01基因与基因表达的一般概念

合集下载

生物化学 5-基因表达调控

生物化学 5-基因表达调控

个基因或一些功能相近的基因表达(生物体内基因表达)的开启、
关闭和表达强度的直接调节。
它是生物在长期进化过程中逐渐形成的精确而灵敏的生存 能力和应变能力,是生物赖以生存的根本之一。
二、基因表达的方式
(一)组成性表达(constitutive gene expression)
指不大受环境变动而变化的一类基因表达。其中某些基因表 达产物是细胞或生物体整个生命过程中都持续需要而必不可少的, 这类基因可称为管家基因(housekeeping gene),这些基因中不少
性。
• 当有葡萄糖存在时, cAMP浓度较低, cAMP与CAP 结合受阻,lac操纵子表达下降。
(4)协调调节
Lac阻遏蛋白负性调节与cAMP正性调节两种机制协调合作 • 无乳糖,无诱导物时,转录作用被I表达的阻遏蛋白所阻断。 • 有诱导物时,诱导物与阻遏蛋白结合,使其变构,从操纵基
因上解离出来。
调节基因
β -半乳糖苷酶
2、阻遏蛋白 的负性调节
没有乳糖存在时,lac操纵子处于阻
遏状态。I序列表达的lac阻遏蛋白与
O序列结合,阻碍RNA聚合酶与P序 列结合,抑制转录启动。
有乳糖存在时,lac 操纵子可被诱导。
别乳糖作为诱导剂分子结合阻遏 蛋白,使蛋白构象变化,导致阻 遏蛋白与O序列解离,发生转录
基因产物特异识别、结 合其它基因的调节序列, 调节其它基因的开启或
关闭称为反式调节
基因产物特异识别、 结合自身基因的调 节序列,调节自身 基因的开启或关闭 称为顺式调节
DNA
a
A A
反式调节
b
mRNA
蛋白质A
C
c
DNA
mRNA
顺式调节

生物化学第十三章 基因表达调控

生物化学第十三章 基因表达调控

第十三章基因表达调控一、基因表达调控基本概念与原理:1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA 分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。

2.基因表达的时间性及空间性:⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。

故又称为阶段特异性。

⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。

故又称为细胞特异性或组织特异性。

3.基因表达的方式:⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。

其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。

这类基因通常被称为管家基因(housekeeping gene)。

⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。

这类基因称为可诱导基因。

阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。

这类基因称为可阻遏基因。

4.基因表达的生物学意义:①适应环境、维持生长和增殖。

②维持个体发育与分化。

5.基因表达调控的基本原理:⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。

⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。

基因的本质和表达表达

基因的本质和表达表达


转录和翻译
过程: 过程: 内容 1、DNA双链解旋 、 双链解旋 2、碱基配对; 、碱基配对 3、聚合; 、聚合
1.转录 1.转录
是整条DNA或者某 整条 或者某 片段解旋 RNA 解旋? 片段解旋? G U A C A T G
条件 1、 DNA解旋酶 、 解旋酶 2、模板:DNA链 、模板: 链 3、原料:糖核苷酸 核 、原料: 核糖核苷酸 4、RNA聚合酶 、 聚合酶
C G A 细胞核
C U
DNA DNA
DNA的转录 的转录 场所: 主要在细胞核 场所: 主要在细胞核 过程: 过程: a. DNA 解旋,以一条链为模板合成RNA 解旋,以一条链为模板合成RNA T— DNA与RNA的碱基互补配对 的碱基互补配对: b. DNA与RNA的碱基互补配对:A—U ; T—A; C —G ; G —C c. 组成 RNA 的核糖核苷酸一个个连接起来 核糖核苷酸一个个连接起来 条件: 条件: 模板:DNA的一条链 模板: 的一条链 解旋酶、RNA聚合酶 酶: 解旋酶 聚合酶 原料: 原料:四种核糖核苷酸 能量: 能量: ATP 结果: 形成一条mRNA 结果: 形成一条
(2)三种 三种RNA的比较 三种 的比较 mRNA
分布部 位
常与核糖体结合
tRNA
细胞质中
rRNA
与蛋白质结合形 成核糖体 由核仁组织区的 DNA转录而来, 转录而来, 转录而来 是核糖体的组成 物质 合成蛋白质的场所
带有从DNA上 上 带有从 特点
一端能与氨基酸结合, 一端能与氨基酸结合,另
一端有反密码子与mRNA 转录下来的遗传 一端有反密码子与 信息 上的遗传密码子配对 翻译时作搬运氨基酸的工 具 单链, 单链,常有部分碱基对形 成三叶草结构

基因表达的定义

基因表达的定义

基因表达的定义
基因表达是指基因通过转录和翻译的过程,将DNA序列中的信息转化为蛋白质或RNA分子的过程。

基因是生物体内遗传信息的基本单位,而基因表达则是生命活动中最为重要的过程之一。

在细胞内,DNA编码了所有生物所需的遗传信息。

然而,这些信息需要被转录成RNA分子才能被翻译成蛋白质。

这个过程称为基因表达。

从某种意义上说,基因表达是细胞功能和特征的决定性过程。

在真核生物中,基因表达包括两个主要步骤:转录和翻译。

转录是指DNA模板上的信息被复制到RNA分子上的过程。

这个过程由酶RNA 聚合酶完成。

RNA分子可以直接参与细胞代谢或作为模板用于翻译成蛋白质。

翻译是指RNA分子上携带的信息被翻译成蛋白质序列的过程。

这个过程由核糖体完成,它们将氨基酸连接起来形成多肽链。

多肽链随后会折叠成三维结构并变成功能蛋白质。

在原核生物中,基因表达过程比真核生物简单得多。

这是因为它们没有真核生物那样的细胞器和分子机器,而是将DNA、RNA和蛋白质都放在同一个区域内。

这种结构被称为核区。

在原核生物中,转录和
翻译可以同时进行。

基因表达的调控对于细胞发育、组织特化和适应环境等方面都至关重要。

许多机制可以影响基因表达水平,包括DNA甲基化、组蛋白修饰、转录因子结合和RNA降解等。

这些机制可以通过外部信号或内部信号来调节。

总之,基因表达是遗传信息从DNA到RNA再到蛋白质的重要过程。

它是生命活动中最为重要的过程之一,并且对于细胞发育、组织特化
和适应环境等方面都具有至关重要的作用。

分子生物学课后作业(重点)

分子生物学课后作业(重点)

分子生物学研究的内容狭义分子生物学的概念中心法则的概念分子生物学与其他学科的关系DNA作为遗传物质的证据染色体与DNA1、染色体作为遗传物质的特征;2、真核细胞染色体的组成;3、DNA的二级结构及特点;4、原核与真核染色体DNA比较;5、原核与真核DNA复制的比较;6、DNA的双螺旋结构模式要点和特点;7、半保留复制的概念;8、DNA复制的一般过程。

C值反常现象(C值谬论)真核生物基因组的结构特点染色体的结构模型参与原核生物DNA聚合反应有关的酶类真核生物与原核生物DNA合成的区别DNA的修复的类型DNA的转录(从DNA到RNA)生物信息的传递(上)1、基因与基因表达的概念;2、转录的步骤和主要内容;3、转录与复制的异同点;4、真核生物的RNA聚合酶的产物与特性;5、启动子和增强子概念及其对转录的影响;6、原核生物和真核生物mRNA的特征比较。

RNA转录后加工的内容及生理功能(P94)生物信息的传递(下)遗传密码——三联子的概念遗传密码的性质摆动假说遗传密码的简并性概念及其对保持物种遗传稳定性的意义信使RNA (mRNA)、转移RNA (tRNA)、核糖体RNA (rRNA)的概念和功能真核细胞及原核细胞蛋白质合成的步骤和主要内容蛋白质合成后的加工修饰几类主要蛋白质的运转机制信号肽的概念及其特点DNA重组技术1、中心法则;2、半保留复制;3、基因表达;4、信使RNA (mRNA);5、真核生物与原核生物DNA合成的区别;6、真核细胞蛋白质合成的步骤;7、DNA重组技术的基本过程。

DNA重组技术的概念与基本过程理想的基因工程载体所要具备的特点质粒的概念及其基本的生物学特性基因组DNA文库和cDNA文库的概念SD序列的概念PCR技术的原理与应用原核生物基因表达调控模式中心法则:限制性内切酶:外显子:冈崎片段:半保留复制:转录:反转录:翻译:有意义链:反意义链:内含子:外显子:冈崎片段:突变:遗传密码:密码子:多核糖体:简并性:问答题:1、比较DNA复制与RNA转录的异同。

基因的表达

基因的表达

A.390 B.195 C.65 D.260
14.已知某蛋白质分子由2条肽链组成,连接蛋白质分子中氨基酸的肽键共有198个,翻译成这个蛋
白质的mRNA中有碱基 个,基因中有碱基
对。
A
600 600
课堂练习
1.对一个基因的正确描述是( ) A.是有遗传效应的染色体片段 B.其化学成分是碱基、核糖和磷酸 C.每个基因含有一个DNA分子 D.是决定生物性状的基本单位
1、指出各部分的名称。 2、指出RNA聚合酶沿RNA的移动方向。
RNA
编码链 模板链
RNA聚合酶 酶移动方向
DNA
核糖核苷酸
DNA双螺旋 重新形成
RNA聚合酶 编码链
RNA聚合酶移动方向 DNA双螺旋解开
模板链
RNA RNA-DNA 杂交区域
思考:1、RNA聚合酶是否将整个DNA进行转录?
解开双螺旋的DNA片段包括一个或几个基因。 2、转录合成的RNA可以直接作为合成相应蛋白质的
G
C
T
G
C
U
C
G
A
G
C
U
丙氨酸
模板链
多肽中氨基酸数与 mRNA、DNA中碱基数的关系
如果某细菌多肽中有 n 个氨基酸,则指导该
多肽链合成的 mRNA的碱基数目至少为

控制该多肽合成的DNA(基因)中的碱基数目至少
3n


6n
5、水蛭素是由65个氨基酸组成的蛋白质,控制该蛋白质合成的基因的碱基数至少应是( )
模板吗 ?
核苷酸加到RNA末端 游离核苷酸
真核细胞中,细胞核内转录合成的RNA必须经过加工 成为成熟的mRNA后,才能转移到细胞质中。

基因的表达

基因的表达

基因的表达一、基因:1、概念:基因是具有遗传效应的DNA分子片段,是控制生物性状的结构和功能的基本单位。

2、基因与脱氧核甘酸、DNA、染色体关系3、基因的存在场所核基因:染色体上呈线性排列,有性生殖产生配子时基因和染色体真核 具有行为上的一致性。

质基因:线粒体、叶绿体原核:拟核病毒:核酸4、遗传信息:基因中脱氧核苷酸(或碱基对)的排列顺序,代表遗传信息。

每个基因都有特定的遗传信息。

二、基因的功能1、储存遗传信息:通过脱氧核苷酸的排列顺序。

2、传递遗传信息:时间:细胞分裂。

方式:DNA复制3、表达遗传信息:时间:个体发育中。

方式:转录和翻译。

三、基因控制蛋白质的合成:(一)基因的表达:基因(DNA)通过复制将遗传信息传递给后代,在后代的个体发育中,基因中的遗传信息以一定的方式反映到蛋白质的分子结构上来,使后代表现出与亲代相似的性状,这一过程叫基因的表达。

基因的表达是通过DNA控制蛋白质的合成来实现的。

(二)DNA和RNA的比较DNA RNA结构规则的双螺旋结构通常呈单链结构组成基本单位脱氧核苷酸核糖核苷酸五碳糖脱氧核糖(C5H10O4)核糖(C5H10O5)无机酸磷酸磷酸碱基嘌呤腺嘌呤 A腺嘌呤 A鸟嘌呤 G鸟嘌呤 G 嘧啶胞嘧啶 C胞嘧啶 C胸腺嘧啶 T尿嘧啶 U分类通常只有一类分为mRNA、rRNA、tRNA功能主要的遗传物质在无DNA的生物中是遗传物质,在有DNA的生物中,辅助DNA完成其功能。

考虑:下列各种生物体含有的碱基,核苷酸及核酸种类碱基种类核苷酸种类核酸种类五碳糖种类烟草烟草花叶病毒蓝藻噬菌体(三)基因表达过程1、 转录(表示为:DNA→mRNA)(1)概念:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。

示意图为说明:转录是以基因为单位进行的,因为一个DNA分子包含有许多个基因,因此,1个DNA就可转录多种多个RNA,基因在转录时为模板的那条链不是固定的,不同基因模板链不同。

基因表达的概念及特点

基因表达的概念及特点
基因表达受到多种调控机制的影响,包括转录因子、表观遗传调控、RNA剪接、 mRNA稳定性等。这些机制共同调控基因的在生物体的发育、生长、功能维持等方面起着重要的作用。它决定了细胞的特性和功能, 也与疾病的发生和发展密切相关。
基因表达的特点
1 多样性
2 时空特异性
基因表达的应用
疾病诊断
基因表达模式可以作为一种生物标志物,用于疾病的早期诊断和疗效评估。
药物开发
基于基因表达的研究可以帮助发现新的药物靶点并设计更精准的治疗方案。
农业改良
基因表达研究可以帮助改良农作物的产量、抗病性和适应性。
不同细胞和组织中的基因表达模式具有 差异。
基因表达在时间和空间上都有特定的模 式和调控。
3 动态性
4 稳定性
基因表达会随着外部环境和内部信号的 变化而调整。
某些基因表达模式可以维持较长时间。
表观遗传学与基因表达的关系
表观遗传学是研究基因表达调控的一门学科。它研究基因组上的化学修饰对基因表达的影响,如 DNA甲基化和组蛋白修饰等。
基因表达的概念及特点
基因表达是指基因产生功能蛋白质的过程。它包括转录和翻译过程,并受到 严格的调控。基因表达在维持生命过程中具有重要的作用。
基因表达的定义和过程
基因表达是指基因通过转录和翻译过程产生功能蛋白质的过程。转录是将DNA转录为mRNA的过程, 而翻译则是将mRNA翻译为蛋白质的过程。
基因表达的调控机制

基因表达的概念及特点

基因表达的概念及特点

01
组蛋白的8个亚基上有32个潜在的乙酰化位点。
02
组蛋白的乙酰化-去乙酰化
组蛋白乙酰化导致组蛋白表面正电荷减少,组蛋白与DNA结合能力下降,引起核小体解聚并阻止核小体装配,使得染色体处于松弛状态,从而使转录因子和RNA聚合酶顺利结合在DNA上,促进基因转录;
组蛋白乙酰化是许多转录调控蛋白相互作用的一种“识别信号”,如H4组蛋白的乙酰化作用参与了指示和吸引TFIID到相应的启动子上,促进转录前起始复合物的装配;
01
动态模型(dynamic model):认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即染色质重塑。在染色质重塑过程中,某些转录因子可以在结合DNA的同时使核小体解体。
02
组蛋白对基因活性的影响
蛋白的乙酰化和去乙酰化是蛋白活性调节的一种重要的形式,通过乙酰化或去乙酰化,改变了染色质结构或是转录因子的活性,可以调节基因转录的活性。组蛋白的乙酰化和去乙酰化能打开或关闭某些基因,增强或抑制某些基因的表达。
翻译起始因子的调控:
eIF-2-4F的磷酸化能提高翻译速度 eA稳定性的调节
球蛋白mRNA的3‘UTR序列含有许多CCUCC重复蛋白序列,这些序列发生突变将降低mRNA的稳定性。 某些不稳定的mRNA起3‘UTR含有50nt的共有序列AUUUA,称为ARE。 ARE结合蛋白可以聚集外切多聚腺苷酸酶和内切酶,加速mRNA的降解。
四 真核基因转录后水平的调控
增强mRNA 的寿命和翻译能力(二者相互影响)
5’帽子和poly (A)尾都对RNA的剪接有影响
Poly (A)尾的功能
五 翻译水平的调控
5’端UTR(非翻译区)结构与翻译起始的调节
5‘帽子结构的甲基化:1)保护mRNA免遭5’外切酶的降解。2)为mRNA的从核中输出提供转运信号。3)提高翻译模板的稳定性和翻译效率。

基因组与基因表达

基因组与基因表达

基因组与基因表达基因组与基因表达是现代生物学领域中的重要研究方向。

基因组是指一个生物体内所有基因的集合,而基因表达则指基因中的信息通过转录和翻译等过程转化为蛋白质的过程。

基因组与基因表达的研究对于理解生物体的发育、进化、功能以及疾病等具有重要意义。

本文将分析基因组与基因表达的关系以及对生物学研究的重要性。

一、基因组的概念和结构基因组是一个生物体内的全部遗传信息的总和,包括DNA序列、RNA序列以及蛋白质编码序列等。

基因组的结构主要由DNA分子组成,DNA分子是由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)构成的长链,并以双螺旋的形式存在。

基因组的大小在不同物种之间存在差异,人类基因组的长度约为3亿个碱基对。

二、基因表达的过程基因表达是基因中的信息转化为蛋白质的过程,它包括转录和翻译两个主要步骤。

转录是指DNA序列通过RNA聚合酶的作用转化为RNA分子的过程,这一过程在细胞核中进行。

翻译是指RNA分子通过核糖体的作用合成蛋白质的过程,这一过程主要发生在细胞质中。

基因表达的调控机制非常复杂,包括转录因子的结合、DNA甲基化、组蛋白修饰等多个层面的调控,以确保基因的表达在适当的时间和空间进行。

三、基因组与基因表达的关系基因组是基因表达的基础,基因组中的每个基因都携带着特定的遗传信息。

基因组的研究可以帮助我们鉴定基因的位置、结构和功能,从而深入理解基因表达的机制。

通过对基因组的研究,人们可以揭示基因与表型之间的关系,进而探索生物体的发育、进化以及疾病等方面的问题。

四、基因组与疾病的关系基因组的异常往往与疾病的发生密切相关。

一些疾病是由基因突变引起的,如先天性疾病、某些遗传性肿瘤等。

通过对基因组的研究,可以发现与疾病相关的基因突变,进而提高对疾病的诊断与治疗水平。

此外,基因组的研究还可以揭示疾病的发生机制,为疾病的防治提供理论依据。

五、基因组与进化的关系基因组的研究也有助于我们了解生物的进化过程。

通过比较不同物种的基因组,我们可以探索它们之间的亲缘关系,解析物种起源与演化的历史。

2024年新人教版高考生物一轮复习讲义 第6单元 第3课时 基因的概念与表达

2024年新人教版高考生物一轮复习讲义  第6单元 第3课时 基因的概念与表达

5.中心法则 (1)提出者: 克里克 。 (2)中心法则内容图解(虚线表示少数生物的遗传信息的流向) 图中:①DNA的复制;②转录;③翻译;④RNA的复制 ;⑤RNA逆转录。
(3)生命是物质、能量和信息的统一体:DNA、RNA是信息的载体,蛋__白__ _质__是信息的表达产物,而 ATP 为信息的流动提供能量。
突破 强化关键能力
1.基因是有遗传效应的DNA片段,眼色基因(红眼基因R、白眼基因r)位 于果蝇的X染色体上,下列相关叙述正确的是 A.雌雄果蝇细胞内的基因都是随染色体的复制而复制的 B.同一DNA分子上不可能同时含有两个控制眼色的基因
√C.果蝇正常的卵原细胞有丝分裂时红眼基因最多有4个
D.白眼基因的两条链都可以作为模板转录出mRNA,用于蛋白质翻译

功能 蛋白质 合成的直接模板 识别 密码子 ,转运_氨__基__酸__
核糖体 的组成成分 RNA病毒的_遗__传__物__质___ 少数酶为RNA,可降低化学反应的 活化能 (起催化作用)
教材隐性知识
源于必修2 P67“图4-6”:tRNA 含有 (填“含有”或“不含 有”)氢键,一个tRNA分子中 不是 (填“是”或“不是”)只有 三个碱基。
遗传信息
拓展
延伸
真、原核细胞基因的结构
拓展 提升科学思维
1.在刑侦领域,DNA能像指纹一样用来鉴定个人身份。结合脱氧核苷酸 序列的多样性和特异性,你能分析这一方法的科学依据吗? 提示 在人类的DNA分子中,核苷酸序列多样性表现为每个人的DNA几 乎不可能完全相同。因此,DNA可以像指纹一样用来鉴别身份。 2.外源基因如果随机整合到受体细胞的DNA上,染色体上原有基因被破 坏的概率大还是不被破坏的概率大?请说明理由。 提示 不被破坏的概率大。染色体DNA分子中的绝大多数碱基并不构成 基因。

基因表达的名词解释

基因表达的名词解释

基因表达的名词解释基因表达(Gene Expression)是指细胞或个体中的基因通过转录和翻译过程产生功能性蛋白质的过程。

基因表达是生命活动的核心,控制着生物体内各种生理和生化过程的进行。

本文将从基本概念、机制和调控等角度解释基因表达,并探讨其在生物学领域中的重要性。

一、基因表达的基本概念基因是控制生物体遗传特征和性状的分子单位,位于染色体上。

基因表达指的是将基因的信息转化为具体的功能性产物,主要包括RNA和蛋白质。

基因表达的过程分为两个主要步骤:转录和翻译。

转录是指DNA模板上的信息被转录成为mRNA,而翻译是指mRNA被翻译成为蛋白质。

二、基因表达的机制1. 转录(Transcription)转录是基因表达的第一步,发生在细胞核中。

转录过程中,DNA的片段作为模板被RNA聚合酶酶作用下转录成为mRNA。

转录的结果是形成了一条具有与DNA相同编码信息的mRNA分子。

2. 翻译(Translation)翻译是基因表达的第二步,发生在细胞质中。

翻译是指mRNA分子通过与核糖体结合,在氨基酸的帮助下合成特定序列的蛋白质。

翻译的结果是将具体的基因序列转化为功能性蛋白质。

三、基因表达的调控基因表达的调控是指细胞根据内外环境信号对基因转录和翻译进行调节,从而实现细胞功能的适应性变化。

基因表达调控的主要方式包括转录调控和后转录调控。

1. 转录调控(Transcriptional Regulation)转录调控是指通过一系列转录因子的结合和激活,调控基因转录过程的速度和程度。

转录因子是DNA结合蛋白,能够结合到转录起始位点以及启动子区域,激活或抑制转录过程。

2. 后转录调控(Post-transcriptional Regulation)后转录调控发生在mRNA合成之后,通过影响mRNA的运输、剪接、稳定性和翻译等过程来调控蛋白质的合成。

这些调控可以通过RNA降解、RNA剪接、RNA编辑和表观遗传修饰等方式实现。

第十三章基因表达调控

第十三章基因表达调控

第十三章基因表达调控第十三章基因表达调控第一节基因表达调控基本概念与原理一、基因表达的概念(掌握)1、基因:负载特定遗传信息的DNA片段,包括由编码序列、非编码序列和内含子组成的DNA区域。

2、基因组:指来自一个遗传体系的一整套遗传信息。

在真核生物体,基因组是指一套完整的单倍体的染色体DNA和线粒体DNA的全部序列。

3、基因表达:基因所携带的遗传信息,经过转录、翻译等,产生具有特异生物学功能的蛋白质分子的过程。

但对于rRNA、tRNA编码基因,表达仅是转录成RNA的过程。

4、基因表达调控:基因表达是在一定调节机制控制下进行的,生物体随时调整不同基因的表达状态,以适应环境、维持生长和发育的需要。

人类基因组含3~4万个基因。

在某一特定时期,基因组中只有一部分基因处于表达状态。

在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特定生物学功能的蛋白质分子,赋予细胞或个体一定的功能或形态表型。

但并非所有基因表达过程都产生蛋白质。

rRNA、tRNA编码基因转录合成RNA的过程也属于基因表达。

二、基因表达的特异性(了解)无论是病毒、细菌,还是多细胞生物,乃至高等哺乳类动物及人,基因表达表现为严格的规律性,即时间、空间特异性。

生物物种愈高级,基因表达规律愈复杂、愈精细,这是生物进化的需要及适应。

基因表达的时间、空间特异性由特异基因的启动子(序列)和(或)增强子与调节蛋白相互作用决定。

(一)时间特异性概念:指按功能需要,某一特定基因的表达严格按特定的时间顺序发生。

又称阶段特异性。

在多细胞生物从受精卵到组织、器官形成的各个不同发育阶段,相应基因严格按一定时间顺序开启或关闭,表现为与分化、发育阶段一致的时间性。

(二)空间特异性概念:在个体生长全过程,某种基因产物在个体按不同组织空间或顺序出现。

基因表达伴随时间或阶段顺序所表现出的这种空间分布差异,实际上是由细胞在器官的分布决定的,又称细胞特异性或组织特异性。

基因的表达(一轮复习)

基因的表达(一轮复习)
基因的表达(一轮复习)
基因的定义和基本概念: 基因是生物遗传信息的基本单位,通过基因表达过程 将DNA中的遗传信息转录为RNA,再翻译为蛋白质。
基因与DNA
基因是DNA上的片段,DNA是包含基因的遗传物质。DNA通过双螺旋结构稳 定基因序列,并在基因表达过程中提供模板。
基因表达的过程
1
翻译
2
翻译是将mRNA转化为氨基酸链的过
基因表达决定了细胞的特 化和组织器官的形成。
疾病诊断和治疗
异常基因表达与疾病发生 和进展相关,被用于疾病 的早期诊断和靶向治疗。
新药开发
通过研究基因表达调控机 制,发现潜在的药物靶点 和治疗方法。
程,在核糖体中进行,最终形成蛋白
质。
3
转录
转录是将DNA模板转录为单链mRNA 的过程,通过RNA聚合酶酶促反应实 现。
调控基因表达
通过转录因子和表观遗传修饰等机制, 控制基因的转录过程,以实现基因表 达水平的调节。
转录和翻译
转录
通过核糖聚合酶将DNA模板转录为mRNA。
翻译
在核糖体中将mRNA翻译为蛋白质。
调控基因表达的机制
转录调控
• 启动子和转录因子的结合 • 甲基化和乙酰化等表观遗传修饰
翻译调控
• 调控mRNA稳达与遗传变异关系
基因表达的差异通过遗传变异产生。多态性和突变影响基因表达,对个体的生理和疾病易感性产生影响。
基因表达的重要性和应用
细胞分化和发育

基因表达

基因表达

基因表达基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子.生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。

1.转录过程在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录(transcripti on).在双链DNA中,作为转录模板的链称为模板链(template strand),或反义链(antise nsestrand);而不作为转录模板的链称为编码链(coding strand),或有义链(sense stra nd).在双链DNA中与转录模板互补的一条DNA链即编码链,它与转录产物的差异仅在于DNA中T变为RNA中的U.在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即一条链可作为某些基因的模板链的,也可是另外一些基因的编码链。

转录后要进行加工,转录后的加工包括:(1)剪接:一个基因的外显子和内含子都转录在一条原始转录物RNA分子中,称为前mRNA(pre-mRNA),又称核内异质RNA(heterogenuous nuclear RNA,huR NA)。

因此前mRNA分子既有外显子顺序又有内含子顺序,另外还包括编码区前面及后面非翻译顺序。

这些内含子顺序必须除支而把外显子顺序连接起来,才能产生成熟的有功能的mRNA分子,这个过程称为RNA剪接(RNa splicing)。

剪切发生在外显子的3’末端的GT和内含子3’末端与下一个外显子交界的AG处。

(2)加帽:几乎全部的真核mRNa 端都具“帽子”结构。

虽然真核生物的mRN A的转录以嘌呤核苷酸三磷酸(pppAG或pppG)领头,但在5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7GpppAGpNp)。

mNRA5’端的这种结构称为帽子(cap)。

不同真核生物的mRNA具有不同的帽子。

mRNA的帽结构功能:①能被核糖体小亚基识别,促使mRNA和核糖体的结合;②m7Gppp结构能有效地封闭RNa 5’末端,以保护mRNA免疫5’核酸外切酶的降解,增强mRNA的稳定(3)加尾:大多数真核生物的mRNA 3’末端都有由100~200个A组成的Poly (A)尾巴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ பைடு நூலகம்有mRNA所携带的遗传信息才被用来指导蛋白质生物合 成,所以人们一般用U、C、A、G这4种核苷酸而不是T、C、 A、G的组合来表示遗传性状。所谓翻译是指将mRNA链上 的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表 一个氨基酸的原则,依次合成一条多肽链的过程。
一.基因与基因表达的一般概念
▪ 基因作为唯一能够自主复制、永久存在的单位,其 生理学功能以蛋白质形式得到表达。DNA序列是遗 传信息的贮存者,它通过自主复制得到永存,并通 过转录生成mRNA,翻译生成蛋白质的过程控制所 有生命现象。
▪ 编码链(coding strand)又称sense strand,是 指与mRNA序列相同的那条链。非编码链 (anticoding strand),又称antisense strand,是 指那条根据碱基互补原则指导mRNA生物合成的 DNA链。
2021届
高中生物竞赛理论辅导课件
分子生物学概述
第四讲 蛋白质合成
▪ 一. 基因与基因表达的一般概念 ▪ 二. 遗传密码——三联子 ▪ 三.密码子和反密码子的相互作用 ▪ 四.tRNA ▪ 五.AA- tRNA合成酶 ▪ 六. 核糖体 ▪ 七. 信使核糖核酸 ▪ 八、蛋白质的生物合成 ▪ 九、氨基酸及功能蛋白质合成后的修饰 ▪ 十、蛋白质的运输和降解
▪ Genetic information is perpetuated by replication(复 制)in which a double- stranded nucleic acid is
duplicated to give identical copies.
▪ 基因表达包括转录(transcription)和翻译(translation) 两个阶段。转录是指拷贝出一条与DNA链序列完全相同(除 了T→U之外)的RNA单链的过程,是基因表达的核心步骤。 翻译是指以新生的mRNA为模板,把核苷酸三联子遗传密码 翻译成氨基酸序列、合成蛋白质多肽链的过程,是基因表达 的最终目的。
相关文档
最新文档