三相整流电路的设计
三相桥式全控整流电路设计课程设计
三相桥式全控整流电路设计课程设计
三相桥式全控整流电路设计课程设计主要包含以下几个步骤:
1.设计目标:明确设计的目标,如实现直流电压的可控输出、减
小谐波含量、提高系统的功率因数等。
2.电路拓扑:选择三相桥式全控整流电路作为拓扑结构。
3.器件选型:根据设计要求,选择适当的晶闸管、二极管等器
件,并确定其型号和规格。
4.参数计算:根据设计目标,计算电路的输入输出电压、电流、
功率等参数,以及晶闸管的控制角和触发脉冲等参数。
5.仿真分析:利用仿真软件对设计电路进行仿真分析,验证设计
的可行性和正确性。
6.电路板设计:根据仿真分析结果,进行电路板的设计,包括布
局、布线、元件封装等。
7.调试与测试:完成电路板制作后,进行调试和测试,确保电路
正常工作并达到设计目标。
8.总结与优化:总结设计过程中的经验和教训,优化电路设计,
提高系统的性能和可靠性。
在具体的设计过程中,可以根据实际情况进行调整和修改。
同时,需要注意安全问题,确保电路设计和使用过程中的安全可靠。
三相可控整流电路课程设计
二.三相晶闸管全控整流电路原理说明2.1主电路原理说明晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
编号如图示,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
带电阻负载时的工作情况晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
此时电路工作波形如图所示。
α=0o时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
将波形中的一个周期等分为6段,每段为60度,如图2-18所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。
由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
- 1 -10:39:08 PM 4/25/2022由图得:6个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60o ;共阴极组和阳极组依次差120o ;同一相的上下两个桥臂脉冲相差180o 。
整流输出电压ud 一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。
三相全桥不控整流电路的设计..
三相全桥不控整流电路的设计1 三相整流的原理和参数计算1.1 三相不控整流原理三相桥式不控整流电路的原理图如图1-1所示。
该电路中,某一对二极管导通是,输出直流电压等于交流侧线电压中最大的一个,改线电压既向电容供电,也向负载供电。
当没有二极管导通时,由电容向负载供电,d u 按指数规律下降。
设二极管在距线电压过零点δ角处开始导通,并以二极管6VD 和1VD 开始同时导通的时刻为零点,则线电压为在t=0时,二极管6VD 和1VD 开始导通,直流侧电压等于ab u ;下一次同时导通的一对管子是1VD 和2VD ,直流侧电压等于ac u 。
着两段导通过程之间的交替有两种情况,一种是1VD 和2VD 同时导通之前和6VD 和1VD 是关断的,交流侧向直流侧的充电电流d i 是断续的;另一种是1VD 一直导通,交替时由6VD 导通换相至2VD 导通,d i 是连续的。
介于两者之间的临界情况是,6VD 和1VD 同时导通的阶段与1VD 和2VD 同时导通的阶段在t πω+δ=2/3处恰好衔接起来,d i 恰好连续,可以确定临界条件 当wRC >wRC <d i 断续和连续的条件。
由分析可知,当空载时,输出电压平均值最大,为222.45d U U ==。
随着负载加重,输出电压平均值减小,至wRC =d i 连续情况后,输出电压波形成为线电压的包络线,其平均值为22.34d U U =。
可见,d U 在222.34~2.45U U 之间变化。
1.2 参数设计及计算由设计要求输出电压为400V ,空载是输出电压平均值最大,为222.45d U U ==。
随着系统负载加重,输出电压平均值减小,至3wRC =进入d i 连续情况后,输出电压波形成为线电压的包络线,其平均值为22.34d U U =。
取22.4d U U =,由400d U V =可知,2167U =,则线电压为290aU V =。
图1-1 三相整流原理图 如图所示,输入三相电压源,线电压290V ,50Hz 。
三相桥式全控整流电路
12
三、定量分析
➢ 4. 整流变压器视在功率计算
➢ 1). 流过整流变压器二次侧的电流在前面已经算得:
i
I
d
2π/3
0
π
2π/3
2π
ωt
TR二次侧电流有效值: TR二次侧电压有效值:
I2
2 3 Id
0.816Id
U2
Ud 2.34
TR二次侧视在功率:
S2
3U 2I2
3
Ud 2.34
0.816
I
O
id O iVT1 O
t
t
t t
返回
22
图-7
三相桥式全控整流电路
带阻感负载a=30时的波形
ud1 = 30°ua
ub
uc
O ud2 ud
t1
ⅠⅡ uab uac
Ⅲ ⅣⅤⅥ ubc uba uca ucb uab uac
O
id O ia O
t
t
t t
返回
23
三相桥式整流电路
图-8
带阻感负载,a=90时的波形
14
四、归纳比较
2. 全控器件也可组成可控整流电路
超前相角控制的波形不同于滞后 相角控制区别:前者的控制角α由自 然换相点向左计算;后者的控制角α 由自然换相点向右计算。六只晶体管 工作顺序与负载电压关系与晶闸管相 同。
整流变压器二次侧绕组相电流iU 基波电流ia1超前于电源相电压uU一 个Ф角(Ф=α),实现了超前相角
= 90°
ud1
ub
uc
ua
O
ud2 ud
t1
uab
ⅠⅡ uac ubc
ⅢⅣ uba uca
三相桥式全控整流电路课程设计报告
电力电子技术课程设计题目院系专业姓名年级指导教师年月摘要电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。
近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。
本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。
但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。
本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。
在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。
在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。
关键字:MCU ; SCR; 电力电子; 导通角; KEIL-C目录摘要 (2)1、原理及方案 (4)2、主电路的设计及器件选择 (5)2.1 三相全控桥的工作原理 (5)2.2 参数计算 (7)3、触发电路设计 (10)3.1 集成触发电路 (10)3.2 KJ004的工作原理 (10)3.3 集成触发器电路图 (11)4、保护电路的设计 (13)4.1 晶闸管的保护电路 (13)4.2 交流侧保护电路 (14)4.3 直流侧阻容保护电路 (15)5、MATLAB 建模与仿真 (16)5.1 MATLAB建模 (16)5.2 MATLAB 仿真 (18)5.3 仿真结构分析 (19)课程设计体会 (21)1 原理及方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
三相桥式可控整流电路的设计
三相桥式可控整流电路的设计
三相桥式可控整流电路技术是驱动半导体电源(VSD)的基础,由全桥整流器和可控整流元件(发光二极管、晶体管或MOSFET)组成,并在控制器中加以分析和控制。
三相桥式可控整流电路(VR)通常由六个部件组成,包括可控整流元件,正向模式整流Mosfet,静止状态模式整流Mosfet,欠压限幅器,外部控制电源,外部回路控制管脚和开关控制管脚。
通常,三相桥式可控整流电路的正向模式(正向极性模式)是非常重要的,因为它们能够用于换档控制,从而使VSD控制更加灵活。
此外,这种可控整流电路也可以被设计用来实现电网力量调整、线γ调整、电网均衡调整、电压瞬间补偿和运行比负荷调整等功能。
三相桥式可控整流电路的实现要求用户深入了解VSD技术原理,此外,桥式可控整流器设计也需要考虑到一系列的性能,包括切换时间、效率、功率行业等问题。
在设计过程中,用户可以选择合适的硬件,包括Mosfet、IGBT或发光二极管。
此外,用户可以采用不同的架构来对带负载的VR进行控制,比如中断式控制、半桥式控制、联网控制及脉冲宽度调制控制等,并在实践中加以考察和解决。
最后,为了提高电流控制精度和补偿能力,在VR设计时要考虑滤波网络、滞后控制和脉冲宽度调制等策略,并通过调整可控整流元件的开关极性以改善负载特性。
有了不同的VR架构和控制策略,用户可以设计出灵活高效的三相桥式可控整流电路,从而满足各类应用的需求,同时提高可控整流元件的可靠性和使用寿命。
三相桥式整流电路设计
一、设计的基本要求1.1、主要技术数据1)电源电压:交流220V/50Hz2)输出电压范围50V~100V3)最大输出电流:10A4)具有过流保护功能,动作电流:12A5)具有稳压功能6)效率不低于70%1.2、主要用途三相桥式整流电路在电力电子领域中的应用及其重要,也是应用最为广泛的电路。
不仅在一般的工业领域的应用非常广泛,如中频炉、发电机励磁、自动控制等,也广泛应用于交通运输、电力系统、通信系统、能源系统、以及其他领域。
二、总体方案三、电路原理说明3.1、主电路原理说明3.1.1、工作原理三相全控桥式整流电路是由一组共阴极接法的三相半波可控整流电路和一组共阳极接法的三相半波可控整流电路串起来组成的,如上图所示。
为了便于表达晶闸管的导通顺序,把共阴极组的晶闸管依次编号为VT1、VT3、VT5,而把共阳极组的晶闸管依次编号为VT4、VT6、VT2。
假设六个晶闸管换成六个整流二极管,则电路为不可控电路。
相当于晶闸管触发角α=0°时的情况。
三相电压正、负半周各有三个自然换相点,六个自然换相点依次相差60°。
对于共阴极组,阳极电位最高的器件导通;对于共阳极组,阴极电位最低的器件导通。
六个自然换相点把一个周期分成以下六段:1)ωt1<ωt≤ωt2时,共阴极组VT1导通,共阳极组VT6导通,ud=uab。
2)ωt2<ωt≤ωt3时,共阴极组VT1导通,共阳极组VT2导通,ud=uac。
3)ωt3<ωt≤ωt4时,共阴极组VT3导通,共阳极组VT2导通,ud=ubc。
4)ωt4<ωt≤ωt5时,共阴极组VT3导通,共阳极组VT4导通,ud=uba。
5)ωt5<ωt≤ωt6时,共阴极组VT5导通,共阳极组VT4导通,ud=uca。
6)ωt6<ωt≤ωt1时,共阴极组VT5导通,共阳极组VT6导通,ud=ucb。
通过以上分析,可知三相全控桥式整流电路有以下几个基本特点:1)任何时刻必须有两个晶闸管同时导通,一个为共阴极组,一个为共阳极组,以便形成通路2)晶闸管在组内换相,同组内晶闸管的触发脉冲互差120°,由于共阴极组与共阳极组的自然换相点互差60°,所以每隔60°有一个元件换相。
电力电子课程设计三相全控桥式整流电路
西南交通大学电力电子课程设计三相全控整流电路设计院系:电气工程系专业:电力机车及其自动化姓名:李哲旭班级:电车二班学号:2014121034目录第一章:绪论第二章:电路设计及其功能介绍第三章:仿真实现及其波形分析第四章:总结第一章:绪论整流电路是电力电子电路中出现最早的一种,它是一种将交流电变为直流电的电路,在工业技术上应用十分广泛。
主要用在直流电动机调速,发电机励磁调节,电镀,电解等各种工业生产领域。
整流电路形式多种多样,按照电路结构可分为桥式电路和零式电路;按组成器件可分为不可控、半控和全控三种。
按交流输入相数分为单相电路和多相电路。
在此,我们着重讨论三相桥式全控整流电路!三相桥式整流电路是现代整流电路中应用最为广泛的,整流电路通常由主电路,滤波器,和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
三相桥式全控整流电路课程设计报告
三相桥式全控整流电路课程设计报告目录一、课程概述 (2)1. 课程背景与目的 (2)2. 课程设计任务及要求 (4)二、三相桥式全控整流电路基本原理 (4)1. 三相桥式整流电路结构 (6)1.1 电路组成及工作原理 (7)1.2 电路特点分析 (8)2. 三相桥式全控整流电路工作原理 (9)2.1 触发脉冲的控制 (10)2.2 整流过程的分析 (12)三、电路设计 (14)1. 电路主要参数计算 (15)1.1 输入参数设定 (17)1.2 输出参数计算 (18)1.3 散热设计考虑 (19)2. 电路元器件选择与配置 (20)2.1 整流器件的选择依据 (22)2.2 滤波电容的选择方法 (23)2.3 其他元器件的选择及布局设计 (24)四、仿真分析与实验验证 (26)1. 仿真分析 (27)1.1 仿真模型建立 (28)1.2 仿真结果分析 (29)2. 实验验证过程介绍及结果分析 (30)一、课程概述本课程设计旨在帮助学生深入理解和掌握三相桥式全控整流电路的基本原理、结构特点和工作过程,培养学生分析问题和解决问题的能力。
通过对三相桥式全控整流电路的设计与实现,使学生在理论知识与实际操作相结合的基础上,提高自己的专业素养和实践能力。
课程背景介绍:简要介绍三相桥式全控整流电路的发展历程、应用领域及其在现代电力系统中的重要性。
课程目标设定:明确本课程设计的目标,包括理论知识的学习和实际应用能力的培养。
课程内容安排:详细阐述本课程设计的主要内容,包括三相桥式全控整流电路的基本原理、结构特点、工作原理及参数计算等。
课程实验与测试:通过实验和测试,验证所学理论知识的正确性,培养学生的实际操作能力和团队协作精神。
课程总结与反思:对本课程设计的过程进行总结,分析存在的问题和不足,并提出改进措施,为今后的学习和工作打下坚实的基础。
1. 课程背景与目的随着现代电力电子技术的飞速发展,整流电路在各个领域的应用越来越广泛。
三相桥式整流电路设计(带反电动势负载)
辽宁工业大学电力电子技术课程设计(论文)题目:三相桥式整流电路的设计(带反电动势的负载)院(系):电气工程学院专业班级:学号:学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 110302025学生姓名陈绳鹏专业班级自动化111课程设计(论文)题目三相桥式整流电路的设计(带反电动势负载) 课程设计(论文)任务课题完成的功能、设计任务及要求、技术参数整流电路就是把交流电能转换成直流电能的电路,多数由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。
整流电路的种类很多,工业上广泛应用的三相桥式全控整流电路是从三相半波电路发展而来的。
两组三相半波整流电路,一组是共阴极,另一组是共阳极串联组成。
设计任务及要求1、确定系统设计方案,各器件的选型;2、设计主电路、触发电路、保护电路;3、各参数的计算(输出平均电压、平均电流、有功功率及波形分析);4、建立仿真模型,验证设计结果。
5、撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数输入电压:三相交流380V ,50HZ整流输出电压0~110V ,电流最大值10A ,反电动势 40V ,电阻10欧姆 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析(1天)3、 系统方案确定(1天)4、 主电路、触发电路等设计(2天)5、 各参数计算(1天)6、 仿真分析与研究(2天)7、 撰写、打印设计说明书(1天)8、 答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。
电力电子三相桥式全控整流电路的设计
电力电子三相桥式全控整流电路的设计一、设计原理三相桥式全控整流电路由六个可控硅器件组成,分别连接在电源的三个相线和负载之间。
通过对六个可控硅器件的控制,可以实现对电源电压的全波整流,并将交流电转换为直流电供给负载。
由于可控硅器件具有可控导通和关断的特性,因此可以实现对整流电路的控制。
二、工作方式三相桥式全控整流电路的工作方式主要分为两个阶段:正半周期和负半周期。
在正半周期中,当Uab > Ubc > Uca时,可控硅器件S1和S2导通,S3和S4关断,S5和S6的导通与关断由控制信号决定。
在负半周期中,当Uab < Ubc < Uca时,可控硅器件S1和S2关断,S3和S4导通,S5和S6的导通与关断由控制信号决定。
通过不断调整控制信号,可以实现对整流电路的输出电压的控制。
三、电路参数计算1.电源电压:根据实际应用需求,确定电源电压的额定值,通常为220V或380V。
2.负载电流:根据负载的功率需求和额定电压,计算负载电流的额定值。
3.可控硅器件参数:选取合适的可控硅器件,根据其额定电流和额定电压,确定器件的参数。
4.电感参数:根据负载电流的频率和电感的自感系数,计算电感的参数。
5.电容参数:根据负载电流的频率和电容的容量,计算电容的参数。
四、性能指标1.效率:计算整流电路的输入功率和输出功率的比值,即效率。
2.谐波失真:通过谐波分析,计算整流电路输出电压的谐波含量,衡量电路输出电压的质量。
3.稳定性:通过控制信号的调整,使得整流电路输出电压的波动尽可能小,保证电路的稳定性。
4.抗干扰能力:通过合理的电路设计和控制策略,提高电路的抗干扰能力,减少外部干扰对电路的影响。
五、总结三相桥式全控整流电路是一种常见的电能变换电路,广泛应用于工业和电力系统中。
本文详细介绍了该电路的设计原理、工作方式、电路参数计算以及相关的性能指标。
在实际应用中,需要根据具体的需求和要求进行电路设计,并通过实验和测试来验证电路的性能。
三相桥式全控整流电路设计
三相桥式全控整流电路设计简介三相桥式全控整流电路是一种常用的交流电到直流电转换的电路,可以实现对交流电进行全波整流和调节输出直流电压的功能。
该电路由四个可控硅器件组成,通过适当的触发角控制,可以实现对整流电压的精确控制。
本文将详细介绍三相桥式全控整流电路的设计原理、工作原理、关键参数计算以及注意事项等内容。
设计原理三相桥式全控整流电路的设计基于桥式整流电路和可控硅器件。
在正半周,D1和D3导通,D2和D4截止;在负半周,D2和D4导通,D1和D3截止。
通过适当的触发角控制可控硅器件的导通时间,可以实现对输出直流电压的调节。
工作原理三相桥式全控整流电路的工作过程如下:1.当输入交流电源正半周时,S1和S3导通,S2和S4截止。
此时,在负载上产生正向直流输出。
2.当输入交流电源负半周时,S2和S4导通,S1和S3截止。
此时,在负载上产生反向直流输出。
通过调节可控硅器件的触发角,可以控制整流电路的导通时间,从而控制输出直流电压的大小。
关键参数计算在设计三相桥式全控整流电路时,需要计算以下关键参数:1.输入电压:根据实际应用需求和输入交流电源的特性确定。
2.输出电压:根据实际应用需求确定。
3.负载电阻:根据实际应用需求确定。
4.可控硅器件的触发角:根据输出直流电压的调节范围和所使用的可控硅器件的特性确定。
注意事项在设计和使用三相桥式全控整流电路时,需要注意以下事项:1.选择适当的可控硅器件:根据实际应用需求选择合适的可控硅器件,考虑其额定电流、额定电压、触发特性等参数。
2.进行散热设计:由于可控硅器件在工作过程中会产生较大的热量,因此需要进行散热设计,确保可控硅器件能够正常工作。
3.控制触发角度:通过控制可控硅器件的触发角度,可以实现对输出直流电压的精确控制。
需要合理选择触发角度,并进行相应的控制。
4.注意电路保护:在电路设计中,应考虑电路的过流保护、过压保护等功能,以确保电路的安全稳定运行。
结论三相桥式全控整流电路是一种常用的交流电到直流电转换电路,可以实现对交流电进行全波整流和调节输出直流电压的功能。
三相桥式全控整流电路课程设计报告
电力电子技术课程设计题目院系专业姓名年级指导教师年月摘要电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。
近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。
本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。
但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。
本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。
在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。
在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。
关键字:MCU ; SCR; 电力电子; 导通角; KEIL-C目录摘要 (2)1、原理及方案 (4)2、主电路的设计及器件选择 (5)2.1 三相全控桥的工作原理 (5)2.2 参数计算 (7)3、触发电路设计 (10)3.1 集成触发电路 (10)3.2 KJ004的工作原理 (10)3.3 集成触发器电路图 (11)4、保护电路的设计 (13)4.1 晶闸管的保护电路 (13)4.2 交流侧保护电路 (14)4.3 直流侧阻容保护电路 (15)5、MATLAB 建模与仿真 (16)5.1 MATLAB建模 (16)5.2 MATLAB 仿真 (18)5.3 仿真结构分析 (19)课程设计体会 (21)1 原理及方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
三相桥式全控晶闸管整流电路设计
《电力电子技术》三相桥式全控晶闸管整流电路目录一设计要求 (1)1.1概述 (1)1.2设计要求 (1)二小组成员任务分工........................................................................ 错误!未定义书签。
三三相全控桥式主电路原理分析 (2)3.1总体结构 (2)3.2主电路的分析与设计 (2)3.1.1整流变压器的设计原理 (2)3.1.2变压器参数计算与选择 (3)3.3触发电路的分析与设计 (4)3.3.1触发电路的选择 (4)3.3.2 TC787芯片介绍 (4)3.4电路原理图 (6)3.5主电路工作原理 (7)3.6晶闸管保护电路的分析与设计 (7)3.6.1晶闸管简介 (7)3.6.2保护电路 (7)3.6.3晶闸管对电网的影响 (8)3.6.4晶闸管过流保护电路设计 (8)四仿真模型搭建及参数设置 (10)4.1主电路的建模及参数设置 (10)4.2控制电路的建模与仿真 (11)五仿真调试 (14)六设计心得........................................................................................ 错误!未定义书签。
一设计要求1.1概述首先我们要设计出整体的电路分别包括主电路,触发电路以及晶闸管保护电路。
主电路运用的是整流电路。
整流电路是电力电子电路中经常用的一种电路,它将交流电转变为直流电。
这里要求设计的主电路为三相全控桥式晶闸管整流电路。
整流电路将交流电网中的交流电转变成直流电,但为了保护晶闸管正常工作,需要围绕晶闸管设计触发电路、过电压和过电流保护电路。
因此我们可以设计出整体的程序框图之后按照框图进行接下来的电路设计。
三相全控桥式晶闸管整流电路需要使用交流、直流和触发信号,而且还存在电容和电感等非线性元件,如果采用传统的方法,分析和运算都非常繁琐。
三相桥式整流电路设计
三相桥式整流电路设计哎呀,说到三相桥式整流电路,很多人脑袋一热就觉得那是个高深莫测的东西,怕得要命。
说白了它就是一种把交流电(AC)变成直流电(DC)的装置。
你就把它想象成一个电的“翻译官”,把交流电这种摇摆不定、三不知的状态,变成了直流电那种平稳可靠的样子。
你看,很多大功率设备、像电动机、充电器、电焊机啥的,都离不开直流电。
没有它们,很多现代的高科技产品都没法正常运转。
咱们来聊聊三相桥式整流电路的构造,简单点说,光是听“桥式”这两个字,你可能就会觉得这是个什么架子或者门框,结构复杂得很。
其实呢,它真没你想象的那么复杂。
就是由四个二极管组成一个桥型的电路。
二极管是啥?那就是一种只能让电流单方向流动的元件。
三相交流电源,三根电线,每根都提供一个交变的电压。
你可以想象三根电线就像是三个人在比赛跑步,一个往前跑,一个慢慢后退,一个还不知所措。
整流电路的任务就是把他们的这些来回摆动变得有序一点,把这个乱七八糟的交流电转换成大家都喜欢的直流电。
好啦,接下来说点更有趣的,来看看这四个二极管的工作原理吧。
你就把它想象成四个“电流守门员”,他们都站在自己的位置,等着电流来挑战自己。
每个二极管都有自己的“守门时间”,在电流的某个瞬间,某个二极管就会“放行”,其他的都得“站岗”。
你看,这就像是一个特别精密的队形,每个二极管负责控制电流的流向,最终让我们得到的是平稳的直流电。
如果你仔细观察,会发现这时候的电流并不是完全平稳的,它有点像是“锯齿形”,就像波浪一样起伏,但是总体来看,这个波动是可接受的,大家也都能接受。
要说这三相桥式整流电路的优点,简直就是一言难尽。
首先它的效率高,不像单相整流那样有那么多损耗。
你可能会问,三相的电源为啥比单相的更好呢?你可以把它想象成三个人带着不同的节奏走路,哪怕其中一个人走得不快,其他两个人也能保持好速度,整体的效率就上去了。
而单相电呢,就像一个人步伐不稳,偶尔有点慢,效率就没那么高了。
三相桥式全控整流电路的研究及触发电路设计
三相桥式全控整流电路的研究及触发电路设计三相桥式全控整流电路是一种常见的电力电子转换器,广泛应用于交流电转直流电的场合,如电机驱动、电力调节和换流器等。
其主要特点是可以实现对输出电压的调节,从而实现对负载的精确控制。
本文将对三相桥式全控整流电路的研究及触发电路设计进行详细介绍。
首先,我们来了解三相桥式全控整流电路的基本原理。
该电路通过与交流电源相连的三个可控硅组成的桥式整流器来完成交流电的转换。
根据负载的要求,通过控制可控硅的导通角度,可以实现对负载电压和电流的调节。
对于三相桥式全控整流电路,触发电路的设计十分重要。
触发电路的作用是控制可控硅的导通角度,从而实现对输出电压的调整。
常用的触发方式有脉冲触发、调相触发和零点触发等。
脉冲触发方式是最常用的触发方式之一、其原理是通过脉冲信号的控制,使可控硅在特定的时间点上导通。
在三相桥式全控整流电路中,脉冲触发电路一般由脉冲生成电路和脉冲控制电路两部分组成。
脉冲生成电路负责产生一系列的脉冲信号,而脉冲控制电路则根据需要将脉冲信号传输给可控硅,实现其导通控制。
调相触发方式是另一种常见的触发方式。
其原理是通过改变可控硅的导通时间,实现对输出电压的调节。
调相触发电路一般由相位比较器、比例积分器和触发器等组成。
相位比较器负责将电网电压与可控硅导通信号进行比较,得到相位差信号;比例积分器将相位差信号转化为控制信号,并根据需要进行放大和积分处理;触发器则根据控制信号来控制可控硅的导通。
零点触发方式是在交流电源的零点时刻触发可控硅的导通。
其原理是在零点期间,通过触发电路产生的信号来控制可控硅的导通。
零点触发电路由延时电路和触发控制电路组成。
延时电路负责延迟一定时间后输出特定的脉冲信号,而触发控制电路则负责将脉冲信号传输给可控硅,实现其导通控制。
在三相桥式全控整流电路的设计中,需要考虑到电路的稳定性、可靠性和效率等因素。
为此,我们可以采用模拟电路设计方法,结合计算分析和实际测试,对电路进行合理选择和优化。
三相桥式全控整流电路的设计与仿真
第一章绪言1.1设计背景目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。
通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。
大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。
在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。
因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。
近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
三相半波可控整流电路的设计
三相半波可控整流电路的设计三相半波可控整流电路是一种常用的电力电子变换器,常用于交流电源装置、直流电机驱动器和电压调节器等场合,其工作原理是通过对三相交流电进行控制,使其变为可控的单相直流电。
以下是关于三相半波可控整流电路的设计和工作原理的详细介绍。
一、三相半波可控整流电路的工作原理三相半波可控整流电路的输入是三相交流电源,通过可控硅器件(一般使用晶闸管)对交流电进行控制,使其变为可控的单相直流电。
整流电路由控制电路、整流电路和滤波电路三部分组成,主要包括三相变压器、可控硅器件和直流滤波电容等。
整流电路的工作过程如下:1.输入三相交流电源通过三相变压器降压,并经过整流电路的可控硅器件。
通过控制可控硅器件的导通和关断实现对交流电的控制。
2.当可控硅器件导通时,交流电流通过整流电路进入负载。
此时交流电流的方向被控制为和输入电源相同时,负载消耗正向电流。
3.当可控硅器件关断时,交流电流无法通过整流电路进入负载,此时负载上的电压降为零。
4.通过改变可控硅器件的导通角控制电流的大小,从而控制负载上的直流电压。
1.整流电压控制整流电压的控制是通过改变可控硅器件的导通角来实现的。
导通角越大,整流电压越高。
因此,设计需要确定可控硅器件的导通角范围,以满足负载对直流电压的需求。
2.整流电压波动限制为了使整流电压稳定,设计中需要考虑添加滤波电容以限制整流电压的波动。
滤波电容的选取需要根据负载电流和波动限制来确定。
一般情况下,电容的容值越大,波动越小。
3.整流电流控制为了保护负载和整流电路中的可控硅器件,需要考虑整流电流的控制。
可以通过添加电流限制保护装置,当整流电流超过设定值时进行限制。
4.整流效率和功率因数设计中还需要考虑整流电路的效率和功率因数。
整流电路的效率可以通过合理选择变压器和可控硅器件来提高。
功率因数则可以通过加入功率因数校正电路来提高。
5.控制电路设计控制电路包括触发电路和控制电压调节电路。
触发电路用于触发可控硅器件的导通;控制电压调节电路用于调节整流电压的大小。
三相桥式全控整流电路毕业设计论文
三相桥式全控整流电路毕业设计论文1系统概述1.1总体方案设计1.2系统工作原理2系统电路设计2.1三相桥式全控整流电路2.2系统触发电路2.3控制及偏移电源2.4给定电源3主电路器件参数计算3.1整流变压器参数计算3.2晶闸管的额定电压及额定电流3.3平波电抗器的电感计算21系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。
可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。
由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(PowerMOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。
按电路结构可分为桥式电路和零式电路。
按交流输入相数分为单相电路和多相电路。
按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。
本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。
三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。
三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。
为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。
因此,实际中一般不采用半波整流,而采用全波整流。
三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。
在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气信息学院
课程设计任务书
课题名称三相整流电路的设计
姓名专业电气工程及其自动化班级学号01指导老师蔡斌军杨青梁锦颜渐得李祥来
课程设计时间2016年6月6日-2016年6月17日(15、16周)
教研室意见意见:审核人:
一、任务及要求
1. 设计出三相整流电路的主电路。
(输入电压AC0-220V,功率1KW,阻感负载)
2. 设计三相整流电路的控制电路。
3. 设计三相整流电路的驱动电路。
4.给出整体设计框图,画出三相整流电路的总体原理图;
5. 说明所选器件的型号,特性。
6. 给出具体电路画出电路原理图;
7.编写设计说明书;
8.课程设计说明书要求用手写,所绘原理图纸用计算机打印。
(16K)
二、进度安排
第一周:星期一:下达设计任务书,介绍课题内容与要求;
星期二——星期五:查找资料,确定设计方案,画出草图。
第二周:星期一上午——星期二下午:电路设计,打印出图纸。
星期三:书写设计报告;星期四:书写设计报告;星期五:答辩。
主电路设计
当负载为阻感性时,三相桥式全控整流电路通过六个晶闸管和足够大的电感把电网的交流电转化为直流电而供给用户使用,可以通过调节触发电路的控制电压Vk改变晶闸管的控制角α,从而改变输出电压Ud和输出电流Id。
三相桥式全控整流电路原理图如图3.1所示,习惯将其中阴极连接在一起的3个晶闸管(VT1、 VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源连接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
图3.1 三相桥式全控整流电路原理图
触发电路设计
3.3.1 TCF792芯片简介
TCF792的芯片管脚图如图3.4所示。
图3.4 TCF792的芯片管脚图
TCF792原理结构简图如图3.5所示。
图3.5 TCF792原理结构简图
该芯片供电电压为5V,它的输入输出端口兼容TTL电平,这使它与其它数字电路接口简单方便。
同步信号采用方波由7脚输入,其下降沿应为A相相电压由负变正过零同步点。
该周期信号经180倍倍频后,形成2°周期宽度的脉冲信号,该信号进入数字运算控制单元后用于形成2°,4°,60°,120°,180°等控制信号。
调制波脉冲、相位分配等信号由此产生。
移相角控制电压,脉冲宽度控制电压,滞后相位补偿电压分别由多路开关切換后进入10位A/D转換电路,其分辨率达0.05%,可以滿足工业控制需要。
转換后的数值送入运算控制单元。
数字运算控制单元的运算节拍由振荡器产生。
振荡器分内部振荡器和外部振荡电路。
A型选用外部晶振振荡电路,B型采用内部振荡电路,由生产商在制造时固定。
全控双脉冲或半控单脉冲选择,矩形波或调制波选择,鋸齿形或余弦函数型(指移相角度与控制电压关係曲线)选择,正相序输出或反相序输出选择,分別由15,17,18,19脚悬空或接地进行控制。
16脚若接地将闭鎖所有的输出,一般用于过载或短路保护。
芯片内含自动上电复位电路。
芯片內设置有硬件看门狗电路,当电路发生干扰打乱数字电路运行节拍时,能起纠正作用,输出电路极迅速恢复正常。
TCF792管脚功能如图3.6所示。
图3.6 TCF792管脚功能表
3.3.2 基于TCF792B的集成触发电路设计
基于TCF792B的集成触发部分电路如图3.7所示。
其中,电网电压Uac经R1,R2,R3与VD1,VD2削波后,进入R4输入电压比较器的负输入端,当Uac 为正半波时,比较器输出零电平;当Ua为负半波时,比较器输出高电平,从而将正弦波输出变换为方波输出,Uac的输入范围为5~400 V。
光电耦合器U2用作电路隔离,起抗干扰作用。
电容器C1起滤除Uac信号中过零点附近的毛刺,其数值可依实际波形中毛刺的大小而定。
由于滤波产生的相位滞后,可调整RW2的输出至引脚14进行电位补偿。
TCF7928的引脚2为+A输出信号,低电平有效。
光电耦合器U3用作电路隔离,其意义同U2。
U2的右边为脉冲放大电路,其参数
可依晶闸管型号进行调整。
脉宽可由RW1调整,其调整范围为0°~180°,实际约调至200Us即可。
触发角控制电压输入端Vk(引脚12)上的电位通过R20上的压降取得,其值取决于光电耦合器U4的输出电流。
光电耦合器采用线形PC817-A,其输出电流与输入电流成正比。
晶体管V2与R21构成恒流源电路,其大小受基极电位控制。
图2中的Uac经整流、阻容分压滤波,加在RW3两端,用以调节RW3,可改变输入至V2的基极电位,进而改变移相触发角,调节晶闸管整流输出电压。
利用5V和18V电源对电路隔离,有利于提高器件的抗干扰能力。
其引脚15悬空,选择全控单脉冲;引脚18接地,选择余弦函数输出。
输出移相角α与控制电压Vk的关系式为:
α⑴
V
V
arccos k V
=
)/
cc]
[(
2-
cc
三相桥式全控整流输出电压为:
α
U=⑵
cos
d KU
ac
式中:K为常数。
将式(1)代入式(2)有:
βac
U=⑶
d KU
β
式中:2/
V
V
=
1{k V
+
cc
cc
[(
/)
]}
2
-
由式(3)可见,Ud与Vk成线性函数关系。
值得注意的是:举例中,RW3两端的电压并未采用稳压电源,而是取Uac经整流降压后的电压。
由上述公式可,当Uac下降时,Ud下降,此时Vk也成比例下降,而Vk下降将使控制角减小,从而补偿了因Uac下降引起的整流电压下降。
假设正常运行时触发角为90°,当电网电压下降10%,则经计算,其Ud仅下降l%。
可见它具有一定的恒压整流作用,且电路原理简单。
图3.7 基于TCF792B的集成触发部分电路驱动电路设计
驱动电路如图3.8所示,由TCF792B触发电路产生的六路双脉冲信号+A、-A、+B、-B、+C、-C通过光电耦合器电气隔离,经六组晶体管电路进行脉冲放大输出。
图3.8 驱动电路
系统总体框图
系统总体框图大致如图2.1所示:
图2.1 系统总体框图
TCF792 是单、三相通用数字相位控制触发电路。
它采用单相同步信号输入,数字分频移相120°,
以适应三相触发电路。
在电路功能上全面兼容TC787,TC788,TC790A,TC790B,TCA785, KJ004,KJ041,KJ04 等
几乎所有种类的单、三相移相触发电路且价格低廉。
触发角2-178°,可选择矩形波或调制波输出。
脉冲宽
度采用电压控制,无需移相电容。
该芯片移相角可选择传统的锯齿型线性输出或余弦函数输出两种方式。
当采用余弦函数输出时,它的整流输出电压与控制电压成线形关系。
该芯片可用于可控硅、双向可控硅和
晶体管类控制电路。
它可用于交直流转換电路,交、直流调压控制和三相调压变频逆变控制器等。
它具有
价廉、易用、性能优良、无需调试的优点
TCF792A和TCF792B是单相、三相通用数字相位控制触发电路。
该系列器件具有单相同步输入信号和数字分频移相120°,可适应单相、三相触发电路。
TCF792A主要适用于10~500 Hz宽范围的频率调节(需外接20 MHz晶体振荡器,超出500 Hz需特殊订货);而TCF792B主要适用于50 Hz工频范围的频率调节(无需外接晶体振荡器)。
两者均可选择矩形波或调制波输出,且脉宽可调。
在电路功能上,该系列触发电路全面兼容于TC787,TC788,TC790A,TC790B,TCA785和KJ004,KJ04l,KJ04等单相、三相移相触发电路,且价格低廉。
由于采用电压控制脉宽,无需移相电容,因此可方便构成幅度可变、脉宽调制(PWM)
的逆变电源触发电路。
此外,由于它增加了同步信号滞后补偿功能,其补偿范围为0°~60°,因此可通过深度滤波去除强干扰信号,还可通过调整补偿角度,精确判别同步信号的零点。
该功能的增加不仅能使其用作精确的过零开关,还能简化整流变压器的接线组别,用于任意相的整流电路等。
另外,通过选择传统的锯齿波线性输出或余弦函数输出两种方式可控制该系列器件的触发角度。
当采用余弦函数输出时,其整流输出电压与控制电压呈线形关系。
该系列器件既可用于单相、三相半控和全控桥晶闸管整流触发和单、三相交流调压反并联和双向晶闸管触发,也可用于晶体管类变频变压逆变等控制电路。
由于其采用的角度为控制单位,因此可有效防止由频率变化而引起的失控和颠覆现象。
课程设计评分标准。