数,形式为 y =logₐ x(a > 0 且a ≠ 1)。

函数的性质包括单调性、奇偶性、周期性等。

二、三角函数1、任意角和弧度制了解任意角的概念,掌握弧度与角度的换算。

2、三角函数的定义在单位圆中定义正弦、余弦和正切函数。

3、诱导公式能够利用诱导公式将任意角的三角函数转化为锐角的三角函数。

4、三角函数的图像和性质正弦函数 y = sin x、余弦函数 y = cos x 和正切函数 y = tan x 的图像特点、周期、对称轴、对称中心以及单调性。

5、两角和与差的三角函数公式包括正弦、余弦和正切的和差公式。

6、二倍角公式sin 2α、cos 2α、tan 2α 的公式。

7、解三角形利用正弦定理和余弦定理解决三角形中的边长、角度和面积等问题。

三、数列1、数列的概念数列是按照一定顺序排列的一列数。

高中数学知识清单

高中数学知识清单

高中数学知识清单平面几何1. 直线的性质:二直线平行、一直线垂直平分、异面直线垂直2. 长度计算:勾股定理、余弦定理、正弦定理3. 三角形的性质:内角和、外角和、中线定理4. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形5. 圆的性质:弧、弦、切线、切点、圆心角6. 直角坐标系:直线、圆的方程式7. 二次曲线的方程:圆、椭圆、双曲线、抛物线8. 图像的变换:平移、旋转、翻转、对称9. 平面向量:加、减、数量积、向量积10. 解析几何:点线面之间的距离公式立体几何1. 空间向量:加、减、数量积、向量积2. 空间中的直线:交角、垂足、垂直距离3. 空间中的平面:交线、倾斜角、距离4. 球的性质:表面积、体积、弦长、切线、切点5. 圆锥的性质:侧面积、体积、母线、直角锥、斜面锥6. 圆柱的性质:侧面积、体积、母线、截面7. 圆台的性质:侧面积、体积、母线、截面8. 空间几何体的性质:正方体、六面体、正四面体、正八面体、正十二面体、正二十面体微积分1. 极限:定义、性质、运算法则2. 函数与极限:乘法、除法、复合函数、极限保号性3. 导数:定义、求导法则、高阶导数4. 函数的极值和单调性:极大值、极小值、单调递增、单调递减5. 函数的图像:极值、拐点、渐近线6. 积分:定义、不定积分、定积分、换元求积分法7. 积分应用:面积、弧长、体积8. 微分方程:一阶线性微分方程、二阶常系数齐次微分方程概率论1. 随机试验和随机事件2. 概率的定义和性质3. 条件概率和贝叶斯公式4. 独立事件和乘法公式5. 全概率公式和贝叶斯公式6. 随机变量和分布律7. 期望、方差和协方差8. 常见离散型分布: 0-1分布、二项分布、泊松分布9. 常见连续型分布:均匀分布、正态分布、指数分布数理逻辑1. 命题、公式和命题的逻辑连接词2. 否定、合取、析取和条件命题的真值表3. 推理规则:假言推理、充分必要条件、等价命题、反证法4. 命题的简化和恒等式的运用5. 谓词和谓词逻辑的基础6. 一阶逻辑和命题简化7. 自然推理法和策略8. 形式证明和非形式证明9. 数学归纳法的基础统计学1. 统计学的基本概念:研究对象、数据概括、数据分析2. 总体和样本:抽样方法和抽样误差3. 数据的概括和描述统计:集中趋势和离散程度4. 随机变量和分布:正态分布、t分布、F分布5. 参数估计和区间估计:点估计和区间估计6. 假设检验:显著性水平、假设检验对象、检验统计量7. 方差分析:单因素方差分析、双因素方差分析8. 回归分析:简单线性回归分析、多元线性回归分析9. 单因素和多因素实验设计:随机化实验设计、程度实验设计数论1. 整数的基本性质:带余除法、互质数、质数、素数分解2. 同余方程式和同余方程式组:扩展欧几里得算法、剩余定理3. 互质、欧拉函数和费马小定理4. 模重复平方法和同余变换法5. 分数、真分数、不可约分数和连分数6. 数列和数列极限7. 序列、级数和级数收敛的充要条件8. 等比数列、等比级数和等比级数求和9. 是质数的充要条件和质数函数的基本性质10. 线性同余方程组的解法。

高中数学必考知识点大全

高中数学必考知识点大全

高中数学必考知识点大全高中数学是学习数学的重要阶段,也是考试的重要内容。

掌握高中数学的必考知识点,对于学生能否在考试中取得好成绩至关重要。

下面将为大家详细介绍高中数学的必考知识点,希望对大家的学习有所帮助。

一、函数与方程1. 函数的概念与性质:函数的定义、自变量、函数值、定义域、值域、奇偶性、单调性等。

2. 一次函数与二次函数:一次函数的定义、图像、性质,二次函数的定义、图像、性质、顶点坐标、对称轴等。

3. 幂函数与指数函数:幂函数、指数函数的定义、图像、性质等。

4. 对数函数与指数方程:对数函数的定义、性质、指数方程的解法等。

5. 三角函数与三角方程:正弦函数、余弦函数、正切函数等三角函数的定义、性质,三角方程的解法等。

二、数列与数列求和1. 等差数列与等比数列:等差数列的通项公式、前n项和公式等,等比数列的通项公式、前n项和公式等。

2. 数列的递推公式:递推公式的推导与应用。

3. 数列极限:数列极限的概念、性质,极限存在与计算等。

4. 数列求和:等差数列、等比数列的前n项和公式等。

三、三角函数的应用1. 三角函数的周期性与图像:正弦函数、余弦函数的周期、图像、性质等。

2. 三角函数的和差化积公式:正弦函数、余弦函数的和差化积公式的推导与应用。

3. 三角函数的倍角、半角公式:正弦函数、余弦函数的倍角、半角公式的推导与应用。

4. 三角函数的积化和差公式:正弦函数、余弦函数的积化和差公式的推导与应用。

四、数与式1. 数与式的化简与运算:三角函数的平方、倒数关系等。

2. 分式与分式方程:分式的性质与运算,分式方程的解法等。

3. 指数运算与对数运算:指数运算的性质、指数方程与指数不等式的解法,对数运算的性质、对数方程与对数不等式的解法等。

五、平面几何与空间几何1. 平面几何的基本概念:点、线、面、角的定义、性质等。

2. 平面几何的证明与计算:证明题的基本方法与技巧,计算题的基本公式与应用等。

3. 空间几何的基本概念:立体的表面积与体积的计算公式等。

(超详)高中数学知识点归纳汇总(高一至高三全套)

(超详)高中数学知识点归纳汇总(高一至高三全套)

做集合 A 到 B 的一个函数,记作 f : A B .
②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设 a, b 是两个实数,且 a b ,满足 a x b 的实数 x 的集合叫做闭区间,记做[a, b] ;满足 a x b
第4页
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑤ y tan x 中, x k (k Z ) . 2
⑥零(负)指数幂的底数不能为零.
⑦若 f (x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的
(1)利用定义
函数的
某个区间上的任意两个 自 变 量 的 值 x1 、 x2, 当 x.1.<.x.2 . 时 , 都 有 f.(.x.1.).<.f.(.x.2.)., 那 么 就 说 f(x)在这个区间 上是增. 函.数..
y y=f(X)
f(x1)
o
x1
f(x2)
x2
x
(2)利用已知函数 的单调性 (3)利用函数图象 (在某个区间图 象上升为增) (4)利用复合函数
判别式
b2 4ac
二次函数
y ax2 bx c(a 0)
的图象
0
0
0
O
一元二次方程 ax2 bx c 0(a 0)
的根
x1,2 b
b2 4ac 2a
(其中 x1 x2 )
x1
x2
b 2a
无实根
ax2 bx c 0(a 0) 的解集

高中数学知识点总结(重点)超详细

高中数学知识点总结(重点)超详细

高中数学知识点总结(重点)超详细一、函数1.函数的概念和性质* 函数的定义:函数就是一种对应关系,它把一个自变量的集合映射到一个因变量的集合。

* 定义域、值域和函数值:函数的定义域是自变量可能取值的集合,值域是函数值可能取值的集合,函数值就是对应于自变量的因变量的值。

* 单调性:单调递增或递减;严格单调递增或递减。

* 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数。

* 周期性:有最小正周期T,则有f(x+T)=f(x)。

2.初等函数* 常数函数、线性函数、二次函数、幂函数、指数函数、对数函数和三角函数等。

* 互为反函数:两个函数互为反函数,当且仅当它们的复合是恒等函数,即 f(g(x))=x,g(f(x))=x 时。

3.函数的图像* 导数:函数在一点处的导数定义为函数在该点处的变化率,几何意义为函数图像在该处的切线斜率。

* 函数的单调区间:导数恒正则单调递增,导数恒负则单调递减,导数为0则可能有极值。

* 函数的极值与最值:极值包括极大值和极小值,最值包括最大值和最小值,求解时需要用导数或者区间端点代入函数取值比较大小。

二、三角函数1.基本概念公式* 弧度制和角度制:弧度制是通过单位圆上弧长所确定的角度计量单位,角度制是最常用的角度计量单位。

* 弧度制与角度制的互换:180°对应π弧度。

* 三角函数的概念:正弦函数、余弦函数、正切函数、余切函数。

* 三角函数的基本关系式:$\sin ^{2}x+\cos^{2}x=1$,$\tanx=\frac{\sin x}{\cos x}$* 三角函数的周期性:正弦函数和余弦函数的最小正周期为$2\pi$,正切函数和余切函数的最小正周期为$\pi$。

2.三角函数的图像和性质* 三角函数的图像:正弦函数和余弦函数的图像都是以x轴为轴的周期函数,正切函数和余切函数的图像分别有一个渐近线和一个极值点。

* 同角三角函数的基本关系式:$\cos (\frac{\pi}{2} -x)=\sin x$,$\tan x=\frac{\sin x}{\cos x}$* 三角函数的单调性:正弦函数和余弦函数在一个周期内分别单调递增和递减,正切函数和余切函数在每一个周期内单调变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域的求法根式分式对数
抽象函数定义域
函数解析式求法(代入配凑换元待定系数方程赋值)函数的图像描点画图
函数图像的变换(平移对称翻折)
分段函数画图求值
函数单调性定义
一次函数二次函数反比例函数值域问题
二次函数区间内值域问题
(区间定轴定、区间定轴动、区间动轴定)
函数的值域与最值求法
(分离常数判别式换元中间量图像不等式配方)
证明函数单调性定义法因式分解
判断函数单调性的结论
复合函数单调性问题
抽象函数单调性
函数奇偶性的定义与巧解
奇函数与偶函数的图像与单调性特征
奇函数与偶函数的性质
奇偶性与分段函数解析式
指数函数运算
指数函数图像变换
指数函数图像特征
指数型复合函数的单调性与值域
比较大小
对数运算
对数函数图像特征
对数函数图像的变换
对数型复合函数的单调性及值域问题
反函数
几种简单幂函数图像
幂函数单调性与奇偶性
幂函数的定义域与值域
比较大小
函数在定义区间内零点的存在性和唯一性讨论
判断函数零点所在区间
零点—根—交点三者转化(个数)
一元二次方程根的区间分布
简单恒成立问题处理
(图像、转化为一次函数、变量分离)
三角函数
任意角的概念
终边相同的角
象限角与轴线角
弧度制
弧长与面积公式
三角函数的概念
单位圆与三角函数线各象限正负
单位圆应用
给值求角,给角求值,范围问题
同角三角函数基本关系
切求弦的巧解
三角函数整体代换
三角函数图像
三角函数定义域、值域
单调性、奇偶性、对称轴、对称中心、最值、周期
y=A sin(ωx+φ)的图像
平移与伸缩的先后
y=A sin(ωx+φ)解析式的确定
φ的求法研究
三角恒等变换熟记公式逆用
三角形变换规则
角的变换类型题
辅助角公式的推导与应用
正余弦定理的各种变形
向量定义
几何表示与相对位置关系
向量的线性运算
加法(三角形平行四边形)
减法(加法逆运算)
规律:首尾相接后者居前化减为加
数乘与共线定理
三角形、四边形中简单线性运算与绝对值
平面向量基本定理(存在、唯一、不确定)
三点共线(共线、有公共点)
正交分解与坐标表示
坐标运算(加、减、数乘、共线、垂直、模、数量积)数量积几何意义
几何运算
数列
由数列前几项写出数列通项公式
通项公式与简单基本量计算
性质(等差中项、数列的复合抽取)
判断或证明一个数列是等差数列的方法
等差数列的设项方法
等差数列前n项和的两个公式
与Sn有关计算
性质
等差数列依次得到k项和还是等差数列
等差数列前n项和与二次函数单调性
求Sn最值方法(图像、二次函数解析式、正负分解)
附加性质(偶数项和与奇数项和)
含有绝对值的数列前n项和处理
等比数列通项公式和计算
等比数列单调性
等比中项
复合新等比数列
相邻K项的和
相邻K项的积
判断与证明数列是等比数列
等比数列的设项方法
等比数列前n项和公式
由递推公式求通项公式
(加、减、乘、除、倒数、构造)
数列求和
(公式法、聚合法、倒序相加、错位相减、裂项相消
不等式线性规划问题
线性目标函数
可行域固定(不含参-可行解代入;含参-含参数的可行解代入或关键点代入)可行域不固定(关键点代入)
非线性目标函数
斜率类;距离类等
基本不等式
证明常用结论
利用不等式求最值举例
常数的代换;平方处理;分离常数;构造;配凑
用基本不等式求最值时注意等号成立的条件
整体代换
空间几何体
柱锥台球的结构特征
主要几何体的截面问题
三视图解题策略
平面图形大总结
空间几何体表面积体积公式
棱锥还原到正方体、长方体中问题
空间几何体与球的接切问题
球面距离问题
体积比问题
平行与垂直问题(两个图形)
距离问题(等体积法)
角度问题(平移法、补形法、垂线法)
空间向量与立体几何
加减、数乘、数量积运算
线性运算
坐标运算
向量法解决平行、垂直
坐标求法
法向量求法
向量法解决距离问题
(异面直线、点面、线面、面面)
向量法解决角度问题
(异面直线、线面角、面面角)
探索、存在问题
解析几何
倾斜角与斜率
直线平行与垂直的斜率关系
直线的方程
距离公式
两点距离公式的目标函数问题
直线系及其用法
对称问题
最值问题
圆的两个方程
几种特殊位置圆的方程的设法
圆心所在直线
圆的弦相关问题
直线与圆位置关系
圆系方程
圆的切线方程
最值问题(点、直线与圆)
图像法解决直线与圆交点个数问题
对称相关的最值问题
轨迹方程的几种求法
定义、直接、代入、参数、交轨
椭圆的相关概念
定义、图像、方程、统一方程
椭圆的几何性质
坐标、长度、范围、对称、离心率、通经、
点到椭圆距离最值(原点、焦点、坐标轴上的点)利用椭圆定义求轨迹方程
焦点三角形
离心率的各种求法
直线与椭圆位置关系
弦长公式
中点弦问题(点差法)
椭圆定义在图形问题中的应用
直线与椭圆距离的最值(未相交)
韦达定理的应用与设而不求
双曲线的相关概念
定义、图像、方程、统一方程
双曲线几何性质
坐标、长度、范围、对称、离心率、通经
双曲线的渐近线
共渐近线的双曲线方程表示
焦点三角形
双曲线定义在求轨迹方程的应用
直线与双曲线的位置关系
弦长公式与点差法
抛物线相关概念
定义、方程、图像、焦点、准线
抛物线的焦半径
抛物线定义的应用
抛物线的焦点弦问题
长度、倾斜角、定值、圆
直线与抛物线位置关系
弦长、弦中点(点差法)
韦达定理应用
统计
简单随机抽样(抽签、随机数表)
系统抽样
分层抽样
频率分布表
频率分布直方图
茎叶图
纵数、中位数、平均数
方差、标准差
回归直线方程
概率
事件
频率与概率的定义
事件的各种关系
(相等、包含、并、交、互斥、对立)
古典概型定义
古典概型公式
列表与数状图
几何概型定义
几何概型公式
几何概型求法(长度,角度,面积,体积)
计数原理
加法原理(分类)思想
乘法原理(分步)
填空问题巧解
涂色问题
排列数公式与实际意义
在与不在问题(直接法-元素-位置)(间接法)相邻问题
间隔问题
定序问题三法
错排问题
数字问题
间接法
组合数公式与实际意义
分类语言:至多、至少
摸球问题
分组问题
分配问题(投球入盒)
挡板法
二项式定理
二项展开式通项
最大二项式系数与二项式系数最大的项
二项式系数和
赋值法求展开式系数和
整除问题
随机变量及其分布
随机实验与随机变量
分布列性质
两点分布
摸球与超几何分布
条件概率的理解
条件概率性质
独立事件的理解与概率公式
A、B同时发生、同时不发生、不同时发生、至少、至多、恰有
独立重复实验
二项分布
以超几何分布概率为基础的二项分布
均值求法与两点、二项分布均值
方差求法与两点、二项分布方差
正态分布曲线与性质
3c原则
正态分布应用
回归直线方程、相关分析、独立性检验等公式应用。

相关文档
最新文档