无锡市2010年中考数学试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年无锡市初中毕业升学考试
数学试卷
本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.
注意事项:
1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.
3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
4.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,
只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.(2010江苏无锡,1,3(
)
A.3 B.3-C.3±D
9的算术平方根.只有非负数有算术平方根,且其算术平方根为非负
数.
【答案】A
【涉及知识点】算术平方根
【点评】典型的送分题,关键是看学生对平方根及算术平方根的理解及区分.
【推荐指数】★
2.(2010江苏无锡,2,3分)下列运算正确的是()
A.(a3)2=a5B.a3+a2=a5C.(a3—a)÷a=a2D.a3÷a3=1
【分析】幂的乘法运算法则是,底数不变,指数相乘,故A错,应为a6;a3与a2虽然底数相同,但指数不同,故不是同类项,无法合并,故B错;(a3—a)÷a=a2—1,故C 错.
【答案】D
【涉及知识点】幂的运算
【点评】有关幂的运算类试题,主要是需要抓住概念实质,区别几种常见幂的运算的法则.对于这类较基础的中考试题,在解题时,学生往往容易混淆几类常见概念.
【推荐指数】★
3.(2010江苏无锡,3,3x的取值范围是()
A.
1
3
x>B.
1
3
x>-C.
1
3
x≥D.
1
3
x≥-
【分析】当被开方数非负时,二次根式有意义.故本题应3x—1≥0,∴
1
3 x
【答案】C
【涉及知识点】二次根式
【点评】本题是代数中较为基础的考题,主要考察学生对基本概念的理解,对主要概念的存在条件的刻画.当被开方数非负
..时,二次根式有意义.学生往往容易记成“当被
开方数大于
..0.时,二次根式有意义.”因此我们在教学时,应深化学生对概念的理解及记忆.初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.
【推荐指数】★
4.(2010江苏无锡,4,3分)下列图形中,是中心对称图形但不是轴对称图形的是()
【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形;把一个平面图形绕某一点选择180°,如果旋转后的图形能和原图形互相重合,那么这个图形叫做中心对称图形.对照定义,可知A是轴对称图形,且有3条对称轴,但不是中心对称图形;C是中心对称图形,不是轴对称图形;B是轴对称图形,有1条对称轴,但不是中心对称图形;D既是中心图形又是轴对称图形,有4条对称轴.
【答案】B
【涉及知识点】轴对称图形、中心对称图形
【点评】本题是几何中较为基础的考题,主要考察学生对轴对称图形和中心对称图形概念的理解及图形的区别.选取的图形源于生活中常见的图案,体现了考试的公平性.【推荐指数】★★
5.(2010江苏无锡,5,3分)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()
A.20cm2B.20πcm2C.10πcm2D.5πcm2
【分析】计算圆锥的侧面积,往往是将圆锥侧面沿某一母线展开.圆锥侧面展开后为一扇形,扇形的半径为圆锥的母线5cm,扇形弧的长度为圆锥底的周长4πcm.因此圆锥的侧面积=扇形面积=
1
2
弧×母线=
1
2
×4π×5=10πcm2.
【答案】C
【涉及知识点】圆锥侧面积
【点评】本题考察的是圆锥的侧面积.解题过程体现了化归思想:将“体”的面积转化为“面”的面积.本题题型常见,是一道较基础的常规题.与之类似的还有求直棱柱的侧面积、求圆柱的侧面积,都是用类似方法.
【推荐指数】★★
6.(2010江苏无锡,6,3分)已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d的取值满足()
A.B.C.D.
A.d>9 B.d=9 C. 3<d<9 D.d=3
【分析】圆与圆的位置关系有5种,外离、外切、相交、内切、内含.具体体现为两圆半径R、r、圆心距d的关系是:
(1)两圆外离⇔d>R+r;
(2)两圆外切⇔d=R+r;
(3)两圆相交⇔R-r<d<R+r(R≥r);
(4)两圆内切⇔d=R-r(R>r);
(5)两圆内含⇔d<R-r(R>r).
对照上述关系,当两圆内切时,d=R—r=6—3=3.
【答案】D
【涉及知识点】圆与圆的位置关系
【点评】圆与圆的位置关系,点与圆的位置关系,以及直线与圆的位置关系,都可以根据“距离”之间的关系得到,这个“距离”分别指圆心距、点到圆心的距离、圆心到直线的距离.
【推荐指数】★★
7.(2010江苏无锡,7,3分)下列性质中,等腰三角形具有而直角三角形不一定具有的是()
A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边
C.有两个锐角的和等于90°D.内角和等于180°
【分析】两边之和大于第三边,内角和等于180°,这两条性质对于每个三角形都具有.对于直角三角形,还有其特殊的性质,如两个锐角互余,斜边上的中线等于斜边的一半,面积等于两直角边乘积的一半;对于等腰三角形,其特殊性质有:两条边相等,两个底角相等,“三线合一”.
【答案】B
【涉及知识点】三角形、等腰三角形、直角三角形、“三线合一”
【点评】等腰三角形和直角三角形是几何中两个最基本的图形.初中阶段,对二者的性质的研究还是比较深入的.因此本题有较高的公平性.
【推荐指数】★★★
8.(2010江苏无锡,8,3分)某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的
()
A.方差B.极差C.中位数D.平均数
【分析】方差是刻画一组数据的离散情况,方差越大,这组数据的偏离平均数的程度越大;极差刻画一组数学的波动范围;中位数用来反映一组数据的中等水平;平均数是用来衡量一组数据的平均水平.13人中选择前6名参加决赛,说明小颖需要知道自己处在13人中的什么水平:中等以上就能进入决赛,中等水平以下就不等进入决赛.故需要知道中位数,高于中位数即为中等以上,低于中位数即为中等以下.
【答案】C
【涉及知识点】数据分析
【点评】方差、标准差、极差、中位数、平均数、众数都是用来刻画一组数据的量,也是数据分析中常考的知识点.
【推荐指数】★★★★
=+,当x得值减小1,y的值就减小2,9.(2010江苏无锡,9,3分)若一次函数y kx b