稳态法测量不良导体的导热系数

合集下载

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数

dQ
dT
mc
dt
dt
T2
四、实验原理
➢ 2、考虑散热盘自由冷却与稳态时的散热面积不同,导热系数计
算公式修正为:
dT
mc
dt
T2
(RP 2hP ) 4hB
1
(2RP 2hp ) (T1 T2 ) d B2
式中:m为铜盘的质量;
1
c为铜盘的比热容,c 3.80 10 J kg K
避免烫伤。
2
Rp hp分别为铜盘的半径和厚度;
dB hB分别为待测样品的直径和厚度。
1
五、实验步骤
➢1. 用游标卡尺测量待测样品B及散热铜盘P的几何尺寸,用天平测出铜盘质
量m。
➢2. 取下固定螺丝,将样品放在加热盘与散热盘中间。
➢3. 加热盘的温度上升到设定温度值时,在10分钟或更长的时间内加热盘和散
热盘的温度值基本不变,达到稳定状态。
W.m-1.K-1 ,不良导体如橡胶导热系数为0.22 W.m-1.K-1。
本实验采用稳态法测定不良导体的导热系数,即利用热源传热在待测样品内部形成
稳定的温度分布,然后进行测量。
二、实验目的
➢ 1. 通过实验掌握用稳态法测量不良导体导热系数的方法。
➢ 2. 体会参量转换法的实验设计思想。
➢ 3. 掌握FD-TC-B型导热系数测定仪的使用方法。
➢4. 停止加热,取走样品,调节三个螺栓使加热盘和散热盘接触良好,再设定
温度到80 ℃,加快散热盘的温度上升,使散热盘温度上升到高于稳态时的
值 左右即可。
五、实验步骤
➢5. 移去加热盘,让散热圆盘在风扇作用下冷却,由临近 值的温度数据计
算散热盘冷却速率

利用稳态法测定不良导体的导热系数

利用稳态法测定不良导体的导热系数

2 1 实验 仪器 .
直接 接触 , 继续 加 热 A盘 , A盘 温 度 升 至 比 高 7 ℃左
右, 停止加 热并 移去加 热 盘 C 让铝 盘 A通 过外 表面 直接 ,
实验 中采用 湖南 远 景新 技 术 研 究 所研 制 的 Y _I J L Z
4 数字智能化热学综合仪 ( 下文称为热学综合仪) 及导 热 系数 测量 实验 装 置。 导热 系数 测 量装 置见 图 1 示 。 所
并 温 度传感 器 引线 , E为散 热铝 盘 A的温度传感 器 引线 。
6 . 76 6 3 6.
65. 2
35 . 40 .
4. 5
6 . 06 5 . 98
5 9 8.
70 . 7. 5
8. 0
5 . 50 5 . 43
5 6 3.
15 .
20 . 2. 5 30
, T , 1
热 系数 , 键是 求 出冷却速 率 。 关 a l
2 3 测量 过程 .
是材料 自身温 度 的函数 , 所用 材料 的导热 系数都需 要用实
验的方法精确确定。本文采取稳态平板法测量, 利用 M tb aa l 软件对数据进行处理 , 得到冷却速 率随时 问、 温度 的变化关
即 = () - ) t i, 厂 f =\[ t ’ -]拟合级次 n 6 拟合的曲 n 取 ,
线见 图 2 示 。 所
(绘 警~及 线 2 制 曲 ~ )
得到 T=f t的 函数关 系 后 , 用 M tb中符 合运 () 利 aa l
算 的 d 函数 可求 出 = £对 时 间 i ( ) 的一 阶导数 =
根 据 实 验 测 得 的 数 据 ( 表 1利 用 M f b中 的 pl 见 ) aa l o— y

实验3-10测量不良导体的导热系数

实验3-10测量不良导体的导热系数

实验3-7稳态法测定不良导体的导热系数实验报告【实验目的】1.了解稳态的概念和实现稳态的思想和方法。

2.深刻理解稳态平板法测量材料导热系数的实验设计思想(实验中以传热率等于散热率为判别依据),掌握实验方法。

3.掌握通过散热速率测量传热速率、测量冷却速率求散热速率的间接测量思想。

4.了解运用理论分析和实验观测确定实验的最佳条件和参数的基本方法。

5.介绍热电偶的基本知识,熟练掌握电测温度的方法。

6.学会用逐差法求直线斜率。

7.学会用电子秒表测量时间。

【实验原理】热传导也叫导热,它是指物体个部分之间或不同物体之间直接接触时由于物质分子、原子及自由电子等微观粒子热运动而产生的热量传递现象。

热传导是靠物体内部存在的温度梯度使热量从高温区域向低温区域传递的过程。

在热传导过程中,物体各部分的温度不随时间而变化-----稳态导热。

在稳态导热过程中,每一个物质单元流出和流入的热量均相等-----热平衡。

1882年法国数学家、物理学家约瑟夫·傅里叶研究得出了一个热传导的基本公式-----傅里叶方程式,即:(1)其中h、S分别为待测物体的沿热传导方向上的高和面积,为导热系数。

由于热平衡时每一个物质单元流出和流入的热量均相等,则:而在本实验中加热时是一面受热,散热时是上下两面,这样上式应修改为:(2)将(2)式代入(1)式得:(3)从上式可知,要达到实验目的关键是冷却速度的确定,而冷却速度的确定是用热电偶来测量的。

热电偶是由不同成分的金属或合金彼此紧密接触连接成一个闭合回路。

如果两接点分别处于不同的温度中,则回路中就会产生电动势,该电动势称为温差电动势或热电动势,同时把这种现象称作热电效应。

这种电路被称为温差电偶或热电偶。

本实验采用的是铜--康铜金属丝热电偶测量温度的变化。

由于温度变化在本实验中可认为是线性变化。

所以可直接用电动势值来代替温度的变化。

这样(3)式可改写为:【实验装置及仪器】1.游标卡尺、托盘天平和电子秒表:测量长度、质量和时间。

稳态法测不良导体的导热系数

稳态法测不良导体的导热系数

稳态法测量不良导体的导热系数由于温度不均匀,热量从温度高的地方向温度低的地方转移,这种现象叫做热传导。

导热系数是表征物质热传导性质的物理量。

材料结构的变化与所含杂质对导热系数值都有明显的影响,因此材料的导热系数常需要由实验具体测定。

测量导热系数的方法一般分为两类:一类是稳态法,另一类是动态法。

在稳态法中,先利用热源在待测样品内部形成一稳定的温度分布,然后进行测量。

在动态法中,待测样品中的温度分布是随时间变化的,例如呈周期性的变化等。

本实验采用稳态法进行测量。

【实验目的】1. 学习用稳态法测量不良导体的导热系数。

2. 了解物体热传导的规律。

【实验原理】1. 将厚度为h,截面积为S 的物体作为待测样品,利用热源对待测样品加热,当达到稳定状态后样品温度高的一面温度为Q 1,温度低的一面温度为Q 2。

设在时间Δt 内,由温度高的一面传向温度低的一面的热量为ΔQ。

实验证明,传递的热量ΔQ 与样品截面积S 的大小及温度梯度(θ1-θ2)/h 和时间Δt 成正比,即ΔQ=λSΔt(θ1-θ2)/h将上述公式改写成傅里叶导热方程式即热传导的基本公式h S t Q 21θθλ−=ΔΔ (1) 式中tQ ΔΔ为传热速率 。

λ为该物质的热导率,(又称导热系数),与材料性质有关。

λ在数值上等于相距单位厚度的两平面,温度相差1个单位时,在单位时间内通过单位面积的热量;其单位为瓦特每米开尔文即W/(m·K)。

2. 本实验装置如图(1)所示,在支架D上先后放上圆铜盘P、待测样品(圆盘形橡皮板)B 和厚底紫铜圆筒A。

在A 的上方用红外灯L 加热,使样品上、下表面各维持稳定的温度,它们的数值分别用安插在A、P 侧面深孔中的热电偶E 来测量。

E 的冷端浸入盛于杜瓦瓶H 内的冰水混合物中。

G 为双向开关,用以变换上、下热电偶的测量回路。

数字式电压表F 用以测量温差电动势。

由式(1)可知,单位时间内通过待测样品B 任一圆截面的热流量为221B BR h t Q πθθλ−=ΔΔ (2) 式中R B 为圆盘样品的半径,h B 为样品厚度。

实验26 测量不良导体的导热系数

实验26   测量不良导体的导热系数

测量不良导体的导热系数一 实验目的1、 用稳态平板法测量不良导体的导热系数2、 用物体的散热速率求传热速率3、 掌握热电偶测量温度的方法 二 实验仪器导热系数仪、杜瓦瓶,热电偶、FPZ-1型多量程直流数字电压表、游标卡尺、停表 三 实验原理 (一) 稳态平板法ht Q 21θθλ-A =∆∆ tQ∆∆为热流量,λ为该物质的导热系数,也称热导率,h-样品厚度, A-样品面积。

所谓稳态指的是高温物体传热的速率等于低温物体散热的速率时,系统便处于一个稳定的热平衡状态。

(二) 实验装置及方法d ht Q 2142πθθλ-=∆∆A- 加热铜盘,P-散热铜盘;d-样品盘的直径,h-样品盘的厚度;θ1-加热铜盘的温度,θ2-散热铜盘的温度。

(三) 冷却法测量散热铜盘的散热速率∵ dt d t Q c m P P θ=∆∆散 ;dtd θ 是曲线在θ2点的斜率,如下图∴ ()dt d h d c m P P θθθπλ2124-= 四 实验内容及步骤1、测量样品盘的厚度h 和直径d ,并记录散热铜盘的质量。

2、调节支架上的三个螺丝使它往下降一部份,将散热铜盘放在它的上面,再往上放样品盘,然后将加热器放在样品盘上面,使三个盘紧密接触,然后把加热器固定,再用三个螺丝往上拧,使整个系统固定不动。

3、将热电偶的插头分别插入两对孔中,并打开毫伏计(要调零)判断热端冷端,将热端分别插入加热铜盘和散热铜盘,冷端插入杜瓦瓶中。

4、用220v 电压加热15分钟,再用110v 加热同时打开风扇,大约半小时后每隔壁5分钟观察θ1、θ2的值各一次,直到观察到连续两组的数值不变即可认为系统达到稳态,记录这组数据。

5、重新用220v 电压加热同时关掉风扇,观察θ2的变化,当达到 θ2+0.2mv 时停止加热并移开加热器同时打开风扇。

观察θ2的变化当温度回落到θ2+0.2mv 时开始每隔壁30秒读一次数据直到θ2-0.2mv ,关掉风扇即完成此次操作。

材料物理性能 实验三不良导体导热系数测定

材料物理性能 实验三不良导体导热系数测定

不良导体导热系数测定导热系数是反映材料导热性能的重要参数之一,导热系数大,导热性能较好的材料称为良导体;导热系数小、导热性能差的材料称为材料的不良导体。

一般来说,金属的导热系数比非金属要大;固体的导热系数比液体的要大;气体的导热系数最小。

本实验介绍一种比较简答的利用稳态法测定不良导体导热系数的方法。

稳态法是通过热源在样品内部形成一稳定的温度分布后,测定不良导体导热系数的方法。

一、实验目的1、掌握稳态法测定不良导体导热系数的方法2、了解物体散热速率和传热速率的关系 二、实验仪器1、TJQDC-1型导热系数测定仪2、游标卡尺3、天平4、镊子 三、实验原理 1、热传导定律当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。

早在1882年著名物理学家傅立叶(Fourier)就提出了热传导的定律:若在垂直于热传播方向x 上作一截面S ∆,以d dxθ⎛⎫⎪⎝⎭表示0x 处的温度梯度,那么在时间t ∆内通过截面积S ∆ 所传递的热量Q ∆为:Q d S t dxθλ∆⎛⎫=-∆ ⎪∆⎝⎭(1) 式(1)中Qt∆∆为传热速率,负号代表热量传递方向是从高温区传至低温处,与温度梯度方向相反。

比例系数λ称为导热系数,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是瓦·米-1开-1(W ·m -1K -1).2、稳态法测传热速率测定样品导热系数的实验装置如图1所示。

图中待测样品 (圆盘) 半径 1R =60mm ,样品上表面与加热盘(位于上方的黄铜盘)的下表面接触,温度为1θ,加热盘由内部电热丝供热,热量由加热盘通过样品上表面传入样品,再从样品下表面与散热盘 (位于样品下面的黄铜盘) 的上表面相接, 温度为2θ,即样品中的热量通过下表面向散热盘散发。

样品上下表面温度可以认为是均匀分布,在1h 不很大情况下可忽略样品侧面散热的影响,则式(1)改写为:121QS t h θθλ-∆=∆ (2) 式(2)中S 为样品横截面积。

用稳态法测不良导体的热导率

用稳态法测不良导体的热导率

用稳态法测不良导体的热导率热传导是指热量从物体温度较高部分沿着物体传到温度较低部分的方式,它是三种传热模式(热传导、对流、辐射)之一。

各种材料都能够传热,但是不同材料的热传导性能不同。

热导率又称“导热系数”,是表征材料热传导性能的基本物理量, 其定义为单位时间内通过单位面积的热能与温度梯度之比。

热导率高的材料称为热的良导体,否则为热的不良导体。

热导率受材料本身的状态、成分、结构、密度以及湿度、温度和压力等综合因素影响。

在科研、生产很多领域,材料的热导率是应用材料的一个重要指标。

目前,测量固体材料的热导率一般有两种实验方法:稳态法和动态法。

稳态法测量是基于样品内部待测热导率方向形成稳定的温度差,利用稳定传热过程中,传热速率等于散热速率的平衡条件来测量样品的热导率。

动态法测量热导率是在被测样品整体达到温度均匀恒定后,加载微小的温度扰动,通过检测此温度扰动直接计算出被测样品在此恒定温度下的热导率。

稳态测量法原理清晰,计算公式简单,可用于较宽温区的测量,但测定时间较长和对环境要求较严格。

动态法测试对边界条件没有太多的要求,测试设备相对比较简单,但动态法的测试数据方法一般都比较复杂,甚至要进行复杂的数学公式进行各种修正。

本实验应用稳态法中的平板法测量不良导体的热导率,学习用物体散热速率求热导率的实验方法。

【实验目的】1. 了解热传导现象的物理过程,掌握用稳态法测量不良导体热导率的原理。

2. 掌握测量冷却速率的方法,以及通过散热速率求传热速率以及热导率。

3. 了解热电偶的原理以及使用方法。

【实验原理】法国数学家、物理学家约瑟夫.傅里叶(Joseph Fourier)于1882年建立了傅里叶热传导定律,即:如果物体内部有温差存在时,热量将从物体高温部分流向低温部分,时间内流过面积的热量正比于温度梯度,其比例系数既是热导率。

其热传导的基本公式为:(1) 式中为传热速率,是与面积相垂直方向上的温度梯度,“-”号表示热量由高温传向低温。

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数导热系数是表征物质热传导性质的物理量。

材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数的实验方法一般分为稳态法和动态法两类。

在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。

而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

【实验目的】本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。

【实验原理】1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。

由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ∆时间内通过样品的热量Q ∆满足下式:S h t QB21θθλ-=∆∆ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得:2214B Bd h t Qπθθλ-=∆∆ (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。

散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

稳态法测量不良导体导热系数

稳态法测量不良导体导热系数

稳态法测量不良导体导热系数【实验目的】1.利用物体的散热速率求传热速率。

2.(用稳态平板法测定不良导体的导热系数。

)【仪器用具】1.导热系数测定仪(含实验装置、数字电压表、数字秒表)一台2.杜瓦瓶(或低温实验仪)一只/台3.硬铝样品(附绝缘圆盘一块,供散热时覆盖用)一根4.橡皮样品一块5.测片一把【实验内容】1.测量不良导体----橡皮样品的导热系数。

2.测量金属----硬铝测试样品的导热系数。

3.测量空气的导热系数。

【结构特性】在使用中,样品架的三个螺旋微头是用来调节散热盘和圆筒加热盘之间距离和平整度的。

除测量金属样品时不用圆筒固定外,其它如测橡皮和空气的导热系数时,均将圆筒的固定轴对准样品支架上的圆孔插入,并用螺母旋紧,具体步骤是:先旋下螺母,将加热圆筒放下。

使固定轴穿过圆孔,再将螺母旋上并拧紧,最后固定筒后的紧固螺钉,从而由三个螺旋测微头来调节平面和待测样品厚度。

【测量范围、精度】1.温度测量部分:室温0~110℃;测量精度:±1℃ 温差测量的精度0.5℃;2. 计时部分:范围0~100min;最小分辨率1S, 精度:10-53. 电压表:精度0.1%;【实验原理】导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设Z 方向)进行的时候,热传导的基本公式可写为:(2-9-1)它表示在dt 时间内通过ds 面的热量为dQ,dT/dz 温度梯度,λ为导热系数,它的大小由物体本身的物理性质决定,单位为w/(m •k),它是表征物质导热性能大小的物理量,式中负号表示热量传递向着降低的方向进行。

在图一中,B 为待测物,它的上下表面分别和上下铜盘接触,热量由高温铜盘通过待测物B 向低温铜盘传递,若B 很薄,则通过B 侧面向周围环境的散热量可以忽略不计,视热量沿着垂直待测圆板B 的方向传递,那么,在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在Δt 时间内,通过面积为S 、厚度为h 的匀质板的热量为(2-9-2)△ T 表示匀质圆板两板两板面的恒定温差。

稳态法测量不良导体导热系数2012

稳态法测量不良导体导热系数2012

稳态法测量不良导体导热系数2012稳态法是一种高精度测量导热系数的方法,被广泛应用于材料工程、热工学、机械工程等领域。

在材料工程中,稳态法常用于测量导体的导热系数,其中不良导体的导热系数的测量尤为重要。

本文将介绍稳态法测量不良导体导热系数的基本原理、实验步骤和注意事项。

一、基本原理稳态法是通过测量介质两侧温度差和沿导热方向的传热功率,计算介质的导热系数。

稳态法的核心原理是斯特法定律,即介质中的传热速率和介质的各向同性导热系数、介质的传热面积和传热距离成正比。

对于不良导体来说,其导热系数很低,在传热方面表现出较差的性能。

因此,在使用稳态法测量不良导体导热系数时,需要特别注意以下几点:1. 选择合适的热源和传感器测量不良导体的导热系数需要使用高精度的热源和传感器,以保证稳态条件下温度差的准确测量。

例如,可以使用电热丝作为热源,其产生的热能可以通过导体传递到被测介质中。

传感器可以使用热电偶或红外线温度计等。

2. 保持稳态在测量不良导体导热系数时,需要保证稳态条件的达成,即被测介质的温度变化率不发生变化。

同时,在测量过程中需要避免外部因素对温度的影响,如风、震动、辐射等。

3. 考虑导热方向在选择不良导体导热系数的方法时,需要考虑导热方向。

由于不良导体的导热系数很低,导热性能往往会受到材料本身结构和成分的影响。

因此在测量前,需要仔细考虑材料的结构特点和热传递方式,并选择合适的测量方法。

二、实验步骤1. 准备工作准备被测样品、热源、传感器等设备,并进行预热处理。

2. 组装实验装置将热源和传感器安装在被测样品两侧,保持垂直于样品表面,并保证传感器和热源之间的距离固定。

3. 连接电路将热源和传感器的电路连接起来,并接通电源。

4. 记录数据随着时间的推移,记录被测样品两侧的温度变化,并计算出温度差。

5. 计算导热系数根据斯特法定律,可以计算出不良导体的导热系数。

三、注意事项在使用稳态法测量不良导体导热系数时,需要注意以下事项:1. 需要使用高精度的热源和传感器,以保证稳态条件的达成和温度差的准确测量。

不良导体的导热系数

不良导体的导热系数

实验二 稳态法测量不良导体的导热系数导热系数是表征物质热传导性质的物理量。

材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数的实验方法一般分为稳态法和动态法两类。

在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。

而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

【实验目的】1.学习应用稳态法测量不良导体(橡皮样品)的导热系数。

2.学习用物体散热速率求传导速率的实验方法。

【实验原理】1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。

由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1T 、2T ,根据傅立叶传导方程,在t ∆时间内通过样品的热量Q ∆满足下式:12BT T QS t h λ-∆=∆ (1)式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得:2124B BT T Qd t h λπ-∆=∆ (2)实验装置如图-1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。

散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

稳态法测量不良导体导热系数

稳态法测量不良导体导热系数

稳态法测量不良导体导热系数【实验目的】1.利用物体的散热速率求传热速率。

2.(用稳态平板法测定不良导体的导热系数。

) 【仪器用具】1.导热系数测定仪(含实验装置、数字电压表、数字秒表) 一台 2.杜瓦瓶(或低温实验仪) 一只/台 3.硬铝样品(附绝缘圆盘一块,供散热时覆盖用) 一根 4.橡皮样品 一块 5.测片 一把 【实验内容】1.测量不良导体----橡皮样品的导热系数。

2.测量金属----硬铝测试样品的导热系数。

3.测量空气的导热系数。

【结构特性】在使用中,样品架的三个螺旋微头是用来调节散热盘和圆筒加热盘之间距离和平整度的。

除测量金属样品时不用圆筒固定外,其它如测橡皮和空气的导热系数时,均将圆筒的固定轴对准样品支架上的圆孔插入,并用螺母旋紧,具体步骤是:先旋下螺母,将加热圆筒放下。

使固定轴穿过圆孔,再将螺母旋上并拧紧,最后固定筒后的紧固螺钉,从而由三个螺旋测微头来调节平面和待测样品厚度。

【测量范围、精度】1.温度测量部分:室温0~110℃;测量精度:±1℃ 温差测量的精度0.5℃;2. 计时部分:范围0~100min;最小分辨率1S, 精度:10-53. 电压表:精度0.1%;【实验原理】导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设Z 方向)进行的时候,热传导的基本公式可写为:(2-9-1)它表示在dt 时间内通过ds 面的热量为dQ,dT/dz 温度梯度,λ为导热系数,它的大小由物体本身的物理性质决定,单位为w/(m •k),它是表征物质导热性能大小的物理量,式中负号表示热量传递向着降低的方向进行。

在图一中,B 为待测物,它的上下表面分别和上下铜盘接触,热量由高温铜盘通过待测物B 向低温铜盘传递,若B 很薄,则通过B 侧面向周围环境的散热量可以忽略不计,视热量沿着垂直待测圆板B 的方向传递,那么,在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在Δt 时间内,通过面积为S 、厚度为h 的匀质板的热量为dt ds dz dTdQ Z ⋅-=0)(λ(2-9-2)△T 表示匀质圆板两板两板面的恒定温差。

稳态法测量不良导体的导热系数讲义

稳态法测量不良导体的导热系数讲义
5
S
找稳态?
接通电源,打开主机底部小风扇,
形成稳定的散热环境,将加热盘供电电
压调到220V,加热10分钟,将加热盘供
电电压调到110V,然后5分钟记录一组样
品上下表面温度,若在10分钟内,样品 上下表面温度不变,则样品达到稳态,
记录(TA,TP )。
6
怎样测温 度?
—热电偶测温原理:
热电偶是利用温差电效应
部分面参与散热的散热盘P的散热速率与其冷却速率的 关系为:
S S侧 Q T mc t TP t TP 2 S S 侧
不良导体 B 的热导率为:
hB 1 ΔT D 4hp κ 2mc 2 Δ t TP D 2 h p T A T P π D
15
3
实验原理
一 热传导遵循的基本规律——傅立叶定律:
Q dT κ S t d x x0
传热速率ΔQ/Δt 与该平面所在 处的温度梯度成正比,与平面面 积ΔS 成正比。
热传导
注:该公式稳态法测量样品热导率的原理公式

稳态法测不良导体的热导率:
原理公式:
Q dT κ S t d x x0
12
基本要求
一、数据记录
样品尺寸(见实验台标签) 稳态时加热盘 TA=_____,散热盘 TP=_____ 散热盘冷却过程 1 t(s)
•αT(mv)
2
3
4
5
6
7
8
……
13
二、数据处理
1.在坐标纸上绘制散热盘的冷却曲线(T~t 曲线),根据作图法求出散热盘的冷却速率。 2.计算橡皮的热导率κ。
14

稳态法测量不良导体的导热系数实验报告

稳态法测量不良导体的导热系数实验报告

稳态法测量不良导体的导热系数实验报告实验报告实验名称:稳态法测量不良导体的导热系数实验目的:本实验旨在通过稳态法测量不良导体的导热系数,进一步了解材料的导热性能,并提高实验操作能力。

实验原理:热传导是物质内能的传递,是由高温区向低温区传递热量的过程。

在导体中,热量的传导主要通过自由电子传导和晶格振动传导两种机制实现。

本实验通过稳态法测量不良导体的导热系数。

在稳态下,热量的输入和输出相等,即:Qin = Qout根据傅立叶热传导定律,稳态下热传导的热流密度Q与导热系数λ、导热面积A、温度差ΔT之间的关系为:Q = λAΔT / d其中,Q为单位时间内通过导体的热量,λ为导热系数,A为导热面积,ΔT为温度差,d为导体的厚度。

实验器材:1. 不良导体样品2. 直立式热传导仪3. 温度计实验步骤:1. 将热传导仪取出,并调整热电偶测温头至样品位置,并与温度计校准。

2. 将样品固定于热传导仪上,并调整加热电压至一定值,保持恒温。

3. 记录热电偶和温度计示数,计算温度差ΔT。

4. 根据所用材料的厚度测量所得,计算导热系数λ。

实验结果及数据处理:进样品的加热电压为V = 5V,测得的热电偶示数为T1 = 40℃,T2 = 30℃,沿导体厚度方向测得的样品厚度为d = 2cm。

由此可计算出温度差ΔT = T1 - T2 = 40℃ - 30℃ = 10℃。

代入傅立叶热传导定律公式Q = λAΔT / d,可得热流密度Q。

将实验中测得的其他参数代入公式,可计算得到不良导体的导热系数λ。

实验结论:通过稳态法测量不良导体的导热系数,可以得到材料的导热性能。

该实验结果为XX(具体结果),表明该不良导体具有较低的导热系数,其热传导能力较差。

实验过程中需注意:1. 实验开始前要确保热传导仪和温度计都已校准,并测得的数据准确可靠。

2. 在稳态状态下测量温度差,并注意尽量减小其他误差的影响。

3. 实验结束后及时关闭加热电源,并注意对实验器材的清理和归位。

稳态法测量不良导体的导热系数实验报告

稳态法测量不良导体的导热系数实验报告

稳态法测量不良导体的导热系数实验报告实验报告:稳态法测量不良导体的导热系数实验实验目的:本实验旨在通过稳态法测量不良导体的导热系数,了解不良导体的导热性能,并进一步分析材料的热传导特性。

实验仪器:1. 实验台2. 电热器3. 铜棒样品4. 温度计5. 计时器6. 多用电表7. 导热油实验原理:稳态法测量导热系数是通过测量材料的温度梯度和热流量来计算导热系数的。

在实验过程中,首先将导热油倒入实验台中,使其充满整个实验空间。

然后,在台面上放置热源和试样,热源通过导热油将热量传递给试样,试样将热量传递给周围环境。

通过测量试样两端的温度差和热流量,可以计算出导热系数。

实验步骤:1. 准备工作: 将实验台内充填导热油,并使其达到温度平衡。

2. 将导热棒和试样一起放置在实验台上,使其与实验台接触良好。

3. 将电流通入电热器中,通过导热油将热量传递给试样,使热量在试样内传递。

4. 同时使用温度计测量试样两端的温度差,并通过多用电表测量电热器的电流和电压,计算出热流量。

5. 记录不同时间间隔的试样温度和热流量数据,并绘制温度与热流量的关系曲线。

6. 根据数据计算出导热系数。

实验结果:根据实验得到的温度-热流量关系曲线,可以通过线性拟合得到试样的斜率,即热流量值。

通过计算不同时间间隔内的温度差,可以得到导热系数的数值。

实验结论:根据实验结果,可计算出不良导体的导热系数。

导热系数是衡量材料导热性能的重要参数,通过实验可以了解不良导体的导热性能,并为材料的热传导特性分析提供参考。

实验注意事项:1. 实验过程中要注意安全,避免触电或烫伤等意外情况。

2. 导热油的量要足够充填实验台,且温度均匀平衡。

3. 实验前要对实验仪器进行检查,确保正常工作。

4. 实验操作要严格按照实验步骤进行,尽量减小误差产生。

5. 实验完成后要对实验环境进行清理和整理,保持实验台的整洁。

稳态法测量不良导体的导热系数实验报告(一)

稳态法测量不良导体的导热系数实验报告(一)

稳态法测量不良导体的导热系数实验报告(一)稳态法测量不良导体的导热系数实验报告简介本报告介绍了使用稳态法测量不良导体的导热系数实验的方法和结果。

该实验采用了稳态法测量导热系数的方法,通过测量导体两端的温度差和导热长度,计算导热系数。

实验目的•测量不同材料的导热系数,了解不良导体的导热性能;•分析不良导体的导热差异,为后续材料选择和优化提供参考。

实验步骤1.准备实验所需材料和设备;2.温度测量:使用温度计测量导体的两端温度,并记录;3.确定导热长度:根据实验设计,测量导体的长度,并记录;4.安装导体:将导体安装在恒温水槽中,确保整个导体完全浸没在水中;5.稳定温度:打开恒温水槽,调节水温,使其稳定于所需温度;6.等待稳定态:在恒温水槽中放置一段时间,待温度稳定后进行下一步;7.测量数据记录:记录稳定温度下导体两端的温度差和导热长度;8.计算导热系数:根据测量数据,使用导热系数计算公式计算导体的导热系数;9.分析结果:对实验结果进行分析和比较,得出结论。

实验结果•实验所得数据:测量到的导体两端的温度差为ΔT,导热长度为L;•导热系数计算结果:根据导热系数计算公式,得出不同导体的导热系数;•数据分析:对比各种导体的导热系数,分析不良导体的导热性能。

结论通过稳态法测量不良导体的导热系数实验,我们得到了不同导体的导热系数数据,并进行了比较和分析。

根据实验结果,可以得出以下结论: 1. 不同材料的导热系数存在较大差异,不良导体的导热性能较差; 2. 在进行材料选择和优化时,需要考虑材料的导热性能;3. 导热系数可作为评价材料导热性能的重要指标之一。

参考文献[1] 张三, 李四, 稳态法测量导热系数实验方法研究, 物理实验杂志, 20XX.[2] 中国测绘科学研究院,导热系数测量技术方法,测绘标准化与质量保证,20XX。

实验条件和设备•实验条件:室温为25°C,相对湿度为50%;•实验设备:–温度计:使用数字温度计,具有高精度和稳定性;–恒温水槽:具有恒温控制功能,能够稳定控制水温;–导体样品:选择不同材料的导体样品,确保样品的尺寸一致;–数据记录器:记录实验数据,确保数据准确性;–恒温计时器:用于稳定时间的控制,确保温度稳定于所需状态。

稳态法测量不良导体导热系数10

稳态法测量不良导体导热系数10
五、实验数据记录与数据处理
1、自行设计记录表格,包括所需测量的铜盘、材料盘的尺寸、质量等。
2、测量稳态时材料盘上下表面温度
3、测量P盘在T2温度附近的冷却速率。(可以用绘图法或直接T2附近测10个温度数据点求平均)
4、计算导热系数。
5、用PID自动控温方式测量导热系数。
附表:铜—康铜热电偶分度表
热电势(mV)
3.根据稳态法,必须等温度分布稳定,才可以读数。这就要等待较长的时间。为了提高效率,可先将电源电压打到高档,加热至指定温度附近后再打至低档。然后,每隔2分钟观察一下温度示值,如在一段时间内(如10分钟)样品上、下表面温度T1、T2示值都不变,即可认为已达到稳定状态。记录稳态时T1、T2值。要求T1保持在60℃。
3.721
3.767
90
3.813
3.859
3.906
3.952
3.998
4.044
4.091
4.137
4.184
4.231
100
4.277
4.324
4.371
4.418
4.465
4.512
4.559
4.607
4.654
4.701
6.用自动控温法测某种样品在60℃时的导热系数。设置自动控温温度点为60℃,待系统达到稳态时,测出T1、T2值。照上述方法测出下铜盘T2温度时的自然冷却速率。求出该样品的导热系数。
注意:①自动升温较慢时,可先用手动高档加热,临近60℃时再转为自动控制;
②自动控温显示的为上铜盘温度,与电压表换算出的温度可能出现不一致(二者定标方式不同)。请以热电偶测量的温度为准。
1.114
1.155
30
1.196
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳态法测量不良导体的导热系数
导热系数是表征物质热传导性质的物理量。

材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数的实验方法一般分为稳态法和动态法两类。

在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。

而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

【实验目的】
本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。

【实验原理】
1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。

由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ∆时间内通过样品的热量Q ∆满足下式:
S h t Q
B
21θθλ-=∆∆ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得:
2214B B
d h t Q
πθθλ-=∆∆ (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以
借助底座内的风扇,达到稳定有效的散热。

散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

当传热达到稳定状态时,样品上下表面的温度1θ和2θ不变,这时可以认为加热盘C 通过样品传递的热流量与散热盘P 向周围环境散热量相等。

因此可以通过散热盘P 在稳定温度2θ时的散热速率来求出热流量
t
Q
∆∆。

实验时,当测得稳态时的样品上下表面温度1θ和2θ后,将样品B 抽去,让加热盘C 与
散热盘P 接触,当散热盘的温度上升到高于稳态时的2θ值C 20或者C
20以上后,移开加热盘,让散热盘在电扇作用下冷却,记录散热盘温度θ随时间t 的下降情况,求出散热盘在2θ时的冷却速率
2
θθθ=∆∆t
,则散热盘P 在2θ时的散热速率为:
2
θθθ
=∆∆=∆∆t
mc t Q (3)
其中m 为散热盘P 的质量,c 为其比热容。

在达到稳态的过程中,P 盘的上表面并未暴露在空气中,而物体的冷却速率与它的散热表面积成正比,为此,稳态时铜盘P 的散热速率的表达式应作面积修正:
)
22()
2(2
2
2
P P P P P p h R R h R R t
mc t Q ππππθ
θθ++∆∆=∆∆= (4)
其中P R 为散热盘P 的半径,P h 为其厚度。

由(2)式和(4)式可得:
)
22()
2(42
2
2
2
12
P P P P P p B
B
h R R h R R t
mc
d h ππππθ
πθθλ
θθ++∆∆=-= (5)
所以样品的导热系数λ为:
2
211
)(4)22()
2(2
B B P P P p d h h R h R t
mc
πθθθ
λθθ-++∆∆== (6)
【实验仪器】
FD-TC-B 型导热系数测定仪装置如图1所示,它由电加热器、铜加热盘C ,橡皮样品圆盘B ,铜散热盘P 、支架及调节螺丝、温度传感器以及控温与测温器组成。

图1 FD-TC-B 导热系数测定仪装置图
【实验内容】
(1) 取下固定螺丝,将橡皮样品放在加热盘与散热盘中间,橡皮样品要求与加热盘、散热盘
完全对准;要求上下绝热薄板对准加热和散热盘。

调节底部的三个微调螺丝,使样品与加热盘、散热盘接触良好,但注意不宜过紧或过松;
(2) 按照图1所示,插好加热盘的电源插头;再将2根连接线的一端与机壳相连,另一有传
感器端插在加热盘和散热盘小孔中,要求传感器完全插入小孔中,并在传感器上抹一些硅油或者导热硅脂,以确保传感器与加热盘和散热盘接触良好。

在安放加热盘和散热盘时,还应注意使放置传感器的小孔上下对齐。

(注意:加热盘和散热盘两个传感器要一一对应,不可互换。


(3) 接上导热系数测定仪的电源,开启电源后,左边表头首先显示从FDHC ,然后显示当时
温度,当转换至b = =· =,用户可以设定控制温度。

设置完成按“确定”键,加热盘即开始加热。

右边显示散热盘的当时温度。

(4) 加热盘的温度上升到设定温度值时,开始记录散热盘的温度,可每隔一分钟记录一次,
待在10分钟或更长的时间内加热盘和散热盘的温度值基本不变,可以认为已经达到稳定状态了。

(5) 按复位键停止加热,取走样品,调节三个螺栓使加热盘和散热盘接触良好,再设定温度
到C
80,加快散热盘的温度上升,使散热盘温度上升到高于稳态时的2θ值C
20左右即可。

(6) 移去加热盘,让散热圆盘在风扇作用下冷却,每隔10秒(或者30秒)记录一次散热盘
的温度示值,由临近2θ值的温度数据中计算冷却速率
2
θθθ
=∆∆t。

也可以根据记录数据做
冷却曲线,用镜尺法作曲线在2θ点的切线,根据切线斜率计算冷却速率。

(7) 根据测量得到的稳态时的温度值1θ和2θ,以及在温度2θ时的冷却速率,由公式
2
211
)(4)22()
2(2
B B P P P p d h h R h R t
mc
πθθθ
λθθ-++∆∆==计算不良导体样品的导热系数。

【注意事项】
1. 为了准确测定加热盘和散热盘的温度,实验中应该在两个传感器上涂些导热硅脂
或者硅油,以使传感器和加热盘、散热盘充分接触;另外,加热橡皮样品的时候,为达到稳定的传热,调节底部的三个微调螺丝,使样品与加热盘、散热盘紧密接触,注意不要中间有空气隙;也不要将螺丝旋太紧,以影响样品的厚度。

2.导热系数测定仪铜盘下方的风扇做强迫对流换热用,减小样品侧面与底面的放热比,增加样品内部的温度梯度,从而减小实验误差,所以实验过程中,风扇一定要打开。

【数据处理】例(仅供参考)
样品:橡皮; 室温:C
20;
散热盘比热容(紫铜):C=385)/(K Kg J ⋅; 散热盘质量:g m 42.891=; 散热盘厚度P h (多次测量取平均值):
表1 散热盘厚度(不同位置测量)
所以散热盘P 的厚度:P h =7.66mm ;
散热盘半径P R (多次测量取平均值):
表2 散热盘直径(不同角度测量)
所以散热盘P 的半径:P R =65.00mm ; 橡皮样品厚度B h (多次测量取平均值):
表3 橡皮样品厚度(不同位置测量)
所以橡皮样品的厚度:B h =8.06mm ; 橡皮样品直径B d (多次测量取平均值):
表4 橡皮样品直径(不同角度测量)
所以橡皮样品的直径:B d =129.02mm ;
稳态时(10分钟内温度基本保持不变),样品上表面的温度示值C
2.801=θ,样品下表面温度示值C
0.452=θ;
每隔10秒记录一次散热盘冷却时的温度示值如表5:
表5 散热盘自然冷却时温度记录
作冷却曲线得到:
图2 散热盘冷却曲线
取临近2θ温度的测量数据求出冷却速率S C t
/040.02
=∆∆=θθθ。

(或者用镜尺法求出冷却速率)
将以上数据代入公式(6)计算得到:
)
/(13.0)1002.129(1
0.452.801006.8466.7200.65266.7200.65040.03851042.8911
)(4)22()
2(2
333
2
212
K m W d h h R h R t
mc
B B P P P p ⋅=⨯⨯⨯
-⨯⨯⨯⨯+⨯⨯+⨯⨯⨯⨯=-++∆∆=---=ππθθθ
λθθ查阅相关资料知,橡皮在C
20的条件下测定导热系数为)/(23.0~13.0K m W ⋅。

【思考题】
1. 应用稳态法是否可以测量良导体的导热系数?如可以,对实验样品有什么要求?实验方
法与测不良导体有什么区别?
2. 什么是镜尺法?镜尺法画切线利用了什么原理?。

相关文档
最新文档