北斗性能提升与广域分米星基增强技术及应用
GNSS星基增强系统综述
GNSS星基增强系统综述摘要:自GPS提供全球导航定位服务以来,无论是在经济、政治还是军事、民用等方面都发挥了重要的作用,基于此,目前许多国家都在论证和建设自己的卫星导航定位系统,比如,俄罗斯的GLONASS、欧盟的Galileo等,中国的北斗卫星导航定位系统(BeiDou Navigation Satellite System,BDS)也于2012年底正式运行,并到2020年将能够提供全球服务。
由各国卫星导航系统所构成的全球卫星导航系统(Global Navigation Satellite System, GNSS)广泛应用于位置服务、道路铁路、航空航天、农业、测绘、授时同步等多个领域,特别是在民用航空领域,其优势更加突出[1]。
在状态空间域差分技术中广域精密定位技术主要以载波观测量为主,可以达到分米甚至厘米级的定位精度,但其需要解算模糊度参数,因此初始化时间长,且在卫星机动条件下,其解算的卫星星历及星钟差分改正数精度较低;而广域差分技术,主要以伪距观测量为主,定位精度只有1-3m,但其模型简单,解算速度快,不需要初始化时间,且能够提供完备性信息,因此在民用航空领域得到了广泛的应用。
关键词:星基增强、卫星导航、广域差分1 意义当前中国民航正在实施民航强国战略,要求加快建设现代空中交通服务系统。
到2020年,中国民航运输机队规模将达到4000架,通用航空机队规模将达到5000架,航空器年起降架次将超过1500万,运输总周转量将达到1700亿吨公里以上,旅客运输量将超过7亿人次。
中国是一个多地形国家,机场环境差异较大,依靠传统的仪表着陆系统、测距仪等陆基导航设备无法对飞机的安全起降做出充分的保证,且其设备投资巨大,维护费用较高。
当前国际民用航空领域正在从陆基导航向星基导航(卫星导航系统及其增强系统)过渡。
但我国目前在主要航路和终端、进近仍以陆基导航为主要设备源,因此,基于中国民航运输航空运行需求和导航技术发展现状,中国民航在其制定的导航技术发展战略的中期(2021年~2030年)将稳步推进从陆基导航向星基导航过渡,并建议开展星基增强系统(Satlellite Based Augmentation System,SBAS)的研究和实验工作。
三家北斗地基增强系统的高精度定位服务性能对比分析
三家北斗地基增强系统的高精度定位服务性能对比分析
史俊波;欧阳晨皓;岳金广;陈明;郭际明
【期刊名称】《大地测量与地球动力学》
【年(卷),期】2022(42)7
【摘要】北斗地基增强系统是推广高精度“北斗+”应用的重要基础设施。
本文首次研究千寻位置、六分科技及中国移动3家覆盖全国的北斗地基增强系统的定位服务性能,通过对2021-07-21~22采集的2次8~9 h观测数据进行分析,得到以下结论:1)千寻位置和中国移动的官方推荐挂载点支持BDS-2三频信号和BDS-3双频信号(B1I、B3I),六分科技支持BDS-2和BDS-3双频信号(B1I、B3I);2)3家北斗地基增强系统都能提供100%的北斗数据完整率;3)静态基线结果表明,3家北斗地基增强系统虚拟基站组成的闭合环相对误差均小于2×10^(-6);4)单历元RTK解算结果表明,3家北斗地基增强系统均能够提供水平向优于3 mm、垂直向优于9 mm的内符合精度,但不同北斗地基增强系统之间存在cm~dm级的定位结果偏差,因此不建议在RTK作业时使用不同的北斗地基增强系统。
【总页数】5页(P712-715)
【作者】史俊波;欧阳晨皓;岳金广;陈明;郭际明
【作者单位】武汉大学测绘学院;国家基础地理信息中心
【正文语种】中文
【中图分类】P228
【相关文献】
1.北斗实时高精度定位服务系统研究
2.北斗高精度地基增强数据播发系统的创新——中国数字音频广播(CDRadio)技术应用
3.北斗系统托起自主可控高精度导航定位服务强国之梦
4.基于基合导航系统和NB-IoT的北斗高精度导航定位服务云平台
5.北斗地基增强系统在津建成精密定位服务达毫米级别
因版权原因,仅展示原文概要,查看原文内容请购买。
北斗地基增强系统建设方案
北斗地基增强系统建设方案一、背景介绍北斗卫星导航系统是中国自主研发的一种卫星导航定位系统,具有全球覆盖、高精度、高实时性和高可靠性的特点,被广泛应用于陆地、海洋、空中和航天等领域。
为了进一步提高北斗系统的使用效果和定位精度,北斗地基增强系统建设显得尤为重要。
二、目标本方案旨在建设一个完善的北斗地基增强系统,提高北斗系统的定位精度和使用效果,满足用户对高精度导航定位的需求。
三、建设内容1.增加地面基站密度:建设更多的北斗地面基站,提高北斗信号接收覆盖范围。
基站之间的平均距离控制在30公里以内,以保证接收到的信号质量和定位精度。
基站之间的连接采用高速互联网络,确保数据的实时传输。
2.基站建设和设备更新:选址合理,考虑到信号传播的特点,尽量选在高海拔、开阔地带,减少地形地貌对信号传输的影响。
基站应配备高性能的天线、接收机和信号处理设备,以提高信号接收和处理能力。
同时要加强基站的设备更新和维护,保证设备的可靠性和稳定性。
3.建设数据中心:建设一个专门用于数据处理和分析的中心,用于接收、处理和存储北斗地基增强系统产生的海量数据。
数据中心要采用先进的大数据分析技术,对数据进行深入挖掘和分析,提取出有价值的信息,为用户提供更加精确和实用的导航定位服务。
4.提高用户终端设备的兼容性:开发适用于不同终端设备的导航软件和硬件驱动程序,提高用户终端设备对北斗系统的兼容性。
同时,在终端设备中集成地基增强系统的功能,使用户可以通过终端设备直接接收和使用加强后的北斗信号。
5.加强用户培训和推广:组织相关培训,提高用户对北斗地基增强系统的认知和使用能力。
同时,通过各种宣传渠道,宣传北斗地基增强系统的优势和功能,推动系统的推广和应用。
四、实施步骤1.前期准备:进行项目规划、选址和立项,确定建设经费和时间计划。
2.建设基站和数据中心:根据选址要求,依次建设基站和数据中心,并配置相应的设备。
3.测试与优化:对建设的基站和系统进行功能测试和性能优化,以确保其正常运行和满足用户需求。
北斗地基增强系统现状与发展思考
基准站站网由155框架网基准站和2422个区域网基准站组成。
基准站遍及祖国大江南北,在“最
图1 北斗地基增强系统组成示意图
图2 基准站极端站址分布情况
南、最北、最东、最西、最高、最低、最冷、最热”环境下均有分布(图2)。
通信网络分系统包含国家数据综合处理系统与基准站、行业数据处理系统(含数据备份系统)、数据播发系统等系统间的通信网络,通信网络系统按功能分为基准站接入区、行业平台区和数据播发
区三大部分。
数据处理分系统包括计算、存储、备份、安全等基础支撑平台,和核心处理软件子系统。
核心处理软件子系统具备对北斗基准站数据的存储、。
北斗地基增强系统建设
前
期
调
客户数据结构信息
研
在线支付接口
其它资源信息
数
据 建 库
系
统
建
用
设
户
管
理
系
统
CORS
CORS CORS
用户数据库 文件数据库
交易数据库 服务数据库
CORS系统用户管理与服务平台
资 源 服 务 系 统
移 动 端 应 用 系 统
微
其
信
系
他
官
统
业
网
一
务
服
期
接
务
接
口
系
口
系
统
系
统
统
系统以Intenet网络和系统内部局域网为纽带,以CORS系统各类成果为基 础,以社会应用为主线,以信息服务为宗旨,以安全系统和技术标准为保障, 形成互连互通、贯穿上下的用户管理、决策支持和信息服务的“5+2”运行 体系。
房顶观测墩
基准站设备示意图
GNSS天线
原子钟(核心站)
显示器
工控机 键盘、鼠标
GNSS接收机 调试用滑动托盘
光端机 路由器 直流供电系统主机 交流供电系统主机 线缆存放处
气象探头及防辐射罩
直流电源电池组 气象仪主机
交流电源电池组 交流电源电池组
气象仪主机
基准站主要设备:
GNSS接收机、防火墙、UPS电 源、发电机等
MH(m)
内符合精度 0.0044
0.0047
0.0129
外符合精度 0.0279
0.0307
0.0607
第三章 系统测试
第二节、测试指标
2、空间可用性测试
北斗卫星导航地基增强系统设计与测试分析
第4期2024年2月无线互联科技Wireless Internet Science and TechnologyNo.4February,2024作者简介:许鹏(1986 ),男,助理工程师,学士;研究方向:卫星导航㊂北斗卫星导航地基增强系统设计与测试分析许㊀鹏,赵㊀伟,罗㊀伟,兰㊀伟,桑㊀飞(61773部队,新疆乌鲁木齐831100)摘要:文章首先回顾㊁总结了全球卫星地基增强系统的产生㊁发展和演化情况,介绍了我国北斗卫星地基增强系统的现状;其次,对网络RTK 的误差和影响定位精度的因素进行了剖析研究,并以新疆地区为例,分别将北斗卫星地基增强系统与移动网络定位和GPS 系统定位精度进行对比;最后,将北斗系统与GPS 系统组合定位精度进行评估,探索北斗卫星地基增强系统的定位效果㊂关键词:北斗;定位精度测试;地基增强系统;CORS 系统中图分类号:TN953+.7㊀㊀文献标志码:A 0㊀引言㊀㊀随着2020年6月23日北斗3号最后一颗全球组网卫星在中国西昌卫星发生中心成功发射并顺利进入预定轨道,标志着我国北斗全球系统星座部署和北斗3号系统组网完成,同时也代表4大全球卫星导航系统划分天下的局面正式形成㊂对于4大导航系统在非遮蔽条件下的基本服务均可以满足10m 左右的精度要求㊂但随着科学技术发展和城市建设质量要求的不断提升以及对定位精度需求的提高,基本服务已经远远不能满足像测绘作业㊁国土勘探㊁精准农业等高精度领域的需求㊂为了提高定位精度并且满足各类用户的不同需求,卫星导航增强技术与系统便应运而生㊂1㊀全球卫星地基增强系统的产生和发展历程1.1㊀全球卫星导航增强技术与系统㊀㊀卫星导航增强技术最早是为了应对随着全球卫星导航系统应用的不断推广和深入,目前的卫星导航系统还不能满足一些高端用户的要求㊂而发展起来的美国GPS 系统选择可用性(SA)政策,2000年美国取消了SA 政策,在一定程度上提高了导航定位精度㊂为此各种卫星导航增强系统应运而生㊂目前,国外卫星导航增强技术主要分为2大类,一类是星基增强系统(Satellite -Based AugmentationSystem,SBAS),另一类是地基增强系统(Ground -Based Augmentation Systems,GBAS)㊂1.2㊀GBAS 地基增强系统㊀㊀局部面积增强系统(Local Area AugmentationSystem,LAAS)最早主要是为航空机场提供高完整性增强服务,由FAA 提出,后FAA 和ICAO(国际民航组织)已停止使用 LAAS 这一词,取而代之的是 GBAS ㊂相比于SBAS,单个GBAS 建设成本较低,且现有完好性相对较高[1]㊂2㊀北斗地基增强系统㊀㊀北斗地基增强系统是北斗卫星导航系统的重要组成部分,不仅能满足 技术先进㊁高效可靠㊁经济适用和易扩展 的标准,而且还能与其他技术相结合,构建一个更加完善㊁灵活的北斗导航服务体系㊂它可以根据1~2m㊁dm 级㊁cm 级的测量结果,使得北斗/GNSS 技术能够更加有效地应用于各种领域㊂3㊀网络RTK 技术3.1㊀传统RTK 定位技术㊀㊀传统的实时动态差分定位技术(Real -TimeKinamatic,RTK)基于高精度的载波相位观测值可用于快速静态定位,在应用中遇到的最大技术难题就是参照位置校正数据的有效作用距离㊂定位误差的空间相关性随着参照位置和移动位置距离的增加而逐渐失去线性,在一定距离下(单频大于10km,双频大于30km),经过差分修正处理后的用户数据还是有较大误差,导致定位精度降低而无法解算载波相位的整周模糊度问题㊂因此,为了保证所需定位精度,传统的单机RTK 使用距离十分有限[2]㊂3.2㊀网络RTK 定位技术㊀㊀在20世纪90年代中期,技术人员提出了网络RTK 定位技术的概念,以解决传统RTK 技术的不足㊂网络RTK 是在某一地区建立若干个基准站,构成对该地区的网状覆盖,并以这些基准站中的一个或多个为基准,向该地区相应地纠错信息,从而实现定位精确度的实时提升㊂与传统RTK 技术相比,网络RTK 定位技术不但扩大了覆盖范围,而且进一步压缩作业成本,提高了定位精度,减少了定位的初始化时间㊂网络RTK 系统的组成包括基准站网子系统㊁中心子系统㊁通信子系统㊁用户数据中心子系统㊁应用子系统,如图1所示㊂图1㊀网络RTK 系统组成3.3㊀连续运行参考站系统㊀㊀连续运行参考站系统(Continuous OperationalReference System,CORS)是由常年连续运行的若干固定基准站组成的网络系统,利用卫星导航定位㊁计算机㊁数据通信和互联网络等技术,按一定距离在一个个国家(区域)建立的㊂目前网络RTK 系统都是基于CORS 系统打造的,即很多CORS 系统都包含了网络RTK 定位功能㊂因此,CORS 的发展现状也体现了网络RTK 制式的发展现状㊂4㊀网络RTK 误差及导航系统精度分析4.1㊀网络RTK 误差分析㊀㊀导航信号从卫星的天线发射出来到接收机天线接收,然后由用户端接收机把测距信号量测出来,其中存在诸多影响因素,从而产生一定的误差㊂网络RTK 误差考虑到如下2方面:(1)天线相位中心偏差㊁多路径效应㊁无线电信号干扰以及与参考站㊁移动站有关的误差㊂(2)相对论效应㊁电离层误差和对流层误差等和星站间距离造成的误差㊂4.1.1㊀天线相位中心的偏差㊀㊀GNSS 测量可以用来检验天线的相位,可以通过计算卫星的质心来估算它们之间的距离㊂然而,这种方法的结果可能会受到精确星历的影响,导致它们的估算值可能会存在偏差㊂IGS 发展使得RTK 的施测变得更加精确,它通过比较使用者和被观察者的天线以及它们之间的相互影响,获取更准确的信息㊂这种方法大大提高了RTK 的精度,使其能够更好地反映实际情况㊂研究发现,天线的相位偏移主要由于它的天顶距对其产生的影响㊂然而,对于更精细的测量,笔者选择了50ʎ作为参考点㊂经过测量,可以看出随着角度的增加,数据误差也会随之增加㊂从0ʎ开始,误差几乎没有受到干扰,但是当角度达到45ʎ时,误差会达到最高,并且随着角度的增加,误差也会继续增加[3]㊂4.1.2㊀多路径效应的影响㊀㊀多路径效应(Multi Path Effect,MPE)是指各分量场在电磁波经过不同路径传播后,按各自相位相互叠加,使原有信号失真或产生错误,到达接收端的时间不同而产生的干扰㊂此类多路径现象会使接收方观察信号出现错误,造成追踪信号难度较大,该现象即为多路径效应㊂多路径效应对导航测量来说最为严重和危险,通常引起的误差约5cm 即可,而当反射系数大时则可能超过,误差值可达19cm 以上㊂特别是在多径效应的伪距离观测时,其错误可能高达10m或更高㊂多径误差和其他种类误差有所不同,除了与接收机天线圈周围存在环境及近㊁远反射物质有关外,还可以在一段时间内发生改变㊂因此多路径效应误差具有时变的复杂多样性,在实际应用中,很难用统一的模型进行描述㊂4.1.3㊀对流层延迟及其修正方法㊀㊀对流层是从地面开始向上延伸约50km 的大气层㊂在卫星信号传输过程中,对流层发生信号延迟的情况占到信号延迟的80%㊂当卫星导航信号穿过对流层时,信号的传播速度和路径就会发生变化,这种现象叫作对流层延迟(Transference)㊂对流层延时90%成因是由于大气层内的干燥分量导致的;剩下10%是由水蒸气导致的,称为湿度成分㊂因此,可通过对天顶方向干燥㊁湿度分量延时及对应投影函数表达对流层延时㊂ΔP trop =ΔP z ,dry M dry (E )+ΔP z ,wet M wet (E )(1)式中,ΔP trop 为对流层总延迟,ΔP z ,dry 为天顶方向对流层干分量延迟,M dry (E )为相应的对流层干分量投影函数,ΔP z ,wet 为天顶方向对流层湿分量延迟,M wet (E )为相应的对流层湿分量投影函数㊂当今,许多不同的对流层校验方法已被提出,而Hopfield㊁Saastamoinen 等新一代校验方法提供的数据比美国标准大气层的校验方法精度更高,误差仅为几毫米㊂在天顶方向,各模型的延迟改正误差都在20mm 以内,而湿分量部分的残余影响还是比较大㊂Hopfied 模型直接给出干分量和湿分量在传播路径上折射改正量(不再需要映射函数):ΔD trop =ΔD dry +ΔD wet(2)令i =dry ,wet ,则干湿分量用下式表示:ΔD i =10-6N i ð9k=1αk ,i k γk i éëêêùûúú(3)其中,折射指数公式为:N dry =0.776ˑ10-4P /T(4)N wet =0.373e /T 2(5)在这个方程中,用T ㊁P ㊁e 3个不同的参数来描述:大气温度(K)㊁大气压力(mbar )以及水气压(mbar)㊂r dry ㊁r wet 这些参数代表了从测量站出发,沿着干湿折射指数逐渐接近零的边缘线的距离(m),可以用下列公式来进行计算:γi =(γ0+h i )2-(γ0cos E )2-γ0sin E(6)在这公式中,边缘界面的高度(m)逐渐降至零,干湿折射指数分别为:h dry =40136+148.72(T -273.16)(7)h wet =11000(8)上面式中的系数为:g m =1.0-0.0026cos2B -0.28ˑ10-6Hα1,i =1α2,i =4a iα3,i =6a 2i+4b i α4,i =4a i (a 2i+3b i )α5,i =a 4i +12a 2i b i +6b 2i α6,i =4a i b i (a 2i+3b i )α7,i =b 2i (6a 2i+4b i )α8,i =4a i b 3i α9,i =b 4i a i =-sin Eh ib i =-COS 2E 2h i r 0在这些公式中,E 表示卫星的高度角,r 0表示测站的地心向径(m),P ㊁e 分别表示以mbar 为单位的测站大气压和水气压,T 表示测站的K 氏温度㊂Saastamoinen 模型为:ΔD dry =0.002277p g m(9)ΔD wet =0.002277g m1255T +0.05()e (10)其中,e 为水气压,可以根据测站上的相对湿度RH 来计算水气压㊂e =RH ˑexp(-37.2465+0.213166ˑT -0.000256908ˑT ˑT (11)g m 为平均重力,g m =1.0-0.0026cos(2B )-0.28ˑ10-6H ;B ㊁H 分别为用户纬度和高程㊂Saastamoinen 模型的投影函数采用了一种叫作Niell 的干分量投影函数,它的干分量投影函数为:m Hydro (ε)=1+a Hydro1+b Hydro1+c Hydro sin ε+a Hydrosin ε+b Hydro sin ε+c Hydro+1sin ε-1+a ht 1+b ht 1+c ht sin ε+a htsin ε+b ht sin ε+c ht éëêêêêêêêêùûúúúúúúúúˑH 1000(12)式中,ε为高度角,H 为正高,而干分量投影系数则由a Hydro ㊁b Hydro ㊁c Hydro 来表示;a ht =2.53ˑ10-5b ht =5.49ˑ10-3c ht =1.14ˑ10-3如果测站纬度Ø满足150ɤ|Ø|ɤ750,干分量投影系数利用下式进行内插计算,内插系数由系数表给出㊂p (Ø,t )=p avg (Øi )+[p avg (Øi +1)-p avg (Øi )]ˑØ-ØiØi +1-Øi +p amp (Øi )+[p amp (Øi +1)-p amp (Øi )]ˑØ-ØiØi +1-Øi{}ˑcos 2πt -T 0365.25()(13)式中,p 表示要计算的系数a Hydro ㊁b Hydro 或c Hydro ,Øi 表示表中与Ø最接近的纬度,t 是年积日,T 0为参考年积日,取T 0=28,a Hydro ㊁b Hydro ㊁c Hydro 的平均值及其波动值如表1所示㊂表1㊀干分量投影函数内插系数纬度a Hydro (average )b Hydro (average )c Hydro (average )a Hydro (amp )b Hydro (amp )c Hydro (amp )150.0012769930.0029153700.062610510.00.00.0300.0012683230.0029152300.062837390.000012709630.000021414980.00009012840450.0012465400.0029288450.063721770.000026523660.000030160780.00004349704600.0012196050.0029022570.063824270.000034000450.000072562720.00084795348750.0012046000.0029024910.064258460.000041202190.00011723380.00170372060㊀㊀而对于纬度Ø,|Ø|ɤ15ʎ,有:p (Ø,t )=p avg (15ʎ)+p avg (15ʎ)ˑcos(2πt -T 0365.25)(14)对于纬度Ø,|Ø|ȡ75ʎ,有:p (Ø,t )=p avg (75ʎ)+p avg (75ʎ)ˑcos(2πt -T 0365.25)(15)Niell 湿分量投影函数为:m wet (ε)=1+a wet1+b wet1+c wet sin ε+a wetosin ε+b wetsin ε+c wet(16)其湿分量投影系数a wet ㊁b wet ㊁c wet ,对于15ʎɤ|Ø|ɤ75ʎ是利用下式进行内插计算,内插系数如表2所示㊂p (Ø,t )=p avg (Øi )+[p avg (Øi +1)-p avg (Øi )]ˑØ-ØiØi +1-Øi(17)表2㊀湿分量投影函数内插系数纬度a wet (average )b wet (average )c wet (average )150.0005802180.0014275270.0434*******.00056794850.0015138630.04672951450.00058118020.0014572570.0439*******.00059727540.0015007430.04462698750.00061641690.0017599080.05473604而对于纬度Ø,|Ø|ɤ15ʎ,有:p (Ø,t )=p avg (15ʎ)(18)对于纬度Ø,|Ø|⩾75ʎ,有:p (Ø,t )=p avg (75ʎ)(19)4.1.4㊀电离层延迟及其修正方法㊀㊀随着日照㊁X 射线㊁γ射线等多种射线的照射,50~1000km 地表上的中性气体分子会经历一系列的物理现象,这些现象构成了一个复杂的物理系统,其特点是:随着射线的照射,这些物质会经历一系列物理反应,最终形成一个复杂的物理系统,它的物理特征就像一个复杂的物理系统㊂由于路线出现了轻微的变形,因此,将光速c 与时间Δt 相除,所获取的ρ与其本身的几何尺寸并无关联㊂通常电磁波在电离层中的折射率为:n 2=1-X1-Y 2T2(1-X )ʃY 4T4(1-X )2+Y 2L(20)式中,X =f 2p f2=N e e 24π2ε0mf2;Y T =f H f sin θ;Y L =f H fcos θ;ʃ的值取决于使用的电磁波的极化特性㊂N e电子密度是指每立方米空间中自由电子的数量;e 为电子电量,为1.6022E -19C;ε0为真空中的介电常数,为8.8542E -12F /m;θ代表电磁波在传播过程中与地球磁场的夹角;f 表示入射的电磁波的频率;f H 自由电子的回旋频率是指它们在受到地球磁场的影响时,其运动的特性和强度;f p 为等离子体频率,使电中性等离子平板产生振荡的特性频率时,从离子中分离出自由进行自由运动㊂因此,电离层造成的误差,主要是由信号频率㊁观测方向的仰角㊁观测时间电离层情况等因素决定,与卫星到接收机视线方向的电子密度有关㊂此外,当电离层剧烈活动时,可引起多普勒频移的变化,因为总电子含量的变化很快,从而可能造成相位的频繁脱锁㊂双频电离层修正模型,目前使用较多的电离层修正模型,可以有效地将残余误差降至总量1%以下㊂双频修正采用2个频点B 1㊁B 2,伪距观测量可以表示为:ρi =ρ0+If 2i (i =1,2)(21)可以得到:ρ0=aᶄρ1+bᶄρ2(22)其中:aᶄ=f 21/(f 21-f 22)bᶄ=f 22/(f 21-f 22)假定伪距观测量ρ1㊁ρ2的观测噪声有相同的均方差σn ,且相互独立,那么ρ0相对于单频测量下的归一化均方差可表示为:σρ0σn=aᶄ2+bᶄ2(23)由上式可计算出双频修正后得到的伪距观测量的观测噪声是单频测量的观测噪声的2.8976倍㊂如果采用频点B 1㊁B 3进行双频修正,那么双频修正后得到的伪距观测量的观测噪声是单频观测量的观测噪声3.5119倍;如果采用频点B 2㊁B 3进行双频修正,那么双频修正后得到后的伪距观测量的观测噪声是单频测量噪声的14.2866倍㊂计算电离层修正时应采用B 1㊁B 2频点上的伪距观测量,综合考虑估计精度和计算复杂度,对电离层进行修正㊂4.1.5㊀相对论效应㊀㊀在惯性空间中,被称为相对论效应的卫星时钟之间的相对运动㊂相对论效应可以划分为狭义和广义2类㊂按照狭义相对论的原则,安装在高度飞行卫星中的卫星钟频率f s 将会变为:f s =f 1-V 2s2c 2()(24)即Δf s =f s -f =-V 2s2c 2f ,式中V s 为卫星在惯性坐标系中运动的速度,f 为同一台钟的频率,c 为在真空中的光速㊂如将地球同步轨道卫星平均速度V s =3874m /s,c =299792458m /s 代入即可得:Δf s =-0.835ˑ10-10f (25)这说明,与静止在地球上的同类型时钟相比,地球同步轨道卫星的卫星时钟速度要慢一些㊂按照广义相对论,同样的时钟,在卫星上的频率会差,在地面上的频率也会差㊂Δf 2=W s -W k c 2f(26)其中,W s ㊁W k 分别为卫星所处位置的地球引力位和地面测站处的地球引力位㊂广义相对论的影响范围较小,可以将地球的重力位置视为一个单独的质点,于是有:W s =-μγW K=-μR ìîíïïïï(27)其中,μ为地球引力常数;R 为测站到地心的距离;γ为卫星到地心的距离㊂于是,Δf 2可得:Δf 2=μc 2f 1R -1γ()(28)总的相对论效应为:Δf =Δf s +Δf 2=μc 2éëêêùûúú1R-1γ()-V 2s 2c 2f (29)卫星钟比地球同类型钟的频率是增加的,解决办法是在制造卫星钟时把频率降低,以解决当这些钟进入轨道受到相对论效应影响时,频率刚好为标准频率㊂然而,上述相对论效应的影响,并不是常数的地球的运动和卫星轨道高度的改变以及地球重力场的改变㊂经上述修正后,存在残差影响卫星时间最长可达70ns,对卫星钟速影响可达0.01ns /s,这一影响必须考虑在高精度的单点定位中㊂4.2㊀导航定位精度分析㊀㊀影响导航的性能指标主要包括4个指标:精确度㊁完好度㊁可用性㊁连续性,而精确度指标是各系统为用户提供稳定可靠服务的保证,也是用户选择导航系统的重要依据,是各系统服务性能的最主要指标[4]㊂导航系统的服务精度主要取决于卫星分布的几何图形和观测量的精度,DOP 值一般作为一个卫星导航的精度㊂δAccuracy =DOP ˑδUERE(30)UERE 是由时钟误差㊁电离层延迟等因素造成的偏差,更多地反映在天空卫星的空间分布上,由于卫星接收路径产生用户等效距离误差的标准偏差,距离越远,误差放大效应也会增大㊂DOP 值作为反应星座组合和轨道参数的数值,主要包括水平DOP (HDOP )㊁垂直DOP (VDOP )㊁位置DOP (PDOP )㊁时间DOP (TDOP )和几何GDOP ㊂其中几何精度因子GDOP 是由PDOP 和TDOP 的综合影响的精度因子,可通过以下公式计算求得㊂GDOP =PDOP 2+TDOP 2(31)PDOP =σ2x +σ2y +σ2zσURE(32)给定定位精度水平,可用性取决于卫星在特定位置和一天内的几何形状㊂定位精度的高低是由DOP 所能接受的最大值来决定的,所以卫星导航系统的可用性要看定位精度的高低㊂普遍规律是PDOP ɤ6作为可用性评价系统的依据㊂利用几何精度因子的功能可预测导航系统的可用性(CFA),这就相当于在使用导航服务要求定位精度满足一定的要求㊂然而,事实上,系统完整性对于某些应用领域,尤其是航空领域来说是一个关键问题㊂因此,对系统的可用性,除了考虑DOP 门槛要求外,还应考虑组合导航系统观测卫星数量较多㊁GDOP 下降㊁组合导航系统定位时可选择最优星座即GDOP 数值最小的星座等自主完好监测和故障检测排除能力,这将有效提高导航系统定位精度[5]㊂5㊀仿真验证部分㊀㊀算例1:以2016年新疆地基增强CORS 站测试数据为例,数据来源为北斗导航新疆地基增强系统㊂通过运用北斗卫星导航新疆地基增强系统,新疆地区的事后导航定位服务区域能够实现全覆盖,同时重点区域能够获得dm 级甚至cm 级高精度定位服务㊂通过对比,可以发现新疆地基增强CORS 站系统的实时定位精度达到了5cm 以上,而且其高程精度也达到了10cm 以上,事后静态定位精度也达到了5mm 以上,而且其高程精度也不低于10mm㊂而移动网络定位精度远低于北斗卫星导航增强系统定位精度㊂算例2:北斗与GPS 联合精密定位,能够获得更高精度且系统鲁棒性更好㊂定位结果如表3所示㊂表3㊀北斗㊁GPS㊁北斗&GPS 定位精度对比单位:cm观测值N E U 北斗17.917.130.5GPS3.04.17.0北斗+GPS 4.0 3.56.26㊀结语㊀㊀北斗定位系统是中国重要的信息基础设施,它的建立为中国在导航卫星领域的国际影响力奠定了坚实的基础㊂经过模拟验证,与传统的BDS 定位方法相比,北斗地基增强系统的静态定位和动态网络RTK 测量精度都能满足要求,而且,将BDS 技术整合起来,更能体现多卫星集成技术的优越性㊂BDS 网络RTK 定位技术已经取得了巨大的进步,它的不断改进将有助于北斗地基增强系统的发挥,为北斗导航卫星的发展和应用提供坚实的基础㊂参考文献[1]郭树人,刘成,高为广,等.卫星导航增强系统建设与发展[J ].全球定位系统,2019(2):1-12.[2]刘文建.北斗/GNSS 区域地基增强服务系统建立方法与实践[D ].武汉:武汉大学,2017.[3]赵俊天.新疆维吾尔自治区CORS 系统的建设与定位服务测试[D ].西安:长安大学,2017.[4]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M ].武汉:武汉大学出版社,2009.[5]黄文德,康娟,张利云,等.北斗卫星导航定位原理与方法[M ].北京:科学出版社,2019.(编辑㊀沈㊀强)Design and test analysis of Beidou satellite navigation foundation enhancement systemXu Peng Zhao Wei Luo Wei Lan Wei Sang FeiUnit 61773 Urumqi 831100 ChinaAbstract This paper briefly reviews and summarizes the generation development history and evolution of the globalsatellite foundation enhancement system introduces the current situation of the Beidou satellite foundation enhancement system in China analyzes the error of the network RTK and the factors affecting the positioning accuracythen compares the Beidou satellite foundation enhancement system with the mobile network and the positioningaccuracy of the GPS system and explores the positioning effect of the Beidou system and GPS system.Key words Beidou positioning accuracy test ground -based enhancement system CORS system。
北斗地基增强系统的标准化工作和国家标准建设——访中国兵器工业首席专家 麦绿波
封面文章 |Coverstory本刊记者 赵子军北斗地基增强系统的标准化工作和国家标准建设—— 访中国兵器工业首席专家 麦绿波麦绿波——研究员,工学博士,著名标准化科学家,中国兵器工业首席专家,从事标准化研究30年,主持了兵器行业标准体系和多个行业标准化“五年规划”的编制;主持国际标准研制3项;主持重大标准化研究项目10多项;主持国家标准、国家军用标准、行业标准研制30多项;获国务院政府特殊津贴;获委部级科学技术、科技进步一等奖、二等奖10多项;获国防科技工业标准化先进个人;获首届“中国标准化杰出人物”荣誉(2011年)。
国际标准化组织(ISO)光学和光子学标准化技术委员会专家组成员;全国光学和光子学标准化技术委员会副主任委员、全国光电测量标准化技术委员会副主任委员;中国兵工学会会士/理事、中国标准化协会理事。
著有《标准化学——标准化的科学理论》和《标准学——标准的科学理论》(科学出版社出版)标准化科学专著。
日前,就北斗基地增强系统的标准化工作和国家标准建设,本刊记者采访了中国兵器工业首席专家麦绿波研究员,请他介绍了北斗地基增强系统的技术原理、定位导航服务能力、标准化工作和国家标准的建设。
北斗地基增强系统实现北斗实时定位和导航的广域米级和分米级、区域厘米级以及后处理毫米级水平什么是北斗地基增强系统呢?麦绿波介绍说,北斗地基增强系统是国家重要的信息基础设施,用于提供高精度定位服务,主要由基准站网、通信网络系统、数据处理中心、运营服务平台、数据播发系统、用户终端、信息安全防护体系、备份系统等组成。
“北斗地基增强系统通过在地面按一定距离建立的若干基准站接收导航卫星发射的导航信号,经通信网络传输至数据处理中心,处理后产生导航卫星的轨道、钟差、电离层改正数、区域差分数据、后处理数据产品等信息,通过卫星、移动2020年第9期 / 总第569期12CHINA STANDARDIZATION中国标准化通信网、数字广播等方式播发,并通过互联网提供后处理数据产品的下载服务,满足北斗地基增强系统服务范围内广域米级和分米级,区域厘米级的实时定位和导航需求,以及后处理毫米级定位服务需求。
北斗地基增强系统建设方案
北斗地基增强系统建设方案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#1.1构建地基增强系统地基增强系统是基于BD/GPS卫星定位技术、计算机网络技术、数字通讯技术等高新科技,通过在一定区域布设若干个GNSS连续运行参考基站(CORS),对区域GNSS定位误差进行整体建模,通过无线数据通讯网络向用户播发定位增强信息,提高用户的定位精度,且定位精度分布均匀、实时性好、可靠性高。
地基增强系统辅助空间卫星,可以显着或成倍提高定位和授时精度,可使终端的定位精度提高到米级以内。
地基增强系统由参考站、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用参考站网络,数据传输系统与定位导航数据播放系统共同完成通信传输。
北斗卫星地基增强系统是动态的、连续的空间数据参考框架,可快速、高精度的获取空间数据和地理特征,它也是区域规划、管理、决策的基础。
建设原则北斗卫星地基增强系统建设将坚持“技术先进、高效可靠、经济实用和易于扩展”的基本原则。
1)总体规划、分步实施系统建设中,应先行进行总体规划和设计,全盘考虑系统建设目标。
根据总体规划指导和要求,进行项目的分期建设的设计和实施,避免不合理的建设投入。
2)先进性系统拟采用的BDS/GPS技术融合了网络RTK技术和PPP技术的各自优势,充分借鉴了网络RTK和PPP技术的工作模式,因而其技术本身可具备以下优势:(1)北斗为主,兼容GPS、GLONASS系统。
具有BDS独立组网进行高精度定位增强的能力,同时提供CGR三系统、CG双系统、CR双系统、GR双系统等4种组合定位增强模式,实现 GEO/IGSO(高轨)卫星与MEO(GPS/GLONASS中圆轨道)卫星联合解算技术。
(2)区域网络RTK与广域PPP技术融合统一,区域CORS网内和网外用户采用同一套数据处理软件,相同的数据处理模式,实现区域增强与广域增强服务自动无缝切换,具有近海高精度定位增强服务能力。
北斗星基增强系统 标准
北斗星基增强系统标准
北斗星基增强系统是一种先进的导航技术,用于提高北斗卫星导航系统的精度和可靠性。
该系统采用了一系列基站和相关设备,用于接收北斗卫星的导航信号,并加以处理和增强。
北斗星基增强系统的标准是根据国家相关技术规范制定的。
它规定了系统的工作参数、功能要求、数据处理方式等内容,以确保系统能够稳定可靠地工作,并满足用户的导航需求。
在北斗星基增强系统中,基站通过接收北斗卫星的导航信号,测量信号的传播时间来计算用户接收机的位置和速度信息。
然后,基站将这些信息进行处理,并通过无线信号传输到用户的移动设备上。
除了提供高精度的导航定位服务外,北斗星基增强系统还可以提供定位辅助数据、差分修正信息等功能,以进一步提高导航的准确性和可靠性。
这些功能可以广泛应用于交通运输、航空航天、海洋渔业等领域。
北斗星基增强系统的标准确保了系统的一致性和互操作性,使得不同厂家生产的设备都能够无缝地进行互联互通。
同时,标准还规定了系统的数据安全保护措施,以防止信息泄露和非法使用。
总之,北斗星基增强系统的标准为用户提供了高质量的导航服务,为各个行业的发展提供了重要支撑。
地基增强系统应用简述
地基增强系统应用简述
1.背景
地基增强系统,即ground-based augmentation systems(缩写:GBAS),通过提供差分修正信号,可达到提高卫星导航精度的目的;优化后的定位精度可以从毫米级至亚米级不等;该系统是卫星定位技术、计算机网络技术、数字通讯技术等高新科技多方位、深度结晶的产物。
鉴于GBAS存在的诸多优势,在国内外得到了大力的发展,简述如下;
欧洲EPN系统示意图
德国SAPOS系统示意图
日本GeoNet系统
地基增强系统和CORS系统的关系,简要描述如下:
2.系统组成
地基增强差分系统由连续运行基准站网、系统控制与数据中心、数据通信网络以及用户应用子、系统等组成,各子系统的定义与功能介绍如下。
1)连续运行基准站子系统;
2)系统控制与数据中心子系统;
3)数据通信网络子系统;
4)用户应用子系统;
各子系统功能定义
BDS
GPS GLONASS Gallieo
Internet
光纤
专网
卫星通讯
测绘
GIS
驾考
农业
海洋航空
导航
地基增强系统示意图
其中,基准站子系统主要由天线、接收机、通信设备、供电设备、避雷设备、气象设备及观测室等组成,见下图:
地基增强基准站子系统示意图
3.核心设备
技术指标
4.应用介绍
地基增强系统的应用领域无所不在,从测绘、勘探、监测等专业领域到导航、旅游等大众领域,以下列表简述;。
RBN-DGPS简介
1.1.1.RBN-DGPS系统我国沿海RBN-DGPS系统从1995年开始建设,分三期建成了沿海23座RBN-DGPS台站。
一期建成天津北塘站,秦皇岛站,大连大三山站,青岛王家麦站,长江口大戢山站和海南抱虎角站共6座台站,于1997年7月正式对公共用户提供服务。
二期建成连云港地区燕尾港站,温州地区石塘站,厦门地区镇海角站,汕头地区鹿屿站,珠海地区三灶站,湛江地区硇洲岛站,海南海域三亚站,共7座台站,于1999年9月正式开放,为公共用户提供服务。
三期建设的大连老铁山站,烟台成山头站,江苏蒿枝港站,宁波定海站,福州天达山站,广西防城站和海南洋浦站共7座台站,于2002年正式开放使用。
为完善信号覆盖,2009年又新建了营口和灵昆台站,2012年开始建设大亚湾台站,另外规划待建的还有西沙台站。
至今,从北至南,22座台站,形成从鸭绿江口至西沙群岛的系统台链,信号覆盖(或多重覆盖)沿海主要港口、重要水域和狭窄水道的DGPS导航服务网。
图错误!文档中没有指定样式的文字。
-1 中国沿海RBN-DGPS覆盖范围示意图系统对航行在我国沿海航线及进出港口船舶的准确定位,防止各类事故已经起到很好作用,尤其对港口建设施工、海洋开发、石油工程、航道测量、疏浚、航标布设、救助打捞等工作更为需要。
RBN-DGPS 系统已成为我国沿海水域准确定位的主要手段,是我国目前近海(300km以内)主要的定位、导航系统。
RBN-DGPS系统结构及设备功能如图2-1所示。
基准站包括基准台,播发台,完善性监测台与监控中心四部分。
图错误!文档中没有指定样式的文字。
-2 中国海事局RBN-DGPS基准站系统结构图基准台与播发台为双套设备,其中一套为热备份。
基准台(RS)的GPS天线安置在已知精确位置的地点,通过高性能GPS接收机跟踪视野内的所有卫星,计算出每颗卫星的伪距校正量,调制器采用最小移频键控(MSK)调制方式,将伪距校正量、基准台频率、识别码等信息,按照RTCM 104 2.1版本的格式要求,组成电文,一并传输给播发台。
北斗地基增强系统建设方案
1.11.21.31.4构建地基增强系统地基增强系统是基于BD/GPS卫星定位技术、计算机网络技术、数字通讯技术等高新科技,通过在一定区域布设若干个GNSS连续运行参考基站(CORS),对区域GNSS定位误差进行整体建模,通过无线数据通讯网络向用户播发定位增强信息,提高用户的定位精度,且定位精度分布均匀、实时性好、可靠性高。
地基增强系统辅助空间卫星,可以显著或成倍提高定位和授时精度,可使终端的定位精度提高到米级以内。
地基增强系统由参考站、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用参考站网络,数据传输系统与定位导航数据播放系统共同完成通信传输。
北斗卫星地基增强系统是动态的、连续的空间数据参考框架,可快速、高精度的获取空间数据和地理特征,它也是区域规划、管理、决策的基础。
1.1.1建设原则北斗卫星地基增强系统建设将坚持“技术先进、高效可靠、经济实用和易于扩展”的基本原则。
1)总体规划、分步实施系统建设中,应先行进行总体规划和设计,全盘考虑系统建设目标。
根据总体规划指导和要求,进行项目的分期建设的设计和实施,避免不合理的建设投入。
2)先进性系统拟采用的BDS/GPS技术融合了网络RTK技术和PPP技术的各自优势,充分借鉴了网络RTK和PPP技术的工作模式,因而其技术本身可具备以下优势:(1)北斗为主,兼容GPS、GLONASS系统。
具有BDS独立组网进行高精度定位增强的能力,同时提供CGR三系统、CG双系统、CR双系统、GR双系统等4种组合定位增强模式,实现GEO/IGSO(高轨)卫星与MEO(GPS/GLONASS中圆轨道)卫星联合解算技术。
(2)区域网络RTK与广域PPP技术融合统一,区域CORS网内和网外用户采用同一套数据处理软件,相同的数据处理模式,实现区域增强与广域增强服务自动无缝切换,具有近海高精度定位增强服务能力。
北斗地基增强系统原理
北斗地基增强系统原理北斗地基增强系统(BD-GNSS)是一种利用地面站点来提供更精确、可靠的导航定位服务的技术。
它是在北斗导航卫星系统的基础上,通过在地球表面建立一系列地面站点,对卫星信号进行监测、分析和校正,从而提高用户接收到的导航信号的可用性和精度。
BD-GNSS的原理可以分为以下几个方面:1.地面监测和控制:地面站点通过接收来自北斗卫星的信号,对信号进行监测和控制。
监测包括监测卫星的运行状态、信号的强度和质量等,以及对信号进行校正和纠偏。
地面站点会不断更新和发布卫星的轨道参数和时钟校正信息,确保用户能够接收到准确的导航信号。
2.差分定位:BD-GNSS系统通过在地面站点之间建立差分纠正网络,实现差分定位。
差分定位是一种通过比较接收到的卫星信号和地面站点已知位置的方法,来提高定位精度的技术。
地面站点通过测量卫星信号的传播时间差异和信号强度差异,计算出用户的位置误差,并将纠正信息传输给用户接收设备,从而实现对导航信号的纠正和提高定位精度。
3.实时更新:BD-GNSS系统具有实时更新的能力,即地面站点会实时监测和校正卫星信号,并将校正信息传输给用户设备。
这样,用户可以根据实时的卫星信息来进行导航定位,保证定位的准确性和可用性。
4.可用性和容错性:BD-GNSS系统具有较高的可用性和容错性。
即使在信号遮挡、多路径干扰等恶劣环境下,地面站点可以通过对卫星信号进行多路径抑制和干扰削弱等技术手段,提供可靠的导航定位服务。
总的来说,北斗地基增强系统通过建立地面监测和控制站点,利用差分定位和实时更新的技术,提供更精确、可靠的导航定位服务。
它在农业、交通、测绘、航空等领域有着广泛的应用前景,并为用户提供了更高的导航精度和可靠性。
东海海区北斗地基增强系统建设与应用研究
东海海区北斗地基增强系统建设与应用研究刘谨【期刊名称】《《中国海事》》【年(卷),期】2019(000)002【总页数】5页(P49-53)【关键词】北斗卫星导航系统; 北斗地基增强系统; 海事; 航海保障【作者】刘谨【作者单位】交通运输部东海航海保障中心上海海事测绘中心上海200090【正文语种】中文【中图分类】U675.7一、北斗地基增强系统发展现状BDS是我国自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施,也是联合国全球卫星导航系统国际委员会(ICG)认定的包括美国GPS、俄罗斯GLONASS、欧盟GALILEO在内的4大卫星导航系统供应商之一。
2018年12月27日,中国卫星导航系统管理办公室发布了北斗三号系统基本建成及提供全球服务的消息[1-3]。
近年来,我国在全国范围内建设与推广北斗地基增强系统,更好地满足了北斗系统精密定位用户和导航用户的需求。
北斗地基增强系统是中国卫星导航系统管理办公室组织,交通运输部、原国土资源部、教育部、原国家测绘地理信息局、原中国气象局、原中国地震局、中国科学院等国家相关单位支持,在现有监测站点基础上,按照“统一规划、统一标准、共建共享”的原则建设的国家级地基增强系统。
为适应国民经济、国际贸易和社会发展需要,满足我国主要港口、重要水道和沿岸的海上公众用户、国防、海洋测绘、海上交通安全管理、疏浚等需要高精度导航服务的用户需求,根据交通运输部海事局的部署[4],东海航海保障中心于2013年在长江口建立了4个北斗CORS试验参考站,完成了北斗高精度卫星定位误差改正模型研究和高精度实时数据处理软件开发,为试验区域提供了实时厘米级定位服务。
2015-2016年,完成了长江口及杭州湾区域北斗精密定位服务系统工程建设,在长江口及杭州湾区域建设10个北斗CORS站。
2016-2018年,东海航海保障中心完成了东海海区北斗地基增强系统建设,在江苏和浙江沿海建设了12个参考站。
地基增强CORS-总体技术方案
XXX北斗地面连续增强系统(XXBDCORS)项目设计方案目录1.概述 (1)1.1系统设计 (2)2.项目实施方案 (3)2.1项目组织: (4)2.2实施步骤: (5)2.3进度计划: (5)3.参考站建设 (6)3.1参考站的主要功能 (6)3.2参考站的结构 (7)3.3参考站点位影响因素 (9)3.4数据处理与控制中心设计 (14)3.5数据中心建设 (15)4.XXBDCORS系统调试 (16)4.1基准站可观测卫星数测试 (16)4.2网络通讯测试 (17)4.3功能性测试 (17)4.4系统应用准备阶段测试 (17)4.5指标测试 (17)4.6系统验收、鉴定阶段 (20)5.北斗GNSS设备推荐 (21)地基增强基站 (21)6.高精度差分服务器软件介绍 (24)6.1高精度差分服务器软件 (25)6.2软件特点: (26)6.3技术指标 (26)7.CORS系统的建设目标暨系统建成后实现的功能 (27)8.项目验收 (28)8.1验收资料: (28)8.2验收程序: (28)8.3资料提供: (28)9.培训计划表 (28)1.概述北斗卫星导航系统(COMPASS)是我国自主建设、独立运行并与世界其他卫星导航系统相兼容的全球卫星导航系统,目前系统已经实现亚太地区的覆盖,为亚太地区提供导航定位以及通信服务,并最终在2020年形成全球覆盖能力。
北斗系统是体现我国大国地位和综合国力的重要标志,是我国重大的国家空间和信息化基础设施,是保障我国国家安全的重大技术支撑系统和战略威慑基础资源。
XXX省北斗地面连续增强系统(XXBDCORS)以推动XXX北斗产业应用为根本目的,以实现军民融合、共同发展为目标,秉承“政府引导,市场运作;统一规划,分步实施;强化产业,综合发展;成熟一项,推广一项”的原则,建成覆盖XXX全区域,以北斗为主兼容其他GNSS卫星系统,满足军民两用的北斗高精度地基增强示范网。
北斗GNSS区域地基增强服务系统建立方法与实践
2、轨道误差修正:由于卫星和地球的几何位置不完全确定,卫星的轨道存在 误差。为了修正轨道误差,可以使用卫星星历和卫星钟差模型进行计算。
3、电离层延迟修正:由于大气层中的电离层对电磁波的传播有一定的影响, 使得接收到的信号时间产生延迟。为了修正电离层延迟,可以使用电离层模型 和双频观测值进行计算。
一、北斗GNSS区域地基增强服务 系统建立的背景及意义
北斗卫星导航系统具有广泛的应用前景,尤其在智能交通、航空航天、地理信 息等领域。然而,由于受到多种因素的影响,包括卫星信号遮挡、多路径效应 等,导致定位精度和可靠性受到限制。区域地基增强服务系统的建立,可以通 过差分技术、滤波技术等手段,对卫星信号进行处理,提高定位精度和可靠性, 进而拓展北斗卫星导航系统的应用范围。
四、北斗GNSS区域地基增强服务 系统建立的注意事项
在建立北斗GNSS区域地基增强服务系统的过程中,需要注意以下几点:
1、安全问题:站点的选择和设备的安装需要考虑安全性,尽量避免雷击、电 磁干扰等因素的影响。
2、数据处理能力:需要具备强大的数据处理和分析能力,能够对大量的数据 进行快速处理和评估。
二、北斗GNSS区域地基增强服务 系统建立的方法及步骤
1、建立站点网络
首先,需要选择合适的站点,构建区域地基增强服务系统的网络。站点的选择 需要考虑覆盖范围、地质条件、交通状况等因素。在选址过程中,需要遵循均 匀分布、涵盖重点区域的原则,确保差分信号覆盖到尽可能大的范围。
2、安装及调试设备
设备包括接收机、服务器、数据传输设备等。在安装过程中,需要严格遵守设 备使用说明,确保设备正常工作。调试设备时,需要对设备的各项参数进行精 细化调整,确保数据传输稳定、计算精度高等。
3、系统稳定性:系统需要具备高度的稳定性,能够在各种恶劣环境下持续稳 定地工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北斗性能提升与广域分米星基增强技术及应用提名者:中国测绘学会提名意见:“北斗性能提升与广域分米星基增强技术及应用”项目是由北京卫星导航中心联合中国科学院上海天文台、北京航天航空大学、上海司南卫星导航技术股份有限公司、上海华测导航技术股份有限公司、泰斗微电子科技有限公司、北京神州天鸿科技有限公司共同完成。
该项目组织了国内北斗卫星导航系统的总体单位、建设单位、终端生产和应用单位,经过了由科研到关键技术攻关最终到工程应用转化的过程。
项目突破了北斗卫星导航系统实时分米级服务的技术瓶颈,提出了北斗卫星导航系统“基本导航、广域增强、精密定位”集成一体的体系架构、成套理论方法,研制了“北斗性能提升与星基广域增强系统”,实现了北斗系统性能大幅提升,使北斗系统具备了国际先进的分米级空间信号精度。
研制了从SoC 芯片、板卡到应用终端的系列北斗高精度装备,广泛应用于国家安全、国民经济建设、民生服务等领域,并推广至“一带一路”国家,直接经济效益逾33亿元,军事和社会效益巨大项目成果对提升北斗系统国际竞争力、规模化产业应用做出了重大贡献。
同意提名该项目为国家科学技术进步奖二等奖。
项目简介北斗卫星导航系统是国家重大战略基础设施和军民融合系统,是服务我国“一带一路”战略的国家名片。
为提升北斗系统国际竞争力、满足泛在高精度定位需求、支撑国家战略新兴产业转型,在国家863计划、第二代卫星导航系统重大专项、国家自然科学基金、总部计划等项目支持下,针对异质导航业务一体化融合、广域实时高精度多元误差修正、性能提升平台研制及终端应用等存在的“限”、“杂”、“容”等难题,突破了北斗性能提升与星基广域增强理论方法和关键技术;研制了“北斗性能提升与星基广域增强系统”,取代了原导航业务处理系统,大幅提升北斗系统性能;研制了系列北斗高精度用户终端核心器件及装备,开拓了在电力、通信、交通、农业、反恐维稳、海洋权益维护、精确打击等领域的应用,取得了重大社会、经济和国防效益。
主要创新点如下:1.创新性提出了“基本导航、广域增强、精密定位(NWAP)”为一体的北斗性能提升系统架构。
发明了性能增量式提升的多业务导航体制,提出了导航误差分级分区处理新模式,建立了参数精度递进的导航电文模型,解决了导航电文资源受限条件下米级、亚米级和分米级等多种导航服务的无缝融合难题,使北斗系统成为亚太地区定位精度最高、服务种类最多的卫星导航系统。
2.建立了北斗性能提升与星基广域增强的成套理论方法。
提出了参数去相关、复杂系统差校正、太阳光压精化等导航业务信息处理方法,首创卫星轨道、卫星钟差、格网电离层和分区综合改正的实时四重广域差分方法,解决了卫星导航系统实时分米级多重误差修正的难题,实现了北斗空间信号精度优于0.8m (RMS),精密定位信号精度优于0.2m(RMS),达到国际先进水平。
3.首创了北斗系统性能提升的“研究、开发、运行”一体化平台。
提出了高稳定度、多业务融合的高性能服务“双工热备+伴随”三重冗余运行体系架构,突破了强实时业务的数据同步、异常容错等关键技术,建立了以精度及可用性为目标函数的监测评估体系,研制了“北斗性能提升与广域星基增强系统”,取代了原导航业务处理系统,实现了北斗性能的大幅提升。
4.自主研制了从SoC芯片、板卡到应用终端的系列北斗高精度装备。
设计了射频基带一体化SoC导航芯片架构,自主研制了40nmRFCMOS工艺北斗芯片,与各类高精度终端综合集成,装备性能达到国际同类产品先进水平;提出了协同北斗广域分米级星基增强的终端侧算法,实现了各类装备定位精度提升。
重大应用:(1)北斗系统升级:所有北斗应用均受益;(2)国家重大工程中精密定位的自主可控:新疆反恐“移动天网”、重型工程车辆监控、国家海上光缆工程;(3)“换芯”计划:解决核心部件“卡脖子”难题;(4)某型制导火箭弹:实现了精确打击,提升了作战能力。
项目对提升北斗系统国际竞争力、规模化产业应用做出重大贡献,直接经济效益逾33亿元,军事和社会效益巨大。
项目获授权发明专利36项,软件著作权21项;出版专著4部,发表论文113篇(SCI/EI收录89篇);获省部特等奖3项、一等奖2项。
客观评价1.成果鉴定意见(1)2012年5月22日,中国电子科技集团公司组织了“自主卫星导航系统精密时间传递关键技术与示范”科技成果鉴定会,陈俊勇院士、杨元喜院士、许其凤院士等专家组成鉴定专家组,鉴定委员会认为:“项目在国内首次设计开发了小型高精度卫星双向时间同步终端,时延变化小于0.3ns,性能指标达到了国际先进水平,研制了站间/星地时间同步软件和基于联合定轨的系统误差解算软件,实现了在轨卫星和地面站之间优于1ns的时间同步精度。
项目技术指标先进、技术难度大,创新突出,显著增强了我国卫星导航高精度时间同步设备的研发和测试试验能力,应用效果明显,推广应用前景良好。
研究成果达到了国际先进水平。
”(2)2015年12月31日,总参测绘导航局在北京组织召开了“北斗广域分米级服务系统性能”评估审定会。
杨元喜院士、许其凤院士等专家组成评审专家组,评审委员会认为:“北斗广域分米级服务系统主要服务性能达到设计指标要求,运行稳定,技术状态具备发播条件。
鉴于该项目对提升北斗服务性能效果明显,建议按照工程管理程序要求组织发播,进一步增加多类用户的验证,尽早提供正式服务”。
(3)2018年1月20日,中国测绘地理信息学会在上海组织召开了“北斗高精度星基广域差分关键技术及应用”科技成果鉴定会。
会议成立了由龚惠兴院士、郭桂荣院士及刘经南院士等专家组成的鉴定委员会,鉴定委员会认为:“该项目研制难度大,具有重大创新,成果居国际先进水平,其中的四重参数叠加差分体制和高精度差分参数播发体制达到了国际先进水平,成果已在北斗卫星导航系统运行中提供了高精度广域差分服务,有效提升了北斗导航系统整体的国际竞争力,取得了显著的社会、经济和军事效益,对国家安全具有重大意义”。
(4)2018年7月2日,中国卫星导航定位协会在北京组织专家召开了“北斗二号空间信号精度提升”项目科技成果鉴定会。
会议成立了由陈俊勇院士、杨元喜院士等专家组成的鉴定委员会,鉴定委员会认为:“该项目研制难度大,创新性强,总体成果居国际先进水平,其中轨道与钟差参数融合处理策略和模型达到了国际先进水平,现有终端不作修改即能提升导航定位性能。
成果接入北斗二号系统以来,服务稳定,取得了显著的社会、经济和军事效益”。
2.项目验收意见(1)863计划项目“自主卫星导航系统精密时间传递关键技术与示范”课题验收意见:“课题研究了自主卫星导航系统的精密时间传递技术、高精度设备时延标定技术,实现了自主卫星导航系统精密时问传递影响因素及特性分析、时间同步设备时延(设备零值)精确标定、时间同步设备时延精确在线测量及校正、基于实测卫星系统观测数据的系统误差探测分离与修正等技术,有创新性。
达到了课题合同要求,具有一定的应用价值。
”(2)863计划项目“北斗空间信号精度提升关键技术”课题验收意见:“课题开展了北斗空间信号精度提升关键技术研究,提出了空间信号精度提升的相关模型、算法和策略,研制了相应的软件系统和测试终端,开展了北斗反射信号的应用研究。
完成了合同规定的全部研究内容。
功能和性能指标达到了课题任务书要求。
”(3)863计划项目“分米级相位增强信号播发系统技术”课题验收意见:“课题完成了分米级星基相位增强试验系统的搭建、软件系统研发以及硬件研制、星基分米级相位增强系统播发总体技术研究、精密产品以及增强信息算法设计实现、增强信息播发协议设计、对北斗信息处理系统相关技术改进等,功能和性能指标达到任务书的要求。
课题基于北斗信号格式的实际,创新提出了基于载波平滑伪距的卫星实时钟差实时处理改正技术、轨道实时改正技术、北斗广域分区差分改正参数精化技术,实现了轨道精度GEO/IGSO/MEO卫星轨道径向精度优于0.2m,URE精度优于0.2m,电离层延迟精度优于0.5m,TGD优于0.3ns的性能指标。
”3.技术测试报告2018年1月16日,中国测绘地理信息学会对“北斗高精度星基广域差分关键技术及应用”成果进行了现场测试,结论为“项目对北斗系统原有信息处理系统进行了升级替换,实现了主控站精密定轨、时间同步、电离层计算、星基广域差分参数计算等北斗信息处理全部功能,并通过北斗卫星向用户广播高精度参数。
用户基本导航实时定位的精度(95%)为2.43米、广域差分实时定位精度(95%)为1.21米、精密实时定位精度(95%)为0.46米。
”(附件2.2-15)4.重要科技奖励情况(1)2012年卫星导航科技进步一等奖:“自主卫星导航系统精密时间传递关键技术与示范”;(2)2013年测绘科技进步特等奖:“北斗运控系统集成、优化与建设”;(3)2014年卫星导航科技进步特等奖:“北斗导航卫星业务信息中断快速恢复系统”;(4)2018年测绘科技进步一等奖:“北斗高精度星基广域差分关键技术及应用”;(5)2018年卫星导航科技进步特等奖:“北斗二号空间信号精度提升”。
应用情况和效益项目研究成果已在北斗二号系统性能提升和系统升级改造,北斗全球系统研制建设、北斗性能监测评估等国家重大工程中取得成功应用。
1.应用情况(1)提升了北斗系统的服务性能。
促进了北斗系统定位精度持续改进,构建了“基本导航、广域差分、精密定位”等多模为一体特色服务模式,使北斗系统定位精度从开通时的10米提升到3米(基本导航)、1米(广域增强)和0.5米(精密定位),服务于所有用户,极大地提升了北斗的国际竞争力。
促进了国内北斗产业快速发展,支撑了北斗数千亿规模产业的持续创新发展。
(2)在反恐维稳、海洋权益维护等国家及国防安全中发挥了重要作用。
用于新疆公共交通领域“移动天网”,实现60万辆大型工程机械设备和车辆的监管和定位;应用用于国家海洋工程施工、无人飞行器和精确打击武器制导等。
(3)应用于电力、通信、交通、农业等国民经济基础行业,解决了安全、自主可控难题。
泰斗微电子T303-3/T302-3产品在中兴通讯基站批量应用,每年约交付60万个高精度授时模块;应用于重点运输过程监控、海上遇险报警管理和搜救指挥应用,推广超240万台套;应用于农机车辆监控和自动驾驶。
(4)应用于个人出行、智能穿戴等位置服务,让老百姓感觉到北斗带来的生活便利和帮助。
摩拜共享单车2017年使用泰斗微电子TD1030芯片约500万颗。
小天才儿童手表使用泰斗微电子TD1030芯片每月约10万颗。
驾考驾培使用上海司南M系列接收机,约10000台套。
(5)“一带一路”国家应用。
用于印尼/马来西亚/老挝土地确权、科威特建筑施工形变监测、乌干达国土测绘、缅甸农业、新加坡施工打桩等。