电力电子技术实验一、二、三

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

电力电子技术实验报告山交院

电力电子技术实验报告山交院

电力电子技术实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电动势负载时的工作。

3.熟悉触发电路(锯齿波触发电路)。

二.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感负载。

三.实验线路及原理1)电源控制屏位于NMCL -32/MEL-002T等。

2)锯齿触发电路位于NMCL -36C或NMCL -05D等。

3) L 平波电抗器位于NMCL -331。

4) Rd 可调电阻位于NMEL -03/4或NMCL -03等。

5) G 给定(Ug )位于NMCL -31或NMCL -31A或SMCL -01调速系统控制单元中。

6) Uct 位于锯齿触发电路中。

四.实验设备及仪器1.教学实验台主控制屏2.触发电路(锯齿波触发电路)组件3.变压器组件4.双踪示波器(自备)5.万用表(自备)五.实验结果五.注意事项1实验载必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。

2.为保护整流元件不受损坏,品闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。

(2)在控制电压U=0时,接通主电源。

然后逐渐增大Ua,使整流电路投入工作。

(3)断开整流电路时,应先把Ua降到零,使整流电路无输出,然后切断总电源。

3.注意示波器的使用。

六.总结在可控整流电路中,两个整流二极管VD2、VD4既起到整流作用,又起到续流作用。

电阻电感性负载时,无论接或不接续流二极管,输出直流电压Ud的波形均与接电阻性负载时的直流电压波形相同。

实验中,根据VT1.上的电压波形确定移相控制角a的度数,因此误差较大。

从实验波形中可见续流二极管的作用。

在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压Ud失控。

《电力电子技术》实验 指导书

《电力电子技术》实验 指导书

《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。

(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。

(整理)电力电子实验指导书完全版

(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。

将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。

图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。

六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。

波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。

电力电子技术实验要点

电力电子技术实验要点

实验一、单相半控桥整流电路实验一、主要内容1.实现控制触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相范围及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相范围,观察失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw〔约230v〕到降压变压器〔MCL-35〕,输出单相电压〔约124v〕作为整流输入电压u2;◆在〔MCL-33〕两组基于三相全控整流桥的晶闸管阵列〔共12只〕中,选定两只晶闸管,与整流二极管阵列〔共6只〕中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。

思考:接通电源和控制信号后,如何判断移相控制是否同步?2.半控桥纯阻性负载实验:◆连续改变控制角α,测量并记录电路实际的最大移相范围,用数码相机记录α最小、最大和90o时的输出电压u d波形〔注意:负载电阻不宜过小,确保当输出电压较大时,Id 不超过0.6A〕;思考:如何利用示波器测定移相控制角的大小?◆在最大移相范围内,调节不同的控制量,测量控制角α、输入交流电压u2、控制信号u ct和整流输出Ud的大小,要求不低于8组数据。

3.半控桥阻-感性负载〔串联L=200mH〕实验:◆断开总电源,将负载电感串入负载回路;◆连续改变控制角α,记录α最小、最大和90o时的输出电压u d波形,观察其特点〔Id 不超过0.6A〕;◆固定控制角α在较大值,调节负载电阻由最大逐步减小〔分别到达电流断续、临界连续和连续A值下测量。

注意Id ≤0.6A〕,并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果;思考:如何在负载回路获取负载电流的波形?◆调整控制角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号〔模拟将控制角α快速推到180o〕,制造失控现象,记录失控前后的u d波形,并思考如何判断哪一只晶闸管失控;三、实验报告要求1.实验根本内容〔实验工程名称、条件及实验完成目标〕2.实验条件描述〔主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人〕3.实验过程描述〔含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等〕;4.实验数据处理〔含原始数据记录单、计算结果及工程特性曲线,〕;5.实验综合评估〔对实验方案、结果进行可信度分析,提出可能的优化改良方案〕;6.思考:◆阐述选择实验面板晶闸管序号构成半控桥的依据。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。

实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。

通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。

在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。

通过实验,我们进一步理解了直流电源的工作原理和设计方法。

实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。

通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。

实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。

这些结果对于电力系统的稳定运行和节能优化具有重要意义。

实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。

通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。

实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。

这对于提高电力系统的能效和稳定性具有重要意义。

实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。

通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。

实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。

这对于推广和应用太阳能发电技术具有重要意义。

结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。

实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。

我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。

电力电子技术实验内容

电力电子技术实验内容

电力电子技术实验内容实验一:单相桥式全控整流电路实验一、实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。

3.熟悉NMCL—05锯齿波触发电路的工作。

二、实验线路及原理参见图4-7。

三、实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式全控整流电路供电给反电势负载。

四、实验设备及仪器1.NMCL系列教学实验台主控制屏。

2.NMCL—18组件(适合NMCL—Ⅱ)或NMCL—31组件(适合NMCL—Ⅲ)。

3.NMCL—33组件或NMCL—53组件(适合NMCL—Ⅱ、Ⅲ、Ⅴ)4.NMCL—05组件或NMCL—05A组件5.NMEL—03三相可调电阻器或自配滑线变阻器。

6.NMCL-35三相变压器。

7.双踪示波器 (自备)8.万用表 (自备)五、注意事项1.本实验中触发可控硅的脉冲来自NMCL-05挂箱,故NMCL-33(或NMCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。

2.电阻RP的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用NMCL-35三相变压器,原边为220V,低压绕组为110V。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

7.带反电势负载时,需要注意直流电动机必须先加励磁。

六、实验方法1.将NMCL—05(或NMCL—05A,以下均同)面板左上角的同步电压输入接NMCL—18的U、V输出端(如您选购的产品为NMCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连), “触发电路选择”拨向“锯齿波”。

南昌大学电力电子技术实验(最终超级详细版)

南昌大学电力电子技术实验(最终超级详细版)

4.单相桥式全控整流电路供电给电阻—电感性负载。
断开平波电抗器短接线,求取在不同控制电压 Uct 时的输出电压 Ud=f(t),负载电 流 id=f(t)以及晶闸管端电压 UVT=f(t)波形并记录相应 Uct 时的 Ud、U2 值。 注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻 RP,但负载 电流不能超过 0.8A,Uct 从零起调。 改变电感值(L=100mH),观察=90°,Ud=f(t)、id=f(t)的波形,并加以分析。 注意,增加 Uct 使前移时,若电流太大,可增加与 L 相串联的电阻加以限流。
U1 Ug
(b)
接近 180°
ωt
(a)<180O 图 4-3
(b)接近 180O 初始相位的确定
六 数据处理
1.画出=60O 时,观察孔“1”~“7”及输出脉冲电压波形。
“1”和“2”孔的波形(1 孔为黄色,2 孔为蓝色)
“1”和“3”孔的波形(1 孔为黄色,3 孔为蓝色)
3.单相桥式全控整流电路供电给电阻负载。
接上电阻负载(可采用两只 900Ω电阻并联),并调节电阻负载至最大,短接平波电 抗器。合上主电路电源,调节 Uct,求取在不同角(30°、60°、90°)时整流电路的输 出电压 Ud=f(t),晶闸管的端电压 UVT=f(t)的波形,并记录相应时的 Uct、Ud 和交流 输入电压 U2 值。 若输出电压的波形不对称,可分别调整锯齿波触发电路中 RP1,RP3 电位器。
五.注意事项
1. 本实验中触发可控硅的脉冲来自 MCL-05 挂箱, 故 MCL-33 (或 MCL-53, 以下同) 的内部脉冲需断 X1 插座相连的扁平带需拆除,以免造成误触发。 2.电阻 RP 的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝 烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控

电力电子实验报告

电力电子实验报告

电力电子实验报告一、实验目的本实验旨在通过搭建电力电子电路和测量电路参数,深入理解电力电子的基本原理和应用。

二、实验装置与仪器1. 稳压直流电源2. 功率电子器件(如二极管、晶闸管、MOS管等)3. 示波器4. 变压器5. 整流电路、逆变电路等电力电子实验电路板6. 电阻、电容、电感等元件7. 其他必要的实验器材和配件三、实验内容1. 实验一:整流器的实验a. 搭建并测量单相半波和全波整流电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种整流电路的性能差异,并讨论其应用特点和限制。

2. 实验二:逆变器的实验a. 搭建并测量单相半桥和全桥逆变电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种逆变电路的性能差异,并讨论其应用特点和限制。

3. 实验三:电力电子开关功率调节实验a. 搭建开关转换器或斩波电路实验电路,测量不同调节方式下的输出电压、电流和效率等参数。

b. 讨论开关功率调节的优缺点,以及不同调节方式的适用场景。

4. 实验四:PWM调制电路的实验a. 搭建简单的PWM调制电路,测量输出电压的调节范围、带宽等参数。

b. 分析PWM调制电路的工作原理和调节性能,探讨其在电力电子中的应用前景。

5. 实验五:电力电子控制系统的实验a. 搭建基于微控制器的电力电子控制系统,实现对某一电力电子器件的自动控制。

b. 测试并分析控制系统的稳定性、响应速度等性能指标,并讨论控制系统的设计考虑因素。

四、实验步骤与结果根据实验内容,按照以下步骤进行实验并记录实验结果:1. 记录实验所使用的电路和元件的连接方式和参数设置。

2. 使用示波器等仪器测量电路各个节点的电压和电流,并记录数据。

3. 分析实验结果,计算输出电压的平均值、有效值、波形畸变率等参数。

4. 对比实验数据,进行数据处理和性能比较。

5. 撰写实验结果报告并进行讨论。

五、实验结果分析根据实验结果,对各个实验内容进行数据分析和讨论,包括:1. 整流电路的性能比较:比较半波和全波整流电路的输出电压波形、平均值、有效值等参数,分析其差异和应用场景。

电力电子实验指导书(东华大学)

电力电子实验指导书(东华大学)

东华大学信息学院电力电子技术实验指导书2014年4月目录实验一晶闸管触发电路研究实验二单相桥式半控整流电路实验三三相桥式整流电路实验四三相有源逆变电路附录一固纬GRS-6032A示波器使用简介附录二固纬GRS-6032A示波器面板图片《电力电子实验》一般注意事项:1.每次合、分主回路电源前要将各高、低压调压器(如:三相交流调压器、G给定Ug电位器)旋至最小位置,电阻器置最大值。

2.晶闸管控制极内部已连线至触发电路,面板上插孔禁止连接导线。

3. 使用双踪示波器时两个探头的接地线要共点,以免因电压差造成过流。

测量Ud时示波器探头的正极(红线)置晶闸管共阴极,负极(黑线)置晶闸管共阳极;UVT是晶闸管阳极对阴极的电压,测量时探头红线置阳极,黑线置阴极。

4. 交直流表要分清,选择量程要符合要求。

5.“主电源送电”的含义是:按下交流电源“闭合“的绿色按钮。

6. 数字表计的读数显示滞后于调节进程,因此相应的操作宜缓。

固纬GRS-6032A示波器的使用1.示波器调节的主要目标显示为:屏幕上方显示信息:“ smpl ”屏幕下方显示信息:“DC 2V(或5V) 2 mS (或5mS) LINEf AC”2.测量前扫描线居中校准:对“CH1”/ “CH2”通道选择“GND”方式后,调节“POSITION”使扫描线居中。

3. TIME/DIV一般选择5mS,正弦波一个周期在水平方向占4格(90°/格)4.测试过程LEVEL、POSITION、TIME/DIV、X1/MAG等功能键钮均不能随意操作,以免引起波形在水平、垂直方向的移动,影响测量结果。

实验一锯齿波同步移相触发电路实验一.实验目的1.锯齿波同步移相触发电路的工作原理。

2.掌握锯齿波同步触发电路的调试方法。

3.测试锯齿波同步触发电路各点波形及移相特性。

二.实验内容1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理锯齿波同步移相触发电路主要由同步电源、同步信号、锯齿波形成、脉冲移相、脉冲形成、脉冲放大、脉冲输出七个环节。

电力电子技术实验报告

电力电子技术实验报告

7实验一直流斩波电路实验一. 实验目的熟悉降压斩波电路、升压斩波电路及斩波控制电路的结构和工作原理,掌握以上两种基本斩波电路的工作状态和波形情况及调试方法。

二. 实验内容(1) 了解驱动电路的结构和实验电路的工作原理。

(2) 降压斩波电路的波形观察及电压测试。

(3) 升压斩波电路的波形观察及电压测试。

(4) 升降压斩波电路的波形观察及电压测试(选做,建议做)。

(5) Cuk 斩波电路的波形观察及电压测试(选做)。

(6) Sepic 斩波电路的波形观察及电压测试(选做)。

(7) Zeta 斩波电路的波形观察及电压测试(选做)。

(8) 电流测量(选做)。

三. 实验设备及仪器(1) 电力电子与运动控制教学实验平台(2) 示波器及高压隔离探头(3) 万用表(4) 连接导线四. 实验数据记录及整理分析1、了解MC0511 控制单元的工作原理,分析不同占空比和开关频率时波形的变化情况;分析驱动信号在连接MOSFET 前后波形的变化情况;说明“输出限幅”和“禁止”功能的作用。

在图1.1/1.2/1.3中,开关频率均为低频(5kHz),占空比依次为递增为20/40/60在图1.4/1.5/1.6中,占空比均为60,开关频率依次为为低频/高频/中频图1.7/1.8分别是将占空比旋钮调至最大所得到的波形。

输出限幅的接入可以限制输出波形占空比。

2、降压斩波电路性能研究(1)搭建电路如下所示(2)降压斩波电路测试结果表2.1 斩波电路测试结果电路形式:降压斩波电路开关频率:低频(5kHZ)负载情况:重载36V/90W表2.2 斩波电路测试结果电路形式:降压斩波电路开关频率:中频(12kHZ)负载情况:重载36V/90W表2.3 斩波电路测试结果电路形式:降压斩波电路开关频率:高频(20kHZ)负载情况:重载36V/90W(3)调节MC0511 控制单元上的“脉冲宽度调节”旋钮至约30%处,观察灯泡亮度的变化,用万用表测量并记录灯泡负载上的电压Uo 和斩波器输入直流电压E 的值。

电力电子技术实验报告

电力电子技术实验报告

实验一单相桥式半控整流电路整流二极管两端电压U VD1的波形。

顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察并记录在不同α角时U d、U VT、U VD1的波形,测量相应电源电压U2和负载电压U d的数值,记录于下表中。

计算公式:Ud = 0.9U2(1+cosα)/2(3) 单相桥式半控整流电路带电阻、电感性负载①将单结晶体管触发电路的移相控制电位器RP1逆时针调到阻值最小位置、按下电源控制屏DJK01上的停止按扭断开主电路电源后,将负载换成电阻、电感性负载,即将平波电抗器L d(70OmH)与电阻R(双臂滑线变阻器和灯泡串联构成)串联。

②断开开关S1,先不入接续流二极管VD3。

接通主电路电源,顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,用示波器观察控制角α在不同角度时的Ud、UVT、UVD1、Id波形,并测定相应的U2、Ud数值,记录于下表中:③在α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD1、UVD2、Id的波形。

④将相控制电位器RP1逆时针调至最小,闭合开关S1,接入续流二极管VD3,然后顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察不同控制角α时Ud、UVD3、Id 的波形,并测定相应的U2、Ud数值,记录于下表中:⑤在接有续流二极管VD3及α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD2、UVD1和Id的波形。

八、实验报告(1) 画出电阻性负载、电阻电感性负载时U d/U2=f(α)的曲线。

(2)画出电阻性负载、电阻电感性负载,α角分别为30°、60°、90°时的U d、U VT的波形。

(3) 说明续流二极管对消除失控现象的作用。

在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压ud失控。

电力电子技术实验报告

电力电子技术实验报告

实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。

三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。

六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应d2U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud、α=90°时的Ud 及Id波形图。

七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。

α =30o 时Ud的波形α =30o 时Uvt的波形α =60o 时Ud的波形α =60o 时Uvt的波形α =90o 时Ud的波形α =90o 时Uvt的波形α =120o 时Ud的波形α =120o 时Uvt的波形α =150o 时Ud的波形α =150o 时Uvt的波形α =90o 时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。

电力电子技术实验内容

电力电子技术实验内容

电力电子技术实验内容电力电子技术实验内容电力电子技术是现代电力工业中的关键技术之一,其作用是将电能在电力系统中转换、控制、调节和保护。

电力电子技术的应用范围广泛,包括电力变换、灯光控制、电动机驱动、UPS系统、遥控、遥测、安全监控、节能措施等领域。

电力电子技术实验是电力电子理论的实践部分,通常是电力电子课程的学习和教学中重要的一环。

本文将介绍电力电子技术实验的内容,包括基础实验和高级实验两部分。

一、基础实验1. 半波整流电路实验半波整流电路是最简单的电力电子电路之一,实验主要是通过半波整流电路的实现原理,掌握半波整流电路的基本工作原理、电流及电压的波形特点、电路的计算方法、及其应用等。

2. 全波整流电路实验全波整流电路相对于半波整流电路来说功能更强大,也更加的复杂。

在全波整流电路实验中,主要是掌握全波整流电路的实现原理、工作状态、电路计算方法等。

3. 三相半波整流电路实验三相半波整流电路是工业中常用的电力电子电路之一,用于三相有源电力负载与电网间的电能转换。

在三相半波整流电路实验中,主要是通过对三相系统与半波整流电路的联接和三相半波整流电路的实现原理、工作状态、电路计算方法等的探究,从而深入理解三相半波整流电路的必要性。

4. 交流电调压电路实验交流电调压电路是电力电子技术中的一项重要技术,用于将交流电转换成直流电,实现加工、生产、交通,安全控制系统等领域的控制与输送。

在交流电调压电路实验中,主要是掌握交流电调压电路的实现原理、电路计算方法等。

5. 电容滤波电路实验电容滤波电路也是电力电子技术中的一项重要技术,主要是用于将电路中的高频信号或杂波滤除,保证电路中的信号干净。

在电容滤波电路实验中,主要是掌握电容滤波电路的实现原理、电路计算方法等方面的知识。

6. 电感滤波电路实验电感滤波电路也是电力电子技术中的一种重要技术,其作用是滤除低频杂波。

在电感滤波电路实验中,主要是掌握电感滤波电路的实现原理、电路计算方法等知识。

#电力电子技术实验一、二、三

#电力电子技术实验一、二、三

实验一 锯齿波同步触发电路实验、实验目的1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2、掌握锯齿波同步移相触发电路的调试方法。

、实验主要仪器与设备:锯齿波同步移相触发电路的原理图如图 1-1 所示。

锯齿波同步移相触发电路由同步检 测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子 技术教材中的相关内容。

图1-1 锯齿波同步移相触发电路原理图图 1-1 中,由 V 3、VD 1、VD 2、C 1 等元件组成同步检测环节,其作用是利用同步电压U T 来控制锯齿波产生的时刻及锯齿波的宽度。

由 V 1、V 2 等元件组成的恒流源电路,当 V 3截止时,恒流源对 C 2充电形成锯齿波;当 V 3 导通时,电容 C 2通过 R 4、V 3 放电。

调节电位 器 RP 1 可以调节恒流源的电流大小,从而改变了锯齿波的斜率。

控制电压 U ct 、偏移电压 U b 和锯齿波电压在 V 5 基极综合叠加,从而构成移相控制环节, RP 2、RP 3 分别调节控制电压U ct 和偏移电压 U b 的大小。

V 6、 V 7构成脉冲形成放大环节, C 5 为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2 所示。

本装置有两路锯齿波同步移相触发电路,I 和II ,在电路上完全一样,只是锯齿波触发电路II 输出的触发脉冲相位与I 恰好互差180°,供单相整流及逆变实验用。

电位器RP1、RP2、RP3 均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

图1-2 锯齿波同步移相触发电路各点电压波形(α =90° )四、实验内容及步骤1、实验内容:(1) 锯齿波同步移相触发电路的调试。

(2) 锯齿波同步移相触发电路各点波形的观察和分析。

2、实验步骤:(1) 将 DJK01 电源控制屏的电源选择开关打到 “直流调速” 侧,使输出线电压为 200V (不 能打到“交流调速”侧工作,因为 DJK03-1 的正常工作电源电压为 220V ± 10%,而“交流 调速”侧输出的线电压为 240V 。

电力电子技术实验报告

电力电子技术实验报告

实验一:单相桥式全控整流电路(电阻性负载)一、实验内容如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。

idR图1-1二、实验原理1、在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。

因此在0~α区间,4个晶闸管都不导通。

假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

2、在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

3、在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

4、在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b 流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况三、实验过程启动MATLAB,进入SIMULINK后新建一个仿真模型的新文件。

在这里可以任意添加电路元器件模块。

然后对照电路系统模型,依次往文档中添加相应的模块。

在此实验中,我们按下表添加模块:表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况添加好模块后,要对各元器件进行布局。

一个良好的布局面板,更有利于阅读系统模型及方便调试。

图1-3设置模块参数。

依次双击各模块,在出现的对话框内设置相应的参数。

1、交流电源参数设置:电压设置为220V,频率设为50Hz,其它默认。

图1-42、脉冲触发器设置:振幅(amplitude)设为5。

周期(Period)设为0.02秒。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。

实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。

实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。

常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。

实验步骤:1. 实验一,单相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

2. 实验二,单相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

3. 实验三,三相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

4. 实验四,三相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。

实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。

结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。

同时,也为今后的学习和科研工作打下了坚实的基础。

总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一锯齿波同步触发电路实验、实验目的1、 加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2、 掌握锯齿波同步移相触发电路的调试方法。

二、实验主要仪器与设备:序号 型 号 备注1 DJK01电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK03-1晶闸管触发 电路 该挂件包含“锯齿波同步移相触发电路”等模块。

3双踪示波器自备三、实验原理锯齿波同步移相触发电路的原理图如图1-1所示。

锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子 技术教材中的相关内容。

VD7R]f吨 RliJ [1R1L*K1-15VG —VD9YDI密CbZZlib图1-1锯齿波同步移相触发电路原理图图1-1中,由V 3、VD 1、VD 2、C 1等元件组成同步检测环节,其作用是利用同步电压U T 来控制锯齿波产生的时刻及锯齿波的宽度。

由 V 2等元件组成的恒流源电路,当 V 3截止时,恒流源对 C 2充电形成锯齿波;当 V 3导通时,电容C 2通过R 4、V 3放电。

调节电位 器RP i 可以调节恒流源的电流大小,从而改变了锯齿波的斜率。

控制电压 u ct 、偏移电压U b和锯齿波电压在 V 5基极综合叠加,从而构成移相控制环节,RP 2、RP 3分别调节控制电压O-R3:V2TP2TP1»VD1十ITIJo-VIAC7V ±ciU ct和偏移电压U b的大小。

V、V构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。

本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180。

,供单相整流及逆变实验用。

电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

图1-2锯齿波同步移相触发电路各点电压波形(a =90° )四、实验内容及步骤1、 实验内容:⑴锯齿波同步移相触发电路的调试。

⑵锯齿波同步移相触发电路各点波形的观察和分析。

2、 实验步骤:⑴ 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V (不能打到“交流调速”侧工作,因为 DJK03-1的正常工作电源电压为 220V ± 10%,而“交流调速”侧输出的线电压为240V 。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V 左右,然后才能将电源接入挂件),用两根导线将200V 交流电压接到 DJK03-1的“外接220V ”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

① 同时观察同步电压和“ 1 ”点的电压波形,了解“ 1”点波形形成的原因。

② 观察“1”、“2”点的电压波形,了解锯齿波宽度和“ 1 ”点电压波形的关系。

③ 调节电位器 RP 1,观测“ 2”点锯齿波斜率的变化。

④ 观察“ 3”〜“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较 “3”点电压 U 3和“6”点电压 U 6的对应关系。

(2)调节触发脉冲的移相范围点U 6⑶调节U ct (即电位器RP 2)使a =60 °,观察并记录 U 1〜U 6及输出 “G 、K ”脉冲电将控制电压U ct 调至零(将电位器RP 2顺时针旋到底),用示波器观察同步电压信号和6压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“ V/DIV ”和“ t/DIV ”微调旋钮旋到校准位置)。

(1) 阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2) 掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、实验注意事项(1) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2) 由于脉冲“ G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Q左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值) ,否则无法观察到正确的脉冲波形。

七、思考题(1) 锯齿波同步移相触发电路有哪些特点?⑵锯齿波同步移相触发电路的移相范围与哪些参数有关?(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?八、实验报告(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。

⑵总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在U ct=O的条件下,使a =90。

,如何调整?⑶讨论、分析实验中出现的各种现象。

实验二单相桥式全控整流电路实验一、实验目的1加深理解单相桥式全控整流及逆变电路的工作原理。

2、研究单相桥式变流电路整流的全过程。

二、实验主要仪器与设备序号型号备注1DJK01电源控制屏该控制屏包含“三相电源输岀”,“励磁电源”等几个模块。

2DJK02晶闸管主电路该挂件包含“晶闸管”以及“电感”等几个模块。

3DJK03-1晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。

4D42 三相可调电阻5双踪示波器自备6万用表自备图2为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900 Q接成并联形式,电抗Ld用DJK02面板上的700mH直流电压、电流表均在DJK02面板上。

触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路I”和“nDJK03-1挂件据齿波触发电路图2单相桥式整流实验原理图四、实验内容及步骤1、实验内容:(1) 触发电路的调试;(2) 单相桥式全控整流电路带电阻负载整流电压U d和晶闸管两端电压U VT的波形;⑶单相桥式全控整流电路带电阻电感负载整流电压U d和晶闸管两端电压U VT的波形。

2、实验步骤:(1)触发电路的调试R将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为 根导线将200V 交流电压接到 DJK03-1的“外接220V ”端,按下“启动”按钮,打开DJK03-1 电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。

将控制电压Uct 调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“ 6”点U6的波形,调节偏移电压 Ub (即调RP3电位器),使a =180°。

将锯齿波触发电路的输出脉冲端分别接至全控桥相应 晶闸管的门极和阴极,注意不要把相序接反了, 将DJKO2上的正桥和反桥触发脉冲开关都打到“断”位置,使U f 和U r 悬空,确保晶闸管不被误触发。

(2)单相桥式全控整流电路带电阻性负载按图2接线,将平波电抗器 L d (70OmH 短接并电阻器放在最大阻值处,按下“启动”按 钮,保持U b 偏移电压不变(即RP3固定),逐渐增加Uct (调节RP2,在a =0 °、30°、60°、90°、120°时,用示波器观察、记录整流电压U d 和晶闸管两端电压 Uvt 的波形,并记录电源电压U 2和负载电压Ud 的数值于表1中。

(3)单相桥式全控整流电路带电阻电感性负载按图2接线,将负载换成将平波电抗器L d (70OmH )与电阻R 串联。

,并电阻器放在最大阻值处。

按下“启动”按钮,保持U 偏移电压不变(即RP3固定),逐渐增加Uct (调节RP2), 用示波器观察不同控制角 a 时U d 、U T 、U VD 1、I d 的波形,并测定相应的 U 2、U 数值,记录于表2中。

200V,用两五、实验注意事项1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

2、在本实验中,触发脉冲是从外部接入DJK02面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf 及U lr悬空,避免误触发。

六、思考题单相桥式整流电路什么情况下会逆变失败?七、实验报告1、画出a =30 °、60°、90°、120°时U d 和U V T的波形。

2、画出电路的移相特性U=f( a )曲线。

实验三三相半波可控整流电路实验、实验目的1、了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

2、研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

序号型号备注1DJK01电源控制屏该控制屏包含三相电源输出”等几个模块。

2DJK02晶闸管主电路3DJK02-1三相晶闸管触发电路该挂件包含触发电路”,正反桥功放”等几个模块。

4DJK06给定及实验器件该挂件包含二极管”以及开关”等模块。

5DJK10变压器实验该挂件包含逆变变压器”以及三相不控整流”。

6D42 三相可调电阻7双踪示波器自备万用表自备8三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。

不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3时间有电流流过,变压器利用率较低。

图3-1中晶闸管用DJK02正桥组的三个,电阻R用D42三相可调电阻,将两个900Q接成并联形式,Ld电感用DJK02面板上的700mH,其三相触发信号由DJK02-1内部提供,只需在其外加一个给定电压接到Uct端即可。

相关文档
最新文档