职高高一第一学期期末考试数学试卷

合集下载

中职高一数学(上册)期末考试试题学习资料

中职高一数学(上册)期末考试试题学习资料

高一年级上期期末考试数学试卷班级:________ 姓名:_________ 成绩:_______一、选择题(每小题2分,共20分,题目和答题卡均有答案,否则不得分) 1.下列选项能组成集合的是( )A.著名的运动健儿B.英文26个字母C.非常接近0的数D.勇敢的人 2.设集合{}2=M ,则下列写法正确的是( ) A.M =2 B.M ∈2 C.M ⊆2 D.M ∉2 3.设A={x|-2<x ≤2},B={x|1<x <3},A ∪B=( )A.{x|-2<x <3}B.{x|-2<x ≤1}C.{x|1<x ≤2}D.{x|2<x <3} 4.的定义域是函数292--=x x y ( ) A .[]33,- B.()33,- C.()()3223,, - D.[)(]3223,, - 5.设全集为R ,集合(]5,1-=A ,则 =A C U ( )A .(]1,-∞- B.()+∞,5 C.()()+∞-∞-,51, D. (]()+∞-∞-,51, 6.不等式|x+1|<1的解集是( )A.{x|0<x <1}B.{ x|x <-2或x >2 }C.{ x|-2<x <0 }D.{ x|-2<x <2 } 7.的解集是不等式0232<+-x x ( )A.⎭⎬⎫⎩⎨⎧>-<221|x x x 或 B.⎭⎬⎫⎩⎨⎧>-<212|x x x 或 C.{}21|<<x x D. {}12|-<<-x x8.函数2x y =的单调减区间为( ) A ()+∞,1B ()+∞,0C ()0,∞-B ()+∞∞-,9.不等式611<+≤x 的解集是( )A .⎪⎭⎫⎢⎣⎡-32,1 B. [)5,0 C. ⎪⎭⎫ ⎝⎛--35,310 D. ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--32,135,31010.若二次函数y=2x 2+n 的图像经过点(1,-4),则n 的值为( )A.-6B.-4C.-2D.0二、填空题:(每小题3分,共15分)11.如果S={1,2,3,4,5,6,7,8},A={1,2,3},那么集合A 的所有子集有 个,C S A= ;12.{}用区间表示是或集合211|<≤-<x x x 。

(完整版)职高高一上学期期末数学试题

(完整版)职高高一上学期期末数学试题

密密 封 线 内 不 得 答 题高一上学期15计1班数学考试试卷一.单选题(每题2分,共40分)1.设集合M={1,2,3,4},集合N={1,3},则M N 的真子集个数是( )A 、16B 、15C 、7D 、8 2.2a =a 是a>0 ( )A .充分必要条件 B. 充分且不必要条件 C.必要且不充分条件 D.既不充分也不必要条件3.下列各命题正确的( )A 、}0{⊂φB 、}0{=φC 、}0{∈φD 、}0{0⊆4.设集合M={x ︱x ≤2},a=3,则( )A. a ⊂MB. a ∈MC. {a} ∈MD.{a}=M 5.设集合M={}1,0,5- N={}0则( )A.M ∈NB.N ⊂MC.N 为空集D.M ⊂N6.已知集合M={(x ,y )2=+y x },N={(x, y) 4=-y x },那么M N=( ) A. {(3,-1)} B. {3,-1} C. 3,-1 D. {(-1, 3)}7. 设函数f(x)=k x +b(k ≠0),若f(1)=1,f(-1)=5,则f(2)=( ) A.1 B.2 C.-1 D.-28.函数y=2x -+6x+8的单调增区间是( )A. (-∞, 3] B. [3, +∞) C.(-∞,-3] D.[-3, +∞)9.已知关于x 的不等式2x - ax+ a>0的解集为实数集,则a 的取值范围是( ) A .(0,2) B.[2,+∞) C.(0,4) D.(- ∞,0)∪(4,+∞) 10.下列函数中,在(0,+∞)是减函数的是( )A. y=-x 1B. y=xC. y=-2xD. y =2x11.不等式51-x >2的解集是( ) A.(11,+∞) B.(-∞,-9) C.(9, 11) D.(-∞,-9)∪(11,+∞) 12.下列各函数中,表示同一函数的是( )A. y=x 与x x y 2=B. xxy =与y=1密密 封 线 内 不 得 答 题C. y=()2x 与y=2x D. y=x 与33x y =13.抛物线7)5(92-+-=x y 的顶点坐标、对称轴分别是( )A .(5,7),x=5 B.(-5,-7),x=-7 C.(5,7),x=7 D.(-5,-7),x=-5 14.如果a<b,那么正确的是( )A. a 2c >b 2cB.a-c <b-cC.c b c a >D.ba<115.若221)(xx x f +=,则下列等式成立的是( )A .f (-a)=f (a) B. )()1(a f af = C .f(0)=0 D. f(1)=016.分式不等式xx-2≤0的解集是( )A.(0, 2]B. [0, 2)C.(-∞,0]∪(2,+∞)D.(-∞,0) ∪ [2,+∞)17.下列函数图像关于原点对称的是 ( )A .y=3x B. y=x+3 C. y=()21+x D. y=x218.若果一次函数y=ax+12-a 图像经过第一、三、四象限,则a 的取值范围是( ) A. a>0 B.0<a<1 C.-1<a<0 D.-1<a<1且a ≠0 19.已知f (2x)=2x -2x+3,则f(4)=( ) A.-1 B.0 C.3 D.-43 20.若函数()⎪⎩⎪⎨⎧≤≤<+=3,2,31,1,12 x x x x x x x f 则f(a)= ( )A.a+1B. 2aC.2a D .以上结论均不对二、填空题(每题4分,,共20分)21.若11)(+-=x x x f ,则)11(+-x x f = . 22.函数y=112--x x 的定义域是 (用区间表示)。

职高高一上学期期末数学试题

职高高一上学期期末数学试题

2021至2021 学年高一上学期301、302、303、304班数学考试试卷一.单项选择题〔每题2分,共40分〕1.设集合M={1,2,3,4},集合N={1,3},那么M N真子集个数是〔〕A、16B、15C、7D、82.=a是a>0 ( )A.充分必要条件 B.3.以下各命题正确〔〕A 、B 、C 、D 、4.设集合M={x︱x 2},a=,那么( )A. a MB. a MC. {a} MD.{a}=M5.设集合M= N=那么( )N6.集合M={〔x ,y 〕},N={(x, y) },那么M N=〔〕A. {(3,-1)}B. {3,-1}C. 3,-1D. {(-1, 3)}7. 设函数f(x)=k x +b(k0),假设f(1)=1,f(-1)=5,那么f(2)=( )8.函数y=+6x+8单调增区间是〔 )A. (-, 3]B. [3, +) C.〔-,-3]D.[-3, +) - ax+ a>0解集为实数集,那么a取值范围是〔〕A.〔0,2) B.[2,+∞) C.〔0,4) D.(- ∞,0)∪〔4,+∞)10.以下函数中,在〔0,+∞)是减函数是( )A. y=-B. y=C. y=-2xD. y=>2解集是〔〕A.〔11,+∞)B.〔-,-9〕C.〔9, 11〕D.〔-,-9〕∪〔11,+∞)12.以下各函数中,表示同一函数是( )A. y=x 与B. 与y=1C. y=与y=D. y=x 与顶点坐标、对称轴分别是〔〕A.〔5,7〕,x=5 B.〔-5,-7〕,x=-7 C.〔5,7〕,x=7 D.〔-5,-7〕,x=-514.如果a<b,那么正确是〔〕A. a >bB.a-c<b-cC.D.<115.假设,那么以下等式成立是〔〕A .f (-a)=f (a) B. C .f(0)=0 D. f(1)=016.分式不等式0解集是( )A.〔0, 2]B. [0, 2)C.〔-,0]∪〔2,+∞)D.〔-,0) ∪ [2,+∞)17.以下函数图像关于原点对称是 ( )A .y= B. y=x+3 C. y= D. y=18.假设果一次函数y=ax+图像经过第一、三、四象限,那么a取值范围是( )A. a>0B.0<a<1C.-1<a<0D.-1<a<1且a≠019.f〔2x)=-2x+3,那么f(4)=( )A.-1B.0C.3D.-20.假设函数那么f(a)= ( )A.a+1B.C.2a D .以上结论均不对二、填空题〔每题4分,,共20分〕21.假设,那么= .22.函数y=定义域是〔用区间表示〕。

高一职高数学期末考试(第一学期)

高一职高数学期末考试(第一学期)

高一职高期末考试数学试题一、选择(每题3分)1、设全集U=},104|{N x x x ∈≤≤,A={4,6,8,10},则A C U ( ) A.{5} B 、{5,7} C 、{5,7,9} D 、{7,9}2、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个3、若集合P={}21|≤<-x x ,集合Q={}01|>-x x ,则Q P 等于( ) A 、}11|{<<-x x B 、}21|{≤<x x C 、}21|{≤<-x x D 、 }1|{->x x4、“0>a 且0>b ”是“a ·b>0”的( )条件A、充分不必要 B 、必要不充分 C 、充分必要 D 、以上答案都不对 5、若a 、b 是任意实数,且a >b,则( ) A 、22b a > B 、1<abC 、b a lg lg >D 、b a --<22 6、下列命题中,正确的是( )A、若a >b ,则a c>bc B 、若,22bc ac >则a >b C 、若b a >,则22bc ac > D 、若b a >,c>d,则bd ac >7、如果A==<+-}01|{2ax ax x Φ,则实数a 的集合是( ) A 、(0,4) B 、[0,4] C 、(0,4] D、[0,4)8、已知方程02)2(22=+++-m x m x 有两个不等的实根,则m 的取值范围是( ) A 、(-2,-1) B 、(-2,0) C 、),1()2,(+∞---∞ D 、),1(+∞- 9、下列四组函数中,有相同图像的一组是( ) A 、||x y =与33x y = B 、x y =与2x y =C 、||||x y =与22x y = D 、1)(=x f 与xx x g =)( 10、设144)2(2++=x x x f ,则)(x f 等于( )A 、2)1(+xB 、122++x xC 、12++x xD 、18162++x x11、函数2655)(xx f x x +-=-是( )函数A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 12、已知函数)(x f y =在),(o -∞上是减函数,则( )A 、)42()31()21(->->-f f f B 、)31()42()21(->->-f f fC 、)21()42()31(->->-f f f D 、)21()31()42(->->-f f f 13、函数225x x y --=在[-2,1]上的最大值与最小值分别是( ) A 、6,3 B 、6,5 C 、5,3 D 、6,214、函数32)1()(2++-=mx x m x f 且2)1(=-f ,则)(x f 是( ) A 、在),0[+∞上的单调递增函数 B 、在]0,(-∞上的单调递减函数C 、在),(+∞-∞内的奇函数D 、在),(+∞-∞内的偶函数15、把函数)(x f y =的图像向左、向下分别平移2个单位,得到函数xy 2=的图像,则( ) A 、22)(2+=+x x f B 、22)(2-=+x x f C 、22)(2+=-x x f D 、22)(2-=-x x f二、填空题(每题3分)1、设U=R ,P=}1|{≥x x ,Q=}30|{≤≤x x ,则)(Q P C u ⋂=__________________2、若0>a ,则aba b _________1-(填<或>) 3、不等式3|3|1≤-<x 的解集为________________4、设函数=)(x f 0,10,22{≤->+x x x x , 则___________)]2([=-f f5、设函数)(x f 是偶函数,函数)(x g 是奇函数,且x x x g x f +=+2)()(,则)(x f =__________6、设二次函数的图像顶点为(1,3),且过点(2,5),则其解析式为_________________7、_______________2009)49(8102343=++-8、化简,当0≥a 时,a a a 3141的值是_______________9、4524log =x ,则x =______________ 10、函数13+=-x a y 的图像恒过一个定点坐标是______________三、解答题 1、解不等式(1)、0)3)(2)(1(2>++-x x x (2)、x x283)31(2-->2、求函数41432++++=x x x y 的定义域3、设函数1)(35+++=cx bx ax x f 且1)(-=πf ,求)(π-f 的值4、323524log 25log 3log )01.0(lg +--5、证明、函数xx f 1)(=在)0,(-∞上为减函数 6、已知函数0,123,0,32{)(≤+≤<-=x x x x x f(1)求)(x f 的定义域。

职业中专高一上册数学期末考试试卷

职业中专高一上册数学期末考试试卷

职业中专高一上册数学期末考试试卷试卷分值:150分 考试用时:120分钟一、选择题:本大题共14小题,每小题5分,满分70分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={ x| -3≤x ≤0},B={x |-1≤x ≤3},则A ∩B=( ) A [-1,0] B [-3,3] C [0,3] D [-3,-1]2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ).A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1D .f (x )=1+x ·1-x ,g (x )=1-2x 5.幂函数y =x α(α是常数)的图象( ).A .一定经过点(0,0)B .一定经过点(1,1)C .一定经过点(-1,1)D .一定经过点(1,-1)6.点(1,-1)到直线x -y +1=0的距离是( ).A .21B .23 C .22 D .223 7.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=08.下列直线中与直线2x +y +1=0垂直的一条是( ).A .2x ―y ―1=0B .x -2y +1=0C .x +2y +1=0D .x +21y -1=09.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ).A .2x -y -1=0B .2x +y +1=0C .2x -y +1=0D .2x +y -1=010.函数y =x 416-的值域是( ).A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数中是偶函数的是( )A.f(x)=xB.f(x)=2x 22+C.f(x)=xD.f(x)=]1,1(,x 3-∈x 12.点P 在直线x + y- 4= 0 上,o 为原点,则|OP| 的最小值是( )A .2B .6C .22D .1013.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x1B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln (x +1)14.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( )A .-2B .-1C .0D .1二、填空题:本大题共4小题,每小题5分,满分20分。

职高高一数学试卷期末

职高高一数学试卷期末

一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. 2/3D. -π2. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()A. log2 4 = 2B. log3 9 = 2C. log5 25 = 1D. log10 100 = 24. 已知等差数列{an}的第三项a3 = 10,公差d = 2,则第一项a1为()A. 6B. 8C. 10D. 125. 若等比数列{bn}的第一项b1 = 3,公比q = 2,则第n项bn为()A. 3×2^(n-1)B. 3×2^nC. 6×2^(n-1)D. 6×2^n6. 已知函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则该函数的图像()A. 在y轴左侧单调递减,在y轴右侧单调递增B. 在y轴左侧单调递增,在y轴右侧单调递减C. 在整个实数域上单调递增D. 在整个实数域上单调递减7. 下列各三角形中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形8. 已知圆的半径为r,则该圆的面积S为()A. πr^2B. 2πrC. πr^2 + 2πrD. πr^2 + 2r9. 下列各等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若直线y = kx + b与直线y = 2x - 3平行,则k的值为()A. 2B. 3C. -2D. -3二、填空题(每题5分,共50分)1. 若x^2 - 5x + 6 = 0,则x的值为______。

(完整word版)职高高一上期末数学考试试卷

(完整word版)职高高一上期末数学考试试卷

职高高一年级上期期末考试数学试卷本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。

满分150 分,考试用时100 分钟。

第Ⅰ卷(选择题,共60 分)本卷 15 小题,每题 4 分,共 60 分。

在每题给出的四个选项中,只有一个正确选项。

(1)以下选项能构成会合的是()A 、有名的运动健儿B、英文26 个字母C、特别靠近0 的数D、英勇的人( 2)设会合M2,则以下写法正确的选项是()。

A .2 M B. 2 M C. 2 M D. 2 M(3)设 A={x|-2<x≤ 2}, B={x|1 < x<3}, A∪B=()A.{x|-2<x<3} B. {x|-2< x≤ 1} C. {x|1< x≤ 2} D. {x|2< x< 3}( 4)函数y9x2的定义域是()x2,B.,C.,,D.,,A.3 3 3 3 3 2 2 3 3 2 2 3(5)设全集为 R,会合A1,5 ,则 C U A()A ., 1 B. 5, C., 15, D.,15,( 6)函数y x2x 是()A奇函数B偶函数C非奇非偶函数D又奇又偶函数( 7)不等式 |x+1| <1 的解集是()A.{x|0<x<1} B. { x|x< -2 或 x> 2 }C. { x|-2< x< 0 }D. { x|-2< x< 2 }( 8)不等式x 2 3 x 2 0的解集是()A.x | x 1或 x 2 B . x |1 x2C. x | 1x2D.x | x1 2或 x2( 9)函数y x2的单一减区间为()A1, B 0,C,0B,( 10)不等式1x16的解集为()A.1, 2B.0,5C.10 ,5D.10 ,51,2 333333(11) 、一次函数 y=kx+b 的图像(如图示),则()yA .k>0,b>0B .k>0,b<0C .k<0,b<0 D.k<0,b>00x ( 12)以下会合中,表示同一个会合的是()(图一) A.M={(3,2)},N={(2,3)} B . M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1} D . M={1,2},N={(1,2)}( 13x y1)方程x y的解集是()1A x0, y1B0,1C(0,1)D(x, y) | x0域 y 1( 14)若 a1,则不等式x a x 10的解集是()A.x | a x 1B. x |1 x aC. x | x a或x 1D. x | x 1或x a ( 15)若二次函数y=2x 2+n 的图像经过点(1, -4 ),则 n 的值为()A.-6B.-4C.-2D.0请将选择题的答案填入下表:题号123456789101112131415答案第Ⅱ卷(非选择题,共90 分)二.填空题:(本大题共4 个小题,每题 5 分,共 20 分。

最新职高高一上期末数学考试试卷

最新职高高一上期末数学考试试卷

职高高一年级上期 期末考试数学试卷本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。

满分150分,考试用时100分钟。

第Ⅰ卷(选择题,共60分)本卷15小题,每小题4分,共60分。

在每小题给出的四个选项中,只有一个正确选项。

(1) 下列选项能组成集合的是( )A 、著名的运动健儿B 、英文26个字母C 、非常接近0的数D 、勇敢的人 (2)设集合{}2=M ,则下列写法正确的是( )。

A .M =2 B.M ∈2 C. M ⊆2 D.M ∉2 (3) 设A={x|-2<x ≤2},B={x|1<x <3},A ∪B=( )A .{x|-2<x <3} B. {x|-2<x ≤1} C. {x|1<x ≤2} D. {x|2<x <3} (4)的定义域是函数292--=x x y ( ) A . []33,- B. ()33,- C. ()()3223,, - D. [)(]3223,, - (5) 设全集为R ,集合(]5,1-=A ,则 =A C U ( ) A .(]1,-∞- B.()+∞,5 C.()()+∞-∞-,51, D. (]()+∞-∞-,51, (6)函数x x y +=2是( )A 奇函数B 偶函数C 非奇非偶函数D 又奇又偶函数(7)不等式|x+1|<1的解集是( )A .{x|0<x <1} B. { x|x <-2或x >2 }C. { x|-2<x <0 }D. { x|-2<x <2 } (8)的解集是不等式0232<+-x x ( )A.⎭⎬⎫⎩⎨⎧>-<221|x x x 或 B .{}21|-<<x xC.{}21|<<x xD.⎭⎬⎫⎩⎨⎧>-<212|x x x 或(9)函数2x y =的单调减区间为 ( )A ()+∞,1B ()+∞,0C ()0,∞-B ()+∞∞-,(10)的解集为不等式611<+≤x ( ) A .⎪⎭⎫⎢⎣⎡-32,1 B.[)5,0 C. ⎪⎭⎫ ⎝⎛--35,310 D. ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--32,135,310(11)、一次函数y=kx+b 的图像(如图示),则 ( ) A .k>0,b>0 B .k>0,b<0 C .k<0,b<0 D(12)下列集合中,表示同一个集合的是( ) (图一) A .M ={(3,2)},N ={(2,3)} B . M ={3,2},N ={2,3} C .M ={(x ,y )|x+y=1},N ={y|x+y=1} D . M ={1,2},N ={(1,2)}(13)方程⎩⎨⎧-=-=+11y x y x 的解集是 ( )A {}1,0==y xB {}1,0C {})1,0(D {}10|),(==y x y x 域 (14)()()的解集是则不等式若011>-->x a x ,a ( ) A.{}1|<<x a x B.{}a x x <<1| C. {}1|><x a x x 或 D.{}a x x x ><或1|(15)若二次函数y=2x 2+n 的图像经过点(1,-4),则n 的值为( )A.-6B.-4C.-2D.0请将选择题的答案填入下表:第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。

职高高一期末数学考试试卷

职高高一期末数学考试试卷

职高高一期末数学考试试卷一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 若函数f(x) = 2x^2 - 3x + 1在x=1处取得极值,则该极值是:A. -2B. 0C. 1D. 23. 已知等差数列的前三项和为6,第二项为2,该数列的公差d为:A. 1B. -1C. 2D. 34. 圆的方程为(x-3)^2 + (y-4)^2 = 25,该圆的半径是:A. 5B. 10C. 15D. 205. 已知sinθ = 3/5,cosθ = -4/5,θ位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 函数y = log2(x)的定义域是:A. x > 0B. x ≥ 0C. x < 0D. x ≤ 07. 根据勾股定理,直角三角形的斜边长为:A. √(a^2 + b^2)B. a + bC. a - bD. a / b8. 若方程2x^2 + 5x - 3 = 0有两个不相等的实根,则判别式Δ的取值范围是:A. Δ > 0B. Δ < 0C. Δ ≥ 0D. Δ ≤ 09. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数是:A. 0B. 1C. 2D. 310. 函数y = x^3 - 6x^2 + 9x + 2的导数是:A. 3x^2 - 12x + 9B. -3x^2 + 12x - 9C. x^2 - 4x + 3D. 3x^2 - 6x二、填空题(本题共5小题,每小题4分,共20分)11. 已知等比数列的首项为2,公比为3,其第五项为______。

12. 若f(x) = x^3 - 2x^2 + x - 2,求f'(1)的值为______。

13. 已知点A(-1, 2)和点B(4, -1),线段AB的长度为______。

14. 根据正弦定理,若在三角形ABC中,a/sinA = b/sinB = c/sinC = 6,则边a的长度为______(假设sinA = 1/2,sinB = √3/2,sinC = 1)。

高一数学(职高第一学期)

高一数学(职高第一学期)

高一数学期末模拟卷A 二 一、选择题(每小题2分,共30分) 1.已知集合{}3,1,0,1,3--=M ,{}2,1,0,1-=N ,则N M ⋃是 ( ) A .M B .N C .{}1,0,1- D .}3,2,1,0,1,3{-- 2."2">x 是"4"2>x 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 3.若c b a ,,为任意实数,且b a >,则下列不等式中正确的是 ( ) A . 22b a > B .22b a < C .bc ac > D .c b c a +>+ 4.函数)(x f 是奇函数,且7)2(=-f ,则=)2(f ( ) A . 7 B . 7- C .2 D .2- 5.已知集合}1|),{(=-=y x y x A ,}5|),{(=+=y x y x B ,则=⋂B A ( ) A .{}3,2 B .{})3,2( C .{}2,3 D .{})2,3( 6.下列各组函数表示同一函数的是 ( ) A .2)()(,)(x x g x x f == B .0)(,1)(x x g x f == C .33)(,)(x x g x x f == D .x x x g x f ==)(,1)( 7.二次函数32)(2++-=x x x f 的图像开口方向和顶点坐标是 ( ) A .向上,)4,1( B .向下,)4,1( C .向上,)4,1(- D .向下,)4,1(- 8.若162=x ,则x 5.0log 的值为 ( ) A . 2 B . 2- C .21 D .21- 9.若指数函数x a y )2(-=在R 上为增函数,则a 的取值范围是 ( ) A .2>a B . 32<<a C .3>a D .2≠a 10.1、o 400-为第几象限角( ) A. 一 B. 二 C. 三 D. 四 11.角α终边上一点P ()a a 2,,()0≠a ,则=αtan ( ) A.21 B.a 21 C.2 D. 2a 学校:_____________________班级:________________姓名:_________________准考证号:________________12.函数x y 2={})2,1(∈x 的图像是 ( ) A .线段 B .直线 C .离散的点 D .射线13.不等式0322≤--x x 的解集是 ( )A . ]3,1[-B .]1,3[-C .),3[]1,(+∞⋃--∞D .),1[]3,(+∞⋃--∞14.一辆汽车匀速行驶,h 2行驶路程为km 100,则这辆汽车行驶路程y 与时间x 之间的函数关系式为 ( )A .)(50R x x y ∈=B .)0(50>=x x yC .)0(50≥=x x yD .)(50N x x y ∈=15.下列关于23.0,3.0log 2,3.02的大小关系正确的是 ( )A .3.0log 23.023.02<<B .3.02223.0log 3.0<<C .3.02223.03.0log <<D .23.023.023.0log <<二、填空题(每小题3分,共21分)16.设全集R U =,{}3|<=x x M ,则=M C U __________________________17.{}Z x x x M ∈≤<-=,22|,用列举法表示M 为___________________________18.函数)32sin(5π+=x y 的周期T=__________ 最大值为__________19.不等式12>-x 的解集为_________________(用区间表示)20.已知:3tan -=α,计算:ααααsin cos 5cos 2sin -+= 21.=÷-)6()2(223y x y x ___________________22.xx f 21)(+=(R x ∈)必过定点__________________________________三、解答题(共49分)23.(8分)计算:2lg 225lg 4)1()25.0(1021+++---π24.(8分)已知53)sin(=-απ,且α为第二象限角,求)tan()cos(ααπ-+与的值。

职高高一上册期末数学试卷

职高高一上册期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. -1/32. 若 |a| = 3,则 a 的值可能是()A. 3B. -3C. 6D. ±33. 下列各数中,是等差数列通项公式 an = 2n - 1 的第 5 项的是()A. 9B. 10C. 11D. 124. 若sin α = 1/2,则α 的度数是()A. 30°B. 45°C. 60°D. 90°5. 下列各函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = x + 1二、填空题(每题5分,共25分)6. 若 a > 0,b < 0,则 a - b 的值为 ________。

7. 已知等差数列 {an} 的前 3 项分别为 2,5,8,则该数列的公差为 ________。

8. 在直角坐标系中,点 P(2,3) 关于 x 轴的对称点坐标为 ________。

9. 若cos α = -1/2,则sin α 的值为 ________。

10. 若二次函数 y = ax^2 + bx + c 的图象开口向上,且 a = 1,则 b 的取值范围是 ________。

三、解答题(每题15分,共45分)11. (10分)已知数列 {an} 的前 n 项和为 Sn = 3n^2 - 2n,求该数列的通项公式。

12. (10分)已知等差数列 {an} 的前 5 项和为 S5 = 50,公差为 2,求该数列的第 10 项。

13. (15分)在直角坐标系中,点 A(3,4) 和点 B(5,2) 的中点为 M,求线段 AB 的长度。

四、综合题(25分)14. (10分)已知函数 y = kx + b(k ≠ 0),当 x = 1 时,y = 2;当 x = 2 时,y = 5。

职高数学 高一第一学期期末考试试卷(含答案)

职高数学  高一第一学期期末考试试卷(含答案)

第1页 共6页 ◎ 第2页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________绝密★启用前高一第一学期数学期末试卷一、选择题(每小题3分,共45分)1. 设集合A ={b ,c ,d },则集合A 的子集共有( ) A .5个B .6个C .7个D .8个2.若集合A ={x |x 是等腰三角形},B ={x |x 是等边三角形},则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若a ,b ,c 为实数,且a >b ,则( )A .a -c >b -cB .a 2>b 2C .ac >bcD .ac 2>bc 2 4x 的取值范围是( )A .[-1,6]B .(-∞,-1]∪[6,+∞]C .[-2,3]D .(-∞,-2]∪[3,+∞)5.设函数 f (x )=x 2+ax -a ,且f (-1)=5,则常数a =( ) A .-2 B .-3 C .2 D .36.二次函数y =x 2+ax +b 的顶点坐标为(-3,1),则a ,b 的值为( ) A .a =-6,b =10 B .a =-6,b =-10 C .a =6,b =10 D .a =6,b =-10 7.下面指数式可以写成对数式的有( )①(-2)3=-8;② 213-⎛⎫⎪⎝⎭=9;③10=1;④6a =13A .1个B .2个C .3个D .4个8.已知函数f (x )在(0,π)上是增函数,那么f (2) 2f π⎛⎫⎪⎝⎭,f (e )之间的大小关系是( )A .f (e )>f (2)> 2f π⎛⎫⎪⎝⎭ B .2f π⎛⎫⎪⎝⎭>f (2)>f (e ) C .f (e )> 2f π⎛⎫⎪⎝⎭>f (2) D .f (2)>f (e )>2f π⎛⎫ ⎪⎝⎭9.已知奇函数f (x )在[1,4]上是增函数,且有最大值6,那么f (x )在[]4,1--上为( )A .增函数,且有最小值-6B .增函数,且有最大值6C .减函数,且有最小值-6D .减函数,且有最大值6 10.下列函数中,既是奇函数又是减函数的是( ) A .13y x =B .y =2x 2C .y =-x 3D .1y x= 11. 二次函数y =x 2-2x +4,x ∈[2,4]的最大值为( ) A .4 B .6 C .8 D .12 12.函数0(3)y x =-的定义域为( ) A .[2,+∞) B .(2,+∞) C .[2,3)∪(3,+∞) D .[3,+∞) 13.下列各组函数中,表示同一个函数的是( ) A .y =x与y = B .y =|x |与y = C .y =|x |与y = D.y =与y 14.下列关系式中,正确的是( )A .log 35<log 34B .lg π>lg3.14C .log 0.35>1D .log 32>log 94 15.设函数f (x )=(n +4)x 在R 上单调递增,则实数n 的取值范围是( ) A .n >-3 B .-4<n <-3 C .n ≥-3 D .-4≤n ≤-3 二、填空题(每空3分,共30分)第3页 共6页 ◎ 第4页 共6页※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※16.已知函数20,()=2,0,1,0,x f x x x x ⎧⎪-=⎨⎪+⎩>0,<则f {f [f (4)]}=________.17.lg4+2lg5-ln 1+3log 53=________.18. 若函数y =3x 2+2(a -1)x +6在(-∞,1)上是减函数,在(1,+∞)上是增函数,则a =_______.19.函数f (x )=x 2-2x -3的单调增区间是________.20.设全集U =R ,集合P ={x |x ≥1},Q ={x |0≤x <3},则∁U (P ∩Q )=_______. 21.设函数f (x )=2ax 2+(a -1)x +3是偶函数,则g (x )=ax +a -1是________函数(填“奇”或“偶”).22.已知函数f (x )=kx +b ,若f (2)=3且f (-1)=6,则k =______,b =_____.23.如果函数y =-a x(a >0,a ≠1)的图像过点12,4⎛⎫- ⎪⎝⎭,则a 的值是________.24.已知a =log 327,b =3log 23 ,c =log 216,则a ,b ,c 由大到小排列的顺序为________.25. 13log 1x >,则x 的取值范围是________.三、解答题(共45分)26.(10分)解下列方程与不等式(1)解方程:2(lg x )2-3lg x -2=0. (2)不等式21139xx +⎛⎫⎪⎝⎭>27. (8分)已知全集U ={2,3,a 2+2a -3},集合A ={2,|a |},∁U A ={0}.a 的值.28. (9分)已知集合A ={x |ax 2-3x +2=0,a ∈R }.若集合A 素,求实数a 的集合;29.(9分)白洋淀旅游景区出售门票,每张门票售价为60门票数量的函数.当购买5张以内(含5张)的门票时,请用三种方法表示这个函数.30. (9分)用定义证明函数y =ln-x )(x ∈R )是奇函数.第5页 共6页 ◎ 第6页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________高一第一学期数学期末试卷答案一、选择题 1-5 D B A D A 6-10 C B A B C 11-15 DC C B A二、填空题(每空3分,共30分) 16. 5 17. 718. -2 19. (1,+∞) 20. {x |x <1或x ≥3} 21. 奇 22. k =-1,b =5 23. 1224. c >a > b 25. 103x <<三、解答题(共45分)26.(1)解:由2(lg x )2-3lg x -2=0 得(2lg x +1)(lg x -2)=0, 解得lg x =-12或lg x =2, ∴x或x =100.(2)∵ 21139xx +⎛⎫ ⎪⎝⎭>,∴不等式可变形为21233x x +->, 又∵函数y =3x 在R 上单调递增,∴x 2+1>-2x ,即x 2+2x +1>0,解得x ≠-1.27. 解:由题意得223=0,=3,a a a ⎧+-⎪⎨⎪⎩解得a =-3.28. 解:当a =0时,方程为-3x +2=0, 方程有唯一解x =23,符合题意. 当a ≠0时,根据题意有Δ=(-3)2-4a ·2=9-8a =0,解得a =98.综上所述,实数a 的集合是9=0=8a a a ⎧⎫⎨⎬⎩⎭或.29. 解:设购买门票数量为x 张,应付款为y 元,得 ①解析法:y =60x ,x ∈{1,2,3,4,5}. ②列表法:③ 图像法:30. 证明:函数的定义域为R ,对于任意的x ∈R ,都有-x∈R , ∵f (x )=ln-x ),∴f (-x )=ln +x ),f (x )+f (-x )=ln-x )+ln+x ) =ln -x +x )] =ln 1 =0,即f (x )=-f (-x ),∴y =ln -x )(x ∈R )是奇函数.。

(完整word版)职高数学高一(上)期末考试题(word文档良心出品)

(完整word版)职高数学高一(上)期末考试题(word文档良心出品)

- 1 -职教高一(上)数学期末试卷得分:_________一、选择题(每题5分,共60分) 1、下列关系正确的是( )A 、π∈QB 、Φ={0}C 、3⊆RD 、3∈Z 2.若213x -<,则下列正确的是( )A.-1<x<2B. x<2C. x<-1或x>2D. x<-1 3. 若a>b ,则 ( )A.ac>bcB.a>b-1C.a>-bD.a/b > 14. 若奇函数在(-∞,0)上是减函数,则()f π与(3.14)f 的大小关系为( ) A .()(3.14)f f π> B 。

()(3.14)f f π< C .()(3.14)f f π= D 。

不能确定 5. Sin210°-cos180°+tan(-120°)=( )126.函数1()2f x x =- 的定义域是( )A 、[1,2)∪(2,+∞)B 、[1,2]C 、(1,+∞)D 、R7.0.540.5log 4,log 5,log 3的大小关系 ( )A .0.50.54log 3log 4log 5<<B 。

0.50.54log 4log 3log 5<<C .40.50.5log 5log 4log 3<< D 。

0.540.5log 4log 5log 3<<8. 已知212332yx +⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则y 的最大值是( )A. 2-B. 1-C. 0D. 19.已知sin α=0.5, 在[0,360°]内α=( ) A 30°或-30° B 30°或150°C 60°或120°D 30°10.函数422++-=x x y 的单调减区间为 ( ) A ()+∞,1B ()+∞,0C ()1,∞-D ()+∞∞-,11、22log 1.25log 0.2+= ( ) A 1B 2C 3D -212、化简tan θ•)的结果是(232sin 12πθπθ<<-( )。

中职学校高一上期末数学综合测试题

中职学校高一上期末数学综合测试题

中职学校高一上期末数学综合测试题一、单项选择题1.在6名参加技能集训的同学中选拔3名参加技能竞赛,不同的选人方法有()A.18种B.20种C.24种D.30种2.在平行四边形ABCD中,若AB→=a,AD→=b,则AC→等于()A.a-bB.a+bC.b-aD.-a-b3.(x-y)7的展开式中第4项的系数是()A.C47B.-C37C.C37D.-C474.已知cos2α=sin2α,且cosα≠0,则tanα等于()A.2B.1 2C.1D.不存在5.在圆中半径长为2,圆心角为23π的角所对应的弧长是()A.4 3πB.2 3πC.4πD.2π6.下列各项中,表述正确的是()A.a2+b2>2abB.若a>b>0,则ac2>bc2C.若a+b+c=0,且a+b>0,则ca+b<0D.若a2>b2,则a>b7.用数字0,1,2,3,4组成没有重复数字且比1000大的奇数共有()A.36个B.48个C.66个D.72个8.若3A n=64C n,则n等于()A.9B.8C.7D.69.下列图①~④是某条公共汽车线路收支差额y与乘客量x的图像(收支差额=车票收入-支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:(1)不改变车票价格,减少支出费用;(2)不改变支出费用,提高车票价格.下面给出四个图像(如图所示),则()A.图①反映了建议(2),图③反映了建议(1)B.图①反映了建议(1),图③反映了建议(2)C.图②反映了建议(1),图④反映了建议(2)D.图④反映了建议(1),图②反映了建议(2)10.如图,平面图形中阴影部分面积s是h(h∈[0,H])的函数,则该函数的图象大致是()11.函数y==x2+2x的图象可能是()12.已知y=log a(2-ax)在[0,1]上是x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)13.数列{an}的前n项和为Sn=2n-1n,则a8等于()A.-1 42B.1 42C.-156D.15614.已知1a=2,2a=7,当n≥1时,2n a+等于n a1n a+的积的个位数,则6a=()A.2B.4C.6D.815.已知集合M ={x|1<x≤3},N ={x|0≤x<2},则M ∪N 等于( ) A.{x|0≤x≤3} B.{x|1<x<2} C.{x|0≤x≤1} D.{x|2<x≤3}16.抛出一枚骰子,在下列几个事件中,成功的机会最大的事件是( ) A.朝上的点数为奇数 B.朝上的点数小于5 C.朝上的点数为6 D.朝上的点数不大于617.设函数f (x )=x2+2x ,则数列{1f (n )}(n ∈N*)的前10项和为( ) A.1124 B.1722 C.175264 D.111218.在等比数列{an}中,已知对于任意自然数n 有a1+a2+…+an =2n -1,则22212na a a +++等于( )A.(2n -1)2B.13(2n -1)2 C.4n -1 D.13(4n -1)19.“a +b =0”是“a 与b 互为相反向量”的( ) A.充分条件 B.必要条件 C.充分且必要条件 D.既非充分也非必要条件20.直线y =2x -1关于直线y =1对称的直线方程是( ) A.y =12 x +12 B.y =2x +1 C.y =-2x +1 D.y =-2x +3 二、填空题不等式|3-2x|-2>3的解集是 . 22.若函数y =a +bsinx (b >0)的最大值是32,最小值是12,则a = ,b = .23.若方程x2+(m -1)x +m2-2=0的两个实根,一个小于1,一个大于1,则实数m 的取值范围是 .24.若实数a ,b 满足a +b =2,则5a +5b 的最小值为 . 25.在等比数列{an}中,q >1,a1+a2=12,a1·a2=27,则S3= .26.求值:sin12°cos18°+sin78°sin162°= .27.若x <0,则函数f (x )=x2+1x2-x -1x 的最小值是 . 三、解答题28.如图是边长为1的正方形展开的渐开线所形成的螺线(圆弧部分),求:(1)此螺线前3次展开后的长度 (2)第n 次展开后的长度29.已知3nx ⎛⎝的展开式中,各项的二项式系数之和为16.求:(1)正整数n 的值; (2)展开式中含x 项的系数.30.已知扇形的圆心角为π6,面积为π3cm2求扇形的弧长. 31.化简:32A n n+-14A n += (n ∈N*).32.某市垃圾处理站每月的垃圾处理成本y (元)与月垃圾处理量x (吨)之间的函数关系可近似地表示为y =12x2-200x +80000,求该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?最低平均处理成本是多少?33.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题: (1)用含x 的代数式表示m ;(2)求出该校的获奖人数及所买课外读物的本数.34.设f (x )为一次函数,若f (8)=15,且f (2),f (5),f (4)成等比数列,求f (x )的表达式. 35.已知sin α=1213 ,求cos 2α的值.答案一、单项选择题 1.B 2.B 3.B 4.B5.A 【提示】l =α·r =2×23π=43π. 6.C 7.D8.C 【提示】展开得n (n -1)(n -2)=6×n (n -1)(n -2)(n -3)4×3×2×1,化简得1=n -34,解得n =7. 9.B10.D11.A【分析】由于y,得到y2=x且x≥0,y≥0,它的图象是焦点在x轴的正半轴的抛物线的一部分,选A.12.B13.D【提示】a8=S8-S7=158-137=156.14.C【提示】∵1a2a=14,∴3a=4;∵2a3a=28,4a=8;依次类推得6a=6.15.A16.D17.C【提示】1f(n)=1n2+2n=12(1n-1n+2),采用裂项求和方法.18.D19.B【提示】a与b互为相反向量⇒a+b=0,但a+b=0/⇒a与b互为相反向量.20.D【提示】直线y=2x-1与y=1交于点(1,1),再在直线y =2x-1上取一点,如(0,-1),其关于直线y=1的对称点为(0,3),过点(1,1)与(0,3)的直线为y=-2x+3,故选D.二、填空题21.{x|x<-1或x>4}22.12,1 【提示】∵b>0,∴sinx=1时,有a+b=32,sinx=-1,a-b=12-,∴a=12,b=1.23.(-2,1)【提示】x1+x2=1-m,x1x2=m2-2,∴(x1-1)(x2-1)<0⇒x1x2-(x1+x2)+1=0⇒m2-2-1+m +1<0,即m2+m -2<0⇒(m +2)·(m -1)<0⇒-2<m<1. 24.10【提示】5a +5b≥25a·5b =25a+b =252=10.25.39 【提示】由题意可得a1=3,a2=9,所以公比为3,所以S3=39.26.12【提示】原式=sin12°cos18°+cos12°sin18°=sin (12°+18°)=sin30°=12.27.4【提示】设x +1x =t.∵x <0,∴t≤-2,函数可化为y =t2-t -2=(t -12)2-94.∵对称轴方程为t =12,∴当t =-2时,函数有最小值4. 三、解答题(1)a1=2π,a2=32π,a3=3π(2)(1)4n n n a π+=29.解:(1)∵展开式中各二项式系数之和为2n =16,∴n =4. (2)通项Tk +1=Ck 4(3x )4-kk=34-kCk 4x4-32k ,令4-3k2=1,解得k =2,∴展开式中含x 项的系数为32C24=54. 30.解:∵S =12lr ,而l =|α|·r ,∴S =12|α|·r2=12×π6·r2=π3,∴r =2(cm ),∴l =|α|·r =π6×2=π3(cm ).31.696【提示】由题意得⎩⎪⎨⎪⎧0≤n +3≤2n ,0≤n +1≤4,且n ∈N*,解得n =3,∴原式=66A -44A =696.32.解:由题意可知,每吨垃圾的平均处理成本为y x =12x +80000x -200≥212x·80000x -200=200.当且仅当12x =80000x ,即x =400时等号成立,故该站每月垃圾处理量为400吨时,才能使每吨垃圾的平均处理成本最低,最低成本为200元.33.解:(1)m =3x +8,且0<m -5(x -1)<3,即⎩⎪⎨⎪⎧m =3x +8,m>5x -5,m<5x -2.(2)解不等式组得⎩⎪⎨⎪⎧x<132,x>5,即5<x<132, 又∵x ∈N ,∴x =6.即获奖6人,课外读物有26本.34.解:设f (x )=kx +b ,则有⎩⎪⎨⎪⎧8k +b =15,(5k +b )2=(2k +b )(4k +b ),解得k=4,b=-17,f(x)=4x-17.35.解:∵cos2α=1-2sin2α,∴cos2α=1-2×21213⎛⎫⎪⎝⎭=-119169.。

职高高一上期末数学试卷

职高高一上期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. √4/92. 已知二次方程ax² + bx + c = 0 的判别式Δ = b² - 4ac,则当Δ > 0 时,方程有两个()实数根。

A. 相同B. 相异C. 相等D. 无3. 下列函数中,有最小值的是()A. y = x²B. y = -x²C. y = x³D. y = |x|4. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)5. 下列各式中,正确的是()A. a² = |a|B. a³ = |a³|C. (-a)² = a²D. (-a)³ = a³二、填空题(每题5分,共25分)6. 若 |a| = 5,则 a 的值为 _______。

7. 二次函数 y = -x² + 4x - 3 的顶点坐标为 _______。

8. 若 a + b = 5,a - b = 1,则a² + b² 的值为 _______。

9. 在直角坐标系中,点P(-3,4)到原点的距离为 _______。

10. 下列函数中,y = kx + b (k≠0)的图象是直线,则 k 的取值范围是_______。

三、解答题(共45分)11. (10分)解下列方程:(1) 3x - 2 = 7(2) 2(x - 3) = 5x + 412. (15分)已知二次函数y = ax² + bx + c (a≠0),且满足以下条件:(1) 图象的顶点坐标为(1,-2)(2) 过点(-1,3)求该二次函数的解析式。

13. (20分)已知直角坐标系中,点A(2,3),点B(-3,4),点C(5,2)。

中职学校高一上数学期末检测题

中职学校高一上数学期末检测题

中职学校高一上数学期末检测题一、单项选择题1.已知点A (-3,8)和B (2,2),则x 轴上与点A 、B 距离之和最短的点的坐标是( )A.(-1,0)B.(1,0)C.(-12,0) D.(12,0) 2.平面内到两定点F1(-5,0),F2(5,0)的距离之差的绝对值等于6的点的轨迹方程是( ) A.221916x y += B.221259x y += C.221916x y -= D.221169x y -= 3.已知扇形半径为3,弧所对圆心角为150°,则弧长为( )A.450C.52πD.524.若集合A={x|x2=16},B={-4,4},则A与B的关系是()A.A∈BB.A/⊂BC.A=BD.无法确定5.cos780°的值为()A.1 2B.-1 2C.3 2D.-3 26.已知log2x=-1,则x-2等于()A.4C.14D.127.设动点M 到点F1(-13,0)的距离减去它到点F2(13,0)的距离等于4,则动点M 的轨迹方程为( )A.x24-y29=1(x≤-2)B.x24-y29=1(x≥2)C.y24-x29=1(y≥2)D.x29-y24=1(x≥3)8.若x ∈R ,下列不等式一定成立的是( )A.x 5<x 2B.5-x>2-xC.x2>0D.(x +1)2>x2+x +19.下列图形中,不可能是函数图像的是( )10.下列四个图像中,是函数图像的是( )11.如图所示是函数y =f (x )的图像,则函数f (x )的单调递减区间是( )A.(-1,0)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0),(1,+∞)12.集合{(x ,y )|x =1,y =0)表示( )A.1和0的集合B.点(1,0)的集合/C.直线x =1上所有点的集合D.y =0的所有点的集合13.已知全集U ={3,5,7},A ={3,|a -7|},若∁UA ={7},则a 的值为( )A.2或12B.-2或12C.12D.214.下列关系式中,不正确的有( ) ①2∈Z ;②|-1|∈N ;③52∈Q ;④π∈N ;⑤0∈NA.1个B.2个C.3个D.4个15.直线3x -y -6=0在两坐标轴上的截距之和为( )A.4B.-4C.9D.-916.直线y =2x -1关于直线y =1对称的直线方程是( )A.y =12 x +12B.y =2x +1C.y =-2x +1D.y =-2x +317.已知线段AB 的中点坐标为(1,2),若点A(-1,-3),则点B 的坐标为( )A.(0,-1)B.(3,7)C.(2,7)D.(-2,-5)18.已知函数y =logax (a>0,a≠1,x>0),下列说法正确的是( )A.a ∈(1,+∞),函数为增函数,图象过点(0,1)B.a ∈(0,1),函数为减函数,图象过点(0,1)C.a ∈(1,+∞),函数为增函数,图象过点(1,0)D.a ∈(0,1),函数为增函数,图象过点(1,0)19.已知点P (tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限20.若函数y=x2-kx+4的图象与x 轴有两个不同的交点,则k 的取值范围是( )A.{44}kk k <->或∣ B.{|22}k k -≤≤C.{22}kk -<<∣ D.{44}kk -<<∣ 二、填空题21.设函数f (x )=logax (a>0,a≠1)的图像过点(8,3)则f ()= .22.在△ABC 中,若tanA =-5,则cos (4π-A )= .23.若x>1,则x2-2x +3x -1的最小值为 . 24.过点(1,2)且倾斜角为135°的直线方程为 .1225.函数f(x15x -的定义域为 .26.比较大小:76 98 .27.求值:12log 8= .三、解答题28.已知圆C:x2+y2+4x-2y+1=0,求:(1)与直线x-2y+3=0平行且与圆相切的直线方程;(2)过点P (-1,2)且将圆周平分的直线方程29.问:当x 为何值时,(2x -1)不小于? 30.已知函数y =的定义域是R ,求a 的取值范围. 31.有22 m 长的篱笆材料,如果利用现有的一面墙(设长度够用)作为一边,围成一个矩形菜地,再开一扇长为2 m 的门(门不用篱笆材料),如图所示.设矩形菜地的宽为x (m ),面积为y (m2).(1)求y 与x 之间的函数关系式;(2)当矩形菜地的长、宽分别为多少时,矩形菜地的面积最大?最大面积为多少?123x +⎛⎫- ⎪⎝⎭22log 3ax x a (++)32.判断下列各角的终边所在的象限:(1)815°;(2)-117°;(3)-214π;(4)143π.33.求过椭圆2169x +2144y =1的右焦点且与圆x2+y2=9相切的直线方程.34.已知点A (3,4)与y 轴上的一点B ,若直线AB 的斜率为2,求点B 坐标.35.已知tan α=12,求cos (π+α)sin (α-π)tan (9π+α)cos (-α-3π)sin (2π+α)的值. 答案一、单项选择题1.B2.C3.C4.C5.A6.A7.B8.B9.D 【提示】A 、B 、C 中每个x 都对应唯一的y 值,但D 中当x >0时,每个x 都对应2个y 值,根据函数定义,D 错误,故选择D.10.A11.D12.B13.A14.B 【提示】∵①④不正确,②③⑤正确,∴选B.15.B 【提示】令x =0,则y =-6;令y =0,则x =2.16.D 【提示】直线y =2x -1与y =1交于点(1,1),再在直线y =2x -1上取一点,如(0,-1),其关于直线y =1的对称点为(0,3),过点(1,1)与(0,3)的直线为y =-2x +3,故选D.17.B 【解析】设点B 坐标为(x ,y),则有x -12 =1,y -32 =2,所以x=3,y =7.18.C19.B 【提示】∵点P在第三象限,∴⎩⎪⎨⎪⎧tan α<0,cos α<0, ∴角α的终边在第二象限.故选B.20.A 【解析】由题可知x2-kx+4=0有两个不同的根,即△=(一k )2-4×1×4>0,∴k2一16>0,解得k>4或k<-4.故选A.二、填空题21.-1 22.1213-【解析】在△ABC 中,tanA =512-⇒cosA =1213-,∴cos (4π-A )=cosA =1213-. 23.2 224.x +y -3=0 【解析】直线斜率为k =tan135°=-1且过点(1,2),所以直线方程为y -2=-(x -1)即x +y -3=0.25.(-∞,3]∪(5,+∞)【提示】 由题意得⎩⎪⎨⎪⎧x2-2x -15≥0,x -5≠0, 解得x≤-3或x>5. 26.>【提示】用作差比较法.27.-3三、解答题28.(1)直线方程240x y -+±=(2)x-y+3=029.解:∵2x -1≥x +13-2,∴6x -3≥x +1-6,解得x≥-25,∴x 的取值范围是25x x ⎧⎫≥-⎨⎬⎩⎭. 30.3,2⎛⎫+∞ ⎪⎝⎭31.解:(1)设矩形菜地的宽为x (m ),则矩形菜地的长为22-2x +2=24-2x (m ),由题意得y =x (24-2x )=-2x2+24x (0<x<11).(2)由(1)得y =-2x2+24x =-2(x -6)2+72,∴当x =6时,ymax =72.即矩形菜地的长为12 m ,宽为6 m 时,矩形菜地的面积最大,最大面积为72 m2.32.解:(1)∵815°=95°+2×360°,∴815°与95°终边相同,∴815°为第二象限角.(2)∵-117°=243°+(-1)×360°,∴-117°与243°终边相同,∴-117°为第三象限角.(3)∵-214π=34π+(-3)·2π,∴-214π与34π终边相同,∴-214π为第二象限角.(4)∵143π=23π+2×2π,∴143π与23π终边相同,∴143π为第二象限角.33.解:椭圆2169x +2144y =1的右焦点为(5,0).设直线方程为y =k (x-5)整理得kx -y -5k =0,圆心为(0,0)半径为3,则d=3⇒2k =916⇒k =±34,所以所求的切线方程为3x -4y -15=0或3x +4y -15=0.34.解:设B (0,b ),k =y2-y1x2-x1=b -40-3=2, ∴b =-2,∴点B 的坐标为(0,-2).35.解:原式=(-cos α)·(-sin α)tan α·(-cos α)·sin α=-1tan α=-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一第一学期期末考试数学试卷
一、选择题:(每小题只有一个正确选项,每小题4分,共48分,)
1、sin1200= ( )
A 、21
B 、23
C 、-23
D 、-2
1 2、已知锐角α的终边上有一点P (3,4),则sin α= ( )
A 、3/4
B 、4/3
C 、3/5
D 、4/5
3、与030角的终边相同的角的集合是 ················· ( ) A ⎭⎬⎫⎩⎨⎧∈+⋅=Z k k ,6360|0παα; B {}
Z k k ∈+=,302|0παα; C {}Z k k ∈+⋅=,30360|00αα; D {}Z k k ∈+⋅=,303602|00αα.
4、已知53sin =
θ,则θcos 的值是 ·················· ( ) A 43; B 5
4-; C 54-或54; D 54⋅ 5、若0,0cos <>ααtg ,则α在 ·················· ( ) A 第一象限; B 第二象限; C 第三象限; D 第四象限.
6、化简02140cos 的结果是 ···················· ( ) A 0140cos ; B 0140cos -; C ±0140cos ; D 040cos -.
7、给出四个命题:(1)–600是第四象限角;(2)2350是第三象限角;(3)4750是第二象
限角;(4)–3150是第一象限角.其中正确的有( )
A 1个
B 2个
C 3个
D 4个
8.数列1、3、6、10、…的一个通项公式是 ( )
A .a n =n 2-(n -1)
B .a n =n 2-1
C .a n =2
)1n (n + D .a n =2)1n (n - 9、已知{a n }是等比数列,a 1 =40, a 2=60,则a 3= ( )
A 、120
B 、100
C 、90
D 、80
10、等差数列12、11.7、11.4、…,从第几项起首次出现负值?答 ··· ( )
A 第40项;
B 第41项;
C 第42项;
D 第43项.
11、x a y = (0<a<1)的图象是一定过定点 ( )
A (1, 0)
B (0, 1)
C (0, 0)
D (1, 1)
12若等差数列{a n },{b n }的前n 项和A n 和B n 满足,7235++=n n B A n n 则=10
10b a ( ) A 、5/2 B 、3/7 C 、98/45 D 、31/23
二、填空题(每小题4分,共24分)
13已知 A ={2, 4, 7},B ={-2, 1, 2, 4} A ∩B =____________; A ∪B=____________。

14、16与4的等差中项是____________,等比中项是____________.
15不等式(x +1)(x -2)<0解集是____________; |2x -5|<7解集是____________。

16已知sinx=12 -2π<x <2
π, 则x=____________; 328=____________。

17不等式4
1-+x x ≥0的解集与不等式(x +1)(x -4) ≥0的解集____________(填“相同”或“不相同”) 。

18、等差数列{}n a 中,965=+a a ,则=10S ____________; 180︒=___________ rad ).
三、解答题(5小题,共48分)
19. ( 8分 ) 计算 0125.23256)61(064.0433
1
+-+-----
20. ( 8分 ) 解分式不等式
1
12+-x x ≤4
21. (12分 )在4与22之间插入4个数,使6个数顺次所成的数列是等差数列求这四个数。

22. (10分 )若数列{}n a 的前n 项和n S =322
+-n n ,求它的前3项及其通项公式n a
23。

(10分 )己知sin θ+cos θ=-
5
10 ,求①sec θ +csc θ的值 ②tan θ的值
参考答案
选择题1 2 3 4 5 6 7 8 9 10 11 12
B D
C C
D B D C C C B C
填空题13: {2, 4}, {-2,1,2, 4,7} 14: 10 , 8± 15: -1<x <2 , (-1,6)
16:
6π, 4 17: 不相同 18: 45,π 解答题
19 1876
20解:
移项通分
152+--x x ≤0 ⇒ 1
52++x x ≥0; 不等式的解集为
(-∞,-2
5)∪(-1,+∞) ▌ 21 四个数是 7.6 11.2 14.8 18.4
22
.a n =.4 (n=1) , a n = 4n-3 (n=2,3,4,……); 23 31tan 3tan ,03tan 10tan 3,3
10tan 1tan ,310cos sin cos sin .1032cos sin cos sin sin 1cos 1csc sec ,10
3cos sin 52cos sin 21,510cos sin 2222-=-=∴=++-=+∴-=+=+=+=+∴-==+∴-
=+θθθθθθθθθθθθθθθθθθθθθθθθ或即即。

相关文档
最新文档