surf算法
surf特征点的匹配过程
![surf特征点的匹配过程](https://img.taocdn.com/s3/m/7c25de92b8f3f90f76c66137ee06eff9aef8493d.png)
surf特征点的匹配过程
Surf特征点的匹配过程包括以下步骤:
1. 提取特征点:通过Surf算法提取两幅图像中的特征点。
Surf算法通过计算图像中的Hessian矩阵的行列式来检测潜在的特征点,然后通过计算特征点的主方向和构建特征描述子。
2. 计算特征描述子:对于每个特征点,Surf算法会将其周围的图像区域划分为若干个子区域,然后提取每个子区域的Haar小波响应。
这些Haar小波响应将组成特征描述子。
通过这种方式,每个特征点都能够具有一个128维的特征描述子。
3. 特征点匹配:通过计算两幅图像中特征点的相似度来进行匹配。
常用的方法是计算两个特征描述子之间的欧氏距离或是余弦相似度。
对于每个特征点,选择在另一幅图像中与其具有最小距离的特征点作为匹配点。
4. 特征点筛选:根据匹配点之间的距离进行筛选,排除一些不太可信的匹配点。
常用的方法是计算匹配点的距离与次近距离之间的比值,如果这个比值小于一个给定的阈值,就将匹配点保留下来。
5. 可选的优化步骤:可以通过使用RANSAC(随机抽样一致性)算法进一步筛选匹配点,消除由于噪声或误识别造成的错误匹配。
RANSAC算法会随机选择一组匹配点,并计算这些匹配点与模型之间的误差,然后根据误差进行筛选,最后得到更准确的匹配结果。
通过以上步骤,Surf特征点的匹配过程可以得到两幅图像中匹配点的对应关系,从而进行图像配准、目标跟踪等应用。
机器视觉中基于SURF算法的目标识别研究
![机器视觉中基于SURF算法的目标识别研究](https://img.taocdn.com/s3/m/ad0d49a2534de518964bcf84b9d528ea80c72f46.png)
机器视觉中基于SURF算法的目标识别研究第一章:引言随着计算机技术的不断发展,机器视觉技术逐渐应用于各种领域。
其中,目标识别是机器视觉技术的重要应用之一,可以在自动控制、工业制造、军事等领域中发挥重要作用。
在目标识别中,特征点检测和匹配是关键技术。
SURF算法是一种快速有效的特征点检测和匹配算法,已经得到广泛应用。
本文将介绍机器视觉中基于SURF算法的目标识别研究,具体包括SURF算法原理、SURF算法在目标识别中的应用及其优劣势分析、SURF算法在实际系统中的应用及其发展趋势等。
第二章:SURF算法原理SURF算法是加速稳健特征(Speeded Up Robust Feature)的缩写。
它是基于尺度空间理论的特征点检测和匹配算法。
SURF算法主要包括三个步骤:尺度空间构建、特征点检测和特征描述。
尺度空间构建是指先将原始图像进行高斯滤波,得到不同尺度下的图像金字塔,然后通过差分的方式得到尺度不变的DoG (Difference of Gaussian)图像组。
特征点检测是指在DoG图像组中检测出极值点,SURF算法中采用的是Hessian矩阵。
特征描述是指在检测到的特征点周围的邻域内,计算一组具有较强区分度的局部特征描述子,SURF算法中采用的是基于积分图像的Haar小波特征描述子。
第三章:SURF算法在目标识别中的应用及其优劣势分析SURF算法在目标识别中的应用主要包括两个方面:特征点检测和匹配。
特征点检测是指在图像中寻找具有独特性、稳定性和可重复性的特征点,SURF算法对尺度空间建立和特征点检测都有良好的性能,能够有效地检测到目标物体中的关键点。
匹配是指在两个图像中寻找相似的特征点,SURF算法具有较高的匹配准确率和速度,能够实现快速准确地目标匹配。
但是,SURF算法也存在一些不足之处,比如对图像旋转、缩放、变形等变化不够鲁棒,需要额外的操作来进行补偿。
第四章:SURF算法在实际系统中的应用及其发展趋势SURF算法在实际系统中的应用非常广泛,例如在工业机器人、自动驾驶、安防监控等领域中都得到了应用。
SURF算法分析ppt课件
![SURF算法分析ppt课件](https://img.taocdn.com/s3/m/e607420b195f312b3169a5fc.png)
最新编辑ppt
23
•
•
(3.1)
•
(3.2)
• •
最新编辑ppt
31
最后总结
• Stitching函数不足之处:在拼接过程中 如遇到图像特征不明显,如一面墙的图 片,则无法采集到有用的特征点,在采 用此方法过程中会出现越界现象。
最新编辑ppt
32
•Thank you for your attention!
最新编辑ppt
33
最新编辑ppt
最新编辑ppt
15
标出特征点的图像
最新编辑ppt
16
二.特征点 匹配
最新编辑ppt
17
特征点匹配
步骤1. 在检测特征点的过程中,计算了 Hessian 矩阵
的行列式,与此同时,计算得到了 Hessian 矩阵的迹,矩
阵的迹为对角元素之和。
按照亮度的不同,可以将特征点分为两种,第一种为
特征点及其周围小邻域的亮度比背景区域要亮,Hessian
变
化
量
51
99 147 195
6*n
27
51 75 99
Octaves
15
27 39 51
构建尺
9
15 21 27
变化量 n*6 度空间
Scale
最新编辑ppt
11
1.6极值点抑制
为了在目标影像上确定SURF特征点,我们使用了 3*3*3的模板在3维尺度空间进行非最大化抑制,根据 预设的Hessian阈值H,当h大于H,而且比临近的26个 点的响应值都大的点才被选为兴趣点。最后进行插值 精确。
图像特征点提取及匹配算法研究论文
![图像特征点提取及匹配算法研究论文](https://img.taocdn.com/s3/m/5ac67a75f011f18583d049649b6648d7c1c70890.png)
图像特征点提取及匹配算法研究论文1.SIFT算法:SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征点提取算法。
该算法首先使用高斯滤波器对图像进行多尺度的平滑处理,然后使用差分算子来检测图像中的关键点,最后计算关键点的主方向和描述符。
SIFT算法具有尺度不变性和旋转不变性,对于图像中存在较大尺度和角度变化的情况下仍能提取出稳定的特征点。
2.SURF算法:SURF(Speeded Up Robust Features)算法是一种快速的特征点提取算法,它在SIFT算法的基础上进行了优化。
SURF算法使用Haar小波响应来检测图像中的特征点,并使用积分图像来加速计算过程。
此外,SURF算法还使用了一种基于方向直方图的特征描述方法,能够提取出具有旋转不变性和尺度不变性的特征点。
3.ORB算法:ORB(Oriented FAST and Rotated BRIEF)算法是一种快速的特征点提取和匹配算法。
该算法结合了FAST角点检测算法和BRIEF描述符算法,并对其进行了改进。
ORB算法利用灰度值的转折点来检测图像中的角点,并使用二进制字符串来描述关键点,以提高特征点的匹配速度。
ORB算法具有较快的计算速度和较高的匹配精度,适用于实时应用。
4.BRISK算法:BRISK(Binary Robust Invariant Scalable Keypoints)算法是一种基于二进制描述符的特征点提取和匹配算法。
该算法首先使用田字形格点采样方法检测关键点,然后使用直方图来描述关键点的方向和纹理特征。
最后,BRISK算法使用二进制字符串来表示关键点的描述符,并使用汉明距离来进行特征点的匹配。
BRISK算法具有较快的计算速度和较高的鲁棒性,适用于大规模图像匹配任务。
总结起来,图像特征点提取及匹配算法是计算机视觉领域中的重要研究方向。
本文介绍了一些常用的特征点提取及匹配算法,并对其进行了讨论。
S U R F 算 法
![S U R F 算 法](https://img.taocdn.com/s3/m/771cbcb3b4daa58da0114ad9.png)
特征点检测学习(surf算法)网上有些文章对surf做了介绍,比如:surf算法原理,有一些简单介绍.对surf的某些细节做了通俗易懂的解释.一、Surf描述子形成步骤1. 构造高斯金字塔尺度空间其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度。
Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像。
首先来看看图像中某个像素点的Hessian 矩阵,如下:即每一个像素点都可以求出一个Hessian矩阵。
但是由于我们的特征点需要具备尺度无关性,所以在进行Hessian矩阵构造前,需要对其进行高斯滤波。
这样,经过滤波后在进行Hessian的计算,其公式如下:公式中的符号,估计有点数学基础的朋友都能够猜到,这里就不多解释了。
最终我们要的是原图像的一个变换图像,因为我们要在这个变换图像上寻找特征点,然后将其位置反映射到原图中,例如在sift中,我们是在原图的DOG图上寻找特征点的。
那么在surf中,这个变换图是什么呢?从surf的众多资料来看,就是原图每个像素的Hessian矩阵行列式的近似值构成的。
其行列式近似公式如下:由于求Hessian时要先高斯平滑,然后求二阶导数,这在离散的像素点是用模板卷积形成的,这2中操作合在一起用一个模板代替就可以了,比如说y方向上的模板如下:该图的左边即用高斯平滑然后在y方向上求二阶导数的模板,为了加快运算用了近似处理,其处理结果如右图所示,这样就简化了很多。
并且右图可以采用积分图来运算,大大的加快了速度,关于积分图的介绍,可以去查阅相关的资料。
同理,x和y方向的二阶混合偏导模板如下所示:上面讲的这么多只是得到了一张近似hessian行列式图,这例比sift中的DOG图,但是在金字塔图像中分为很多层,每一层叫做一个octave,每一个octave中又有几张尺度不同的图片。
在sift算法中,同一个octave层中的图片尺寸(即大小)相同,但是尺度(即模糊程度)不同,而不同的octave层中的图片尺寸大小也不相同,因为它是由上一层图片降采样得到的。
SURF算法在图像处理中的应用
![SURF算法在图像处理中的应用](https://img.taocdn.com/s3/m/93c7591f905f804d2b160b4e767f5acfa1c7836d.png)
SURF算法在图像处理中的应用SURF算法是一种被广泛应用于计算机视觉领域的算法,其全称是Speeded Up Robust Features。
它是一种特征提取算法,可以在图像中检测出具有特殊性质的关键点,并生成具有鲁棒性的特征描述子。
这些特征可以用于识别相似的图像,比较相似度,并在图像配准、图像跟踪、三维重建等领域中发挥重要作用。
本文将探讨SURF算法在图像处理中的应用。
一、 SURF算法的原理SURF算法是基于SIFT算法的一种改进,它的主要优势在于速度更快、鲁棒性更强。
下面简单介绍SURF算法的原理。
1. 尺度空间构建SURF算法首先对原始图像进行尺度变换,通过高斯金字塔来构建尺度空间。
尺度空间的不同层次可以检测到不同大小的特征。
通过不同层次检测的关键点可以估计出原始图像中的关键点,这个过程被称为尺度空间极值点检测。
2. 关键点定位在尺度空间中,SURF算法通过Hessian矩阵的行列式求解得到图像局部极值点位置,这些点是具有高强度、对光照变化鲁棒等性质的关键点。
3. 方向确定为了使SURF算法对旋转和光照变化更加鲁棒,需要为每个关键点确定一个主方向,这个方向是在关键点周围采用Hessian矩阵主方向确定的。
4. 特征描述为了描述关键点的局部特征,SURF算法使用了一种统计学上的方法,即将关键点周围的区域分解成小的子区域,每个子区域在水平和竖直方向上计算Haar小波变换,形成特征向量。
这些特征向量组成的特征描述子具有鲁棒性,可以用来评估关键点的稳定性。
5. 特征匹配在进行图像匹配时,SURF算法使用了一种快速的近似最近邻搜索方法,称为快速最近邻搜索(FLANN)。
它可以在大规模的特征库中快速找到与查询特征最相似的特征。
二、 SURF算法可以被广泛应用于图像处理中,下面介绍一些应用领域。
1. 图像配准SURF算法可以被用来匹配两幅图像之间的关键点,通过计算两幅图像中关键点的相似度来实现图像配准。
SURF算法
![SURF算法](https://img.taocdn.com/s3/m/745ded3bcec789eb172ded630b1c59eef8c79a3e.png)
SURF算法⼀、原理:Sift算法的优点是特征稳定,对旋转、尺度变换、亮度保持不变性,对视⾓变换、噪声也有⼀定程度的稳定性;缺点是实时性不⾼,并且对于边缘光滑⽬标的特征点提取能⼒较弱。
Surf(Speeded Up Robust Features)改进了特征的提取和描述⽅式,⽤⼀种更为⾼效的⽅式完成特征的提取和描述。
⼆、Surf实现流程如下:1. 构建Hessian(⿊塞矩阵),⽣成所有的兴趣点,⽤于特征的提取⿊塞矩阵(Hessian Matrix)是⼀个多元函数的⼆阶偏导数构成的⽅阵,描述了函数的局部曲率。
由德国数学家Ludwin Otto Hessian于19世纪提出。
surf构造的⾦字塔图像与sift有很⼤不同,Sift采⽤的是DOG图像,⽽surf采⽤的是Hessian矩阵⾏列式近似值图像。
Hessian矩阵是Surf算法的核⼼,构建Hessian矩阵的⽬的是为了⽣成图像稳定的边缘点(突变点),为下⽂的特征提取做好基础。
每⼀个像素点都可以求出⼀个Hessian矩阵。
Hessian矩阵的判别式为:当Hessian矩阵的判别式取得局部极⼤值时,判定当前点是⽐周围邻域内其他点更亮或更暗的点,由此来定位关键点的位置。
在SURF算法中,图像像素l(x,y)即为函数值f(x,y)。
但是由于我们的特征点需要具备尺度⽆关性,所以在进⾏Hessian矩阵构造前,需要对其进⾏⾼斯滤波,选⽤⼆阶标准⾼斯函数作为滤波器。
H矩阵的三个矩阵元素L_xx, L_xy, L_yy从⽽计算出H矩阵:Surf使⽤了盒式滤波器来近似替代⾼斯滤波器,提⾼运算速度。
盒式滤波器(Boxfilter)对图像的滤波转化成计算图像上不同区域间像素和的加减运算问题,只需要简单⼏次查找积分图就可以完成。
每个像素的Hessian矩阵⾏列式的近似值:2. 构建尺度空间同Sift⼀样,Surf的尺度空间也是由O组L层组成,不同的是,Sift中下⼀组图像的尺⼨是上⼀组的⼀半,同⼀组间图像尺⼨⼀样,但是所使⽤的⾼斯模糊系数逐渐增⼤;⽽在Surf中,不同组间图像的尺⼨都是⼀致的,但不同组间使⽤的盒式滤波器的模板尺⼨逐渐增⼤,同⼀组间不同层间使⽤相同尺⼨的滤波器,但是滤波器的模糊系数逐渐增⼤。
SURF与FLANN算法结合的图像匹配方法
![SURF与FLANN算法结合的图像匹配方法](https://img.taocdn.com/s3/m/28f85c2e5e0e7cd184254b35eefdc8d377ee1473.png)
SURF与FLANN算法结合的图像匹配方法
SURF(Speeded Up Robust Features)是一种图像特征提取算法,FLANN(Fast Library for Approximate Nearest Neighbors)是一种快速最近邻搜索算法。
将这两种算法结合起来,可以实现高效准确的图像匹配。
图像匹配是指在一组图像中,找到与给定图像最相似的图像。
图像匹配在图像检索、
目标跟踪、增强现实等领域具有广泛的应用。
SURF算法对图像进行特征提取。
SURF算法通过检测图像中的关键点,并计算这些关键点的局部特征向量来描述图像。
SURF算法的特点是快速且具有稳定的鲁棒性,适用于各种图像变化情况。
接下来,FLANN算法将SURF提取的特征向量作为输入,构建一个近似最近邻搜索索引。
FLANN算法通过将特征向量映射到一个高维空间,并使用一种适合于高维空间的快速搜索
算法来找到与给定特征向量最相似的特征向量。
FLANN算法的特点是高效且具有较高的准
确性,适用于大规模的高维数据搜索。
通过计算匹配图像与给定图像之间的相似度,选取相似度最高的图像作为匹配结果。
相似度可以使用欧式距离、余弦相似度等度量方法进行计算。
选取相似度最高的图像作为
匹配结果,可以通过设置一个阈值进行筛选,只选择相似度超过阈值的图像。
图像匹配方法的优势在于可以处理图像的尺度、旋转、光照等变化,并具有较高的准
确性和鲁棒性。
将SURF与FLANN算法结合起来,不仅可以提高算法的速度和效率,还可以提高算法的准确性和鲁棒性。
这种图像匹配方法在实际应用中具有很大的潜力。
surf特征点检测原理
![surf特征点检测原理](https://img.taocdn.com/s3/m/36d4512c0a4e767f5acfa1c7aa00b52acfc79c85.png)
surf特征点检测原理一、引言surf特征点检测是一种在计算机视觉领域被广泛应用的算法,用于图像特征提取和匹配。
本文将介绍surf特征点检测的原理及其相关概念,以帮助读者更好地理解该算法的工作原理。
二、SURF特征点检测的概述SURF(Speeded Up Robust Features)是一种基于尺度空间理论的图像特征描述算法。
它的主要思想是通过检测和描述图像中的局部特征点,从而实现图像的匹配与识别。
SURF算法具有计算速度快、尺度不变性强等优点,因此得到了广泛的应用。
三、尺度空间理论尺度空间理论是SURF算法的基础。
它认为图像中的物体在不同尺度下都会呈现出不同的外观,因此在进行特征点检测时,需要考虑不同尺度下的图像特征。
SURF算法通过构建一个尺度空间金字塔来实现不同尺度下的特征点检测。
四、Hessian矩阵的计算SURF算法使用Hessian矩阵来检测图像中的局部极值点。
Hessian 矩阵描述了图像中的灰度变化情况,通过计算图像的二阶导数来得到Hessian矩阵。
在SURF算法中,为了加速计算速度,Hessian 矩阵的计算采用了一种近似方法。
五、关键点的定位在得到Hessian矩阵后,SURF算法通过计算特征点的行列方向和尺度来实现关键点的定位。
其中,行列方向表示特征点在图像中的位置,尺度表示特征点的大小。
SURF算法还引入了一种基于盒子滤波器的方法,用于对关键点进行定位。
六、关键点的描述关键点的描述是SURF算法的核心内容之一。
SURF算法采用了一种称为Haar小波的特征描述子,用于描述关键点的局部特征。
Haar小波通过计算图像中的水平和垂直边缘来描述图像的纹理特征。
SURF算法通过对Haar小波的积分图像进行快速计算,实现了关键点的快速描述。
七、关键点的匹配关键点的匹配是SURF算法的最后一步。
在进行关键点匹配时,SURF算法采用了一种称为海森距离的相似性度量。
海森距离可以有效地判断两个关键点之间的相似度,从而实现关键点的匹配。
Surf算法原理
![Surf算法原理](https://img.taocdn.com/s3/m/73dc00fb541810a6f524ccbff121dd36a32dc4b2.png)
Surf算法原理Surf算法是对Sift算法的⼀种改进,主要是在算法的执⾏效率上,⽐Sift算法来讲运⾏更快!1、算法原理;2、源码简析;3、OpenCV中Demo分析;4、⼀些关于Surf算法的剖析。
Surf算法原理:参考资料:作为尺度不变特征变换算法(Sift算法)的加速版,Surf算法在适中的条件下完成两幅图像中物体的匹配基本实现了实时处理,其快速的基础实际上只有⼀个——积分图像haar求导。
我们先来看介绍Sift算法的基本过程,然后再介绍Surf算法。
1、Sift算法简介Sift算法是David Lowe于1999年提出的局部特征描述⼦,并于2004年进⾏了更深⼊的发展和完善。
Sift特征匹配算法可以处理两幅图像之间发⽣平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能⼒。
总体来说,Sift算⼦具有以下特性:(1) 、Sift特征是图像的局部特征,对平移、旋转、尺度缩放、亮度变化、遮挡和噪声等具有良好的不变性,对视觉变化、仿射变换也保持⼀定程度的稳定性。
(2) 、独特性好,信息量丰富,适⽤于在海量特征数据库中进⾏快速、准确的匹配。
(3) 、多量性,即使少数的⼏个物体也可以产⽣⼤量Sift特征向量。
(4) 、速度相对较快,经优化的Sift匹配算法甚⾄可以达到实时的要求。
(5) 、可扩展性强,可以很⽅便的与其他形式的特征向量进⾏联合。
其 Sift算法的三⼤⼯序为,(1)提取关键点;(2)对关键点附加详细的信息(局部特征)也就是所谓的描述器;(3)通过两⽅特征点(附带上特征向量的关键点)的两两⽐较找出相互匹配的若⼲对特征点,也就建⽴了景物间的对应关系。
提取关键点和对关键点附加详细的信息(局部特征)也就是所谓的描述器可以称做是Sift特征的⽣成,即从多幅图像中提取对尺度缩放、旋转、亮度变化⽆关的特征向量,Sift特征的⽣成⼀般包括以下⼏个步骤:(1) 、构建尺度空间,检测极值点,获得尺度不变性;(2) 、特征点过滤并进⾏精确定位;(3) 、为特征点分配⽅向值;(4) 、⽣成特征描述⼦。
找特征点的算法SIFT和SURF算法
![找特征点的算法SIFT和SURF算法](https://img.taocdn.com/s3/m/a737158edb38376baf1ffc4ffe4733687e21fccb.png)
找特征点的算法SIFT和SURF算法SIFT算法和SURF算法是用于图像特征点的检测与描述的两种经典算法。
它们在图像处理、计算机视觉和模式识别等领域得到广泛应用。
下面将分别介绍SIFT算法和SURF算法,并对其原理和应用进行详细阐述。
一、SIFT算法(Scale-Invariant Feature Transform)SIFT算法是由Lowe于1999年提出的一种用于图像特征点检测与描述的算法。
它通过分析图像的局部特征来提取与尺度无关的特征点,具有尺度不变性、旋转不变性和仿射不变性等优点。
1.特征点检测SIFT算法首先通过高斯差分金字塔来检测图像中的特征点。
高斯差分金字塔是由一系列模糊后再进行差分操作得到的,通过不同尺度的高斯核函数对图像进行卷积,然后对结果进行差分运算,得到图像的拉普拉斯金字塔。
在拉普拉斯金字塔上,通过寻找局部最大值和最小值来确定特征点的位置。
2.特征点描述在确定特征点的位置后,SIFT算法使用梯度直方图表示特征点的局部特征。
首先,计算特征点周围邻域内每个像素点的梯度幅值和方向,然后将邻域分为若干个子区域,并统计每个子区域内的梯度幅值和方向的分布,最后将这些统计结果组合成一个向量作为特征点的描述子。
3.特征点匹配SIFT算法通过计算特征点描述子之间的欧式距离来进行特征点的匹配。
欧式距离越小表示两个特征点越相似,因此选择距离最近的两个特征点作为匹配对。
二、SURF算法(Speeded Up Robust Features)SURF算法是由Bay等人于2024年提出的一种在SIFT算法的基础上进行改进的图像特征点检测与描述算法。
它通过加速特征点的计算速度和增强特征点的稳定性来提高算法的实时性和鲁棒性。
1.特征点检测SURF算法使用Hessian矩阵来检测图像中的特征点。
Hessian矩阵是图像的二阶导数矩阵,通过计算Hessian矩阵的行列式和迹来确定图像的局部最大值和最小值,从而找到特征点的位置。
surf算法代码
![surf算法代码](https://img.taocdn.com/s3/m/80376a68443610661ed9ad51f01dc281e53a560a.png)
surf算法代码下面是一个简单的Surf算法的伪代码示例:```python# 导入相关库(如图像处理库和机器学习库)import cv2from sklearn import svmfrom sklearn.model_selection import train_test_split# 加载训练数据集和标签(这里假设已经准备好了训练数据集和对应的标签)train_images = load_train_images()train_labels = load_train_labels()# 创建Surf特征提取器surf = cv2.xfeatures2d.SURF_create()# 创建空的特征列表和标签列表features = []labels = []# 循环遍历训练数据集,提取Surf特征并添加到特征列表中for image in train_images:keypoints, descriptors = surf.detectAndCompute(image, None) features.append(descriptors)# 将标签添加到标签列表中labels = train_labels# 将特征和标签转换为NumPy数组features = np.array(features)labels = np.array(labels)# 划分训练集和测试集train_features, test_features, train_labels, test_labels =train_test_split(features, labels, test_size=0.2)# 创建SVM分类器svm_classifier = svm.SVC()# 训练SVM分类器svm_classifier.fit(train_features, train_labels)# 使用测试集进行预测predictions = svm_classifier.predict(test_features)# 计算分类准确率accuracy = np.mean(predictions == test_labels)# 打印准确率print("Accuracy:", accuracy)```请注意,这只是一个简单的示例代码,实际的Surf算法实现可能需要更多的处理和参数调整,以达到最佳的性能和准确率。
SURF原理及源码解析
![SURF原理及源码解析](https://img.taocdn.com/s3/m/22acc2a5d0f34693daef5ef7ba0d4a7302766c00.png)
SURF原理及源码解析版权声明:本⽂为CSDN博主「zhaocj」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。
原⽂链接:SURF (Speeded Up Robust Features)是⼀种具有鲁棒性的局部特征检测算法,它⾸先由Herbert Bay等⼈于2006年提出,并在2008年进⾏了完善。
其实该算法是Herbert Bay在博⼠期间的研究内容,并作为博⼠毕业论⽂的⼀部分发表。
SURF算法的部分灵感来⾃于SIFT算法,但正如它的名字⼀样,该算法除了具有重复性⾼的检测器和可区分性好的描述符特点外,还具有很强的鲁棒性以及更⾼的运算速度,如Bay所述,SURF⾄少⽐SIFT快3倍以上,综合性能要优于SIFT算法。
与SIFT算法⼀样,SURF算法也在美国申请了专利。
与我的上⼀篇SIFT⽂章⼀样,该⽂分为原理解释、源码分析和应⽤实例。
但该⽂的内容也较多,对公式和图表的粘贴复制太⿇烦,所以我也把这篇⽂章上传到了百度⽂库和csdn,这样更⽅便⼤家阅读,⽹址为:在这⾥我仅把源码分析部分复制到这⾥,建议⼤家还是把原理和源码结合着看,这样更容易理解,所以最好还是看详细的全⽂。
实现SURF算法的⽂件为sources/modules/nonfree/src/surf.cppSURF类的构造函数为:SURF::SURF()SURF::SURF(doublehessianThreshold, int nOctaves=4, int nOctaveLayers=2, bool extended=true,bool upright=false )参数的含义为:hessianThreshold为Hessian矩阵⾏列式响应值的阈值nOctaves为图像堆的组数nOctaveLayers为图像堆中每组中的中间层数,该值加2等于每组图像中所包含的层数extended表⽰是128维描述符,还是64维描述符,为true时,表⽰128维描述符upright表⽰是否采⽤U-SURF算法,为true时,采⽤U-SURF算法SURF类的重载运算符( )为:void SURF::operator()(InputArray _img, InputArray _mask,CV_OUT vector<KeyPoint>& keypoints,OutputArray _descriptors,bool useProvidedKeypoints) const//_img表⽰输⼊8位灰度图像//_mask为掩码矩阵//keypoints为特征点⽮量数组//_descriptors为特征点描述符//useProvidedKeypoints表⽰是否运⾏特征点的检测,该值为true表⽰不进⾏特征点的检测,⽽只是利⽤输⼊的特征点进⾏特征点描述符的运算。
surf算法原理
![surf算法原理](https://img.taocdn.com/s3/m/b082318dafaad1f34693daef5ef7ba0d4a736de5.png)
surf算法原理宝子们!今天咱们来唠唠这个超有趣的SURF算法原理呀。
SURF呢,它全名叫加速稳健特征(Speeded - Up Robust Features)。
这名字听起来就感觉很厉害的样子,就像一个超级英雄,有着加速的超能力,还特别稳健呢。
咱先说说这个算法为啥要被搞出来。
你想啊,在图像的世界里,有那么多图像,就像有好多好多不同的小世界一样。
我们有时候想在这些图像里找到一些特别的东西,比如说两张照片里相同的物体啦,或者是在一张很复杂的图像里找到我们感兴趣的部分。
要是靠人工去一点点找,那可不得累死人,而且效率超低。
所以呢,就有了像SURF这样的算法。
那SURF算法到底是咋工作的呢?这就像是一场奇妙的探险之旅。
它先得把图像变得有规律起来。
就好比把一个乱糟糟的房间先简单整理一下,这样才能更好地找东西。
它会构建图像的积分图像。
这个积分图像可不得了,就像是给图像做了一个快速索引一样。
比如说你想知道图像里某个小方块的像素总和,要是没有这个积分图像,你得一个一个像素加起来,那得多慢呀。
但是有了积分图像,就可以一下子算出来,就像开了挂一样。
然后呢,SURF算法要找图像里的那些关键点。
这些关键点就像是图像里的小明星,是很特别的存在。
它怎么找呢?它会用一种类似小探测器的东西,在图像里到处探测。
这个探测器可不是随便探测的哦,它是根据图像的一些特性来的。
比如说图像里有些地方的亮度变化很特别,就像在一片平地上突然有个小土坡一样,这种地方就很可能是关键点。
找到这些关键点之后呢,SURF算法还得给它们做个标记,就像给小明星们戴上专属的小名牌一样,这样以后才能准确地找到它们。
接下来呀,SURF算法要描述这些关键点。
这就好比是给每个小明星写个小传一样。
它会根据关键点周围的像素信息来描述。
比如说关键点周围的像素是怎么分布的呀,是像星星一样散开,还是像小团子一样聚在一起呢。
它会用一些数学的方法把这些信息变成一串数字,这串数字就是这个关键点的独特描述啦。
计算机视觉:SIFT和SURF的比较
![计算机视觉:SIFT和SURF的比较](https://img.taocdn.com/s3/m/ec98b7e8370cba1aa8114431b90d6c85ed3a8876.png)
计算机视觉:SIFT和SURF的比较SIFT和SURF是计算机视觉中的两种不同的特征检测算法,它们都是在图像处理和计算机视觉中广泛使用的算法。
本文将会对这两个算法进行详细的比较分析。
一、算法概述SIFT算法(Scale-Invariant Feature Transform)是由David Lowe在1999年发表的一篇论文中提出的。
它是一种基于尺度空间理论和高斯差分算子的特征检测算法,可以在不同的尺度和旋转情况下提取出稳定的特征点。
SIFT算法的主要步骤包括:尺度空间构建、高斯差分金字塔、极值点检测、方向分配和特征描述。
SURF算法(Speeded-Up Robust Features)是在2006年由Herbert Bay等人提出的一种快速的特征检测算法。
它采用了Hessian 矩阵来检测特征点,并使用了一种加速技术,称为“积分图像”。
SURF算法的主要步骤包括:尺度空间构建、Hessian矩阵计算、特征点筛选、方向分配和特征描述。
二、算法优劣分析1.性能SIFT算法和SURF算法虽然都是图像处理和计算机视觉中非常常用的技术,但它们在性能方面存在着一些不同。
首先,相对于SIFT算法,SURF算法的计算速度更快。
SURF算法中使用的积分图像技术,能够大大提高算法的计算速度。
其次,SURF算法的特征点数量相对于SIFT算法来说较少,因此SURF算法的性能表现在低纬度特征点检测的任务上,要优于SIFT算法。
但是,在高维度的图像特征检测任务中,SIFT算法表现要比SURF算法好。
2.稳定性尺度不变性是计算机视觉中一个非常重要的性质。
在图像处理过程中,图像的尺度、旋转等条件的变化会给特征检测带来很大的困难。
在这方面,SIFT算法和SURF算法都能够很好的解决这个问题。
SIFT算法具有较好的稳定性,能够在不同的尺度下检测到相同的特征点,同时还能够检测出旋转不变性的特征点。
SURF算法在大多数情况下具备SIFT算法的稳定性,但在高纬度特征检测任务中,SURF算法的稳定性不如SIFT算法。
SURF算法
![SURF算法](https://img.taocdn.com/s3/m/7e003f82680203d8ce2f24f7.png)
SURF算法SURF是一种尺度、旋转不变的detector和descriptor。
最大的特点是快!在快的基础上保证性能(repeatability,distinctiveness 和robustness)。
SURF采用有效策略的主要有:1)积分图像(用于对图像卷积)2)detector 是基于Hessian矩阵,descriptor是基于分布的。
下面是SURF算法的具体实现:1.兴趣点检测SURF对于兴趣点的检测是基于最基本的Hessian近似矩阵。
1.1积分图像1.2 用于检测兴趣点的Hessian矩阵中得到启发,采用了盒子型滤波器(box filter)对上面的滤波器进行近似。
盒子型滤波器见图1.3.再根据filter的大小做一个归一化。
这对于尺度不变性是有必要的。
有了前面的着一些准备工作,就可以对一幅图像I计算每个点的近似Hessian矩阵的行列式值,将这些值存储,备用!1.3尺度空间表示算法的尺度不变性主要靠不同尺度下寻找感兴趣点。
谈到不同尺度就不得不说‘金字塔’。
Lowe在其SIFT大作中是这样构造尺度空间的:对原图像不断地进行Gauss平滑+降采样。
得到金字塔图像后,又进一步得到了DOG图,边和斑状结构就是通过DOG图得到其在原图的位置。
SURF中的做法与SIFT是有所不同的。
SIFT算法在构造金字塔图层时Gauss滤波器大小不变,改变的是图像的大小;而SURF则恰恰相反:图像大小保持不变,改变的是滤波器的大小。
之所以这么做的目的考虑的主要目的还是效率问题(这样可以利用积分图有关的快速计算,用不同size的Mask进行卷积运算,复杂度是一样的,仅仅是三个加减法而已)。
而且,由于没有对图像进行降采样,所以不存在混叠现象。
与SIFT类似,SURF的尺度空间也是按组(Octaves)划分的。
每一个Octave 里是对输入图像用size不断增加的filter进行滤波后得到的一系列响应。
总的来说,一组包含了一个缩放因子。
SURF算法介绍
![SURF算法介绍](https://img.taocdn.com/s3/m/2118df587375a417866f8fa1.png)
蒙娜丽莎的图像匹配---SURF算法1.图像匹配1.1.图像匹配的概念图像匹配成为计算机视觉和图像处理中的一个重要技术。
其方法思想就是根据己知的图像在其他图像中查找出含有己知图像的过程。
图像匹配的架构流程如图1.1。
该技术的研究涉及到许多相关的知识领域,如图像预处理、图像采样、特征提取等,同时将计算机视觉、多维信号处理和数值计算等紧密结合在一起。
图像匹配技术还与图像融合、图像匹配等研究方向系系相关,为图像理解和图像复原等相关领域的研究提供基础。
图1.1图像匹配流程图图像匹配技术作为图像处理的关键技术之一,在国防领域和医学领域等得到广泛的研究和应用[2]。
如果在不同视角,或是不同时间,或是使用了不同的传感器获取到的两幅或多幅图像间存在共同区域,如何寻找到图像间的共同区域,就是图像匹配需要解决的问题。
1.2.图像匹配的算法组成图像匹配技术的分支很多,对图像匹配提出的构架也是千姿百态,根据布朗提出了图像匹配的组成要素,将图像匹配的要素主要分为四个方面,分别是图像的特征空间,为求取变换参数定义的搜索空间和搜索策略,图像匹配的相似性度量。
特征空间是指在待配图像和参考图像上提取到的一系列特征集合。
将提取到的特征进行描述后参与最后的匹配,因此特征选取的好坏直接影响匹配的可行性和匹配的效果。
好的特征是满足自动匹配的前提,因此选取的特征一般包含图像的关键信息,此类特征存在以下特性:首先,此类特征具有公有性、唯一性和显著性,保证匹配的顺利进行和匹配的精度;其次,此类特征具有多量性,而且分布合理,保证匹配的稳定性。
合理的特征空间会降低匹配算法的计算量,提高算法的性能。
相似性度量是指评判待匹配图像和参考图像上特征的相似程度,它很大程度上决定了参与匹配的因素,一般采用某种代价函数或者是距离函数来进行度量。
好的相似性度量不仅可以减少算法的计算量,而且对于算法的匹配性能和鲁棒性起着重要的作用。
搜索空间为求取图像变换参数的空间。
surf算法基本原理
![surf算法基本原理](https://img.taocdn.com/s3/m/e4c1bd58e97101f69e3143323968011ca300f7b2.png)
surf算法基本原理嘿,朋友们,今天咱们聊聊一个有趣的话题,SURF算法。
听起来像是什么神秘的黑科技,其实它是一种非常实用的图像处理算法。
说到图像处理,大家肯定会想起那些花里胡哨的滤镜,或者是手机上那些能把你自拍变得美美哒的应用。
可是,SURF可不是单纯的美颜,它在图像识别和计算机视觉方面可是大显身手的哦。
想象一下,你在拍照的时候,手机能迅速识别出照片里的物体,那背后就有可能有SURF在默默奉献。
SURF,全名叫加速稳健特征(SpeededUp Robust Features),听起来就很酷炫,对吧?这个算法的核心思想其实很简单。
它主要是通过检测和描述图像中的特征点,让计算机能够识别出图像的关键部分。
就好比你见到一个老朋友,虽然他换了发型,但一眼就能认出他来,这就是特征点在起作用。
SURF就是利用这些特征点,帮助计算机进行图像匹配和识别。
SURF是怎么实现的呢?它会找到图像中的特征点。
这就像在一大堆照片中找到最吸引眼球的那一张,难度可想而知。
但SURF可不是一般的算法,它使用了一种叫做“Hessian矩阵”的数学工具,能快速找出图像中的高对比度区域。
这些区域就是我们所说的特征点。
哎,这就像是在人群中找出最亮眼的星星,大家都想看嘛。
找到特征点之后,SURF可没闲着。
它会对这些点进行描述,生成一组特征向量。
简单说,就是给每个特征点贴上一个“标签”,告诉计算机这个点有什么特点。
这种描述方法又快又稳,确保在各种光照、旋转和缩放的情况下都能可靠地识别出这些特征点。
想象一下,风吹草动,照片的背景换了个样子,但你依然能认出那是你最爱的小狗。
这种可靠性真是令人赞叹!再说说SURF在实际应用中的表现。
比如在自动驾驶技术中,车载摄像头需要不断识别周围环境。
SURF帮助车辆识别路标、行人甚至其他车辆,确保安全驾驶。
就好像你在繁忙的街道中,灵活躲避那些横冲直撞的行人,这可不是简单的事儿。
但有了SURF,这一切都变得简单多了。
常见特征检测算法介绍
![常见特征检测算法介绍](https://img.taocdn.com/s3/m/10059e6ccdbff121dd36a32d7375a417866fc1ba.png)
常见特征检测算法介绍特征检测算法是计算机视觉领域中常用的技术之一,用于从图像或视频中提取出具有一定重要性或者代表性的特征点或区域。
这些特征点或者区域可以帮助我们进行图像匹配、物体识别、边缘检测等任务。
下面将介绍几种常见的特征检测算法。
1.SIFT(尺度不变特征变换)SIFT是一种基于局部特征的算法,最初由Lowe 在1999 年提出。
它通过寻找图像中的尺度和旋转不变性的关键点,来提取特征点。
SIFT 算法先对图像进行多尺度的高斯滤波,然后计算出尺度空间极值点。
随后,选取关键点并计算其主方向。
最后,通过在关键点周围的窗口里计算梯度直方图,生成特征描述子。
2.SURF(加速稳健特征)SURF是一种快速且具有不变性的特征检测算法,由Bay等人于2024年提出。
它采用了一种叫做积分图像的计算方法来加速特征的提取过程。
SURF 的关键点提取过程与SIFT 类似,但是采用了一种叫作Haar小波响应的方法来计算特征描述子。
3.FAST(特征快速)FAST 是一种具有高速性能的角点检测算法,由Rosten 和Drummond 在2024年提出。
它通过比较像素点灰阶值和邻域像素点的灰阶值来判断是否为关键点。
FAST 算法具有简单、快速和鲁棒的特点,被广泛应用于图像和视频中特征点的检测。
4. Harris 角点检测算法Harris 角点检测算法是一种基于图像灰度变化的特征检测算法,由Harris和Stephens 在1988 年提出。
它通过计算图像灰度在不同方向上的变化率,来判断一些像素点是否为角点。
Harris 角点检测算法简单、快速,且对光照变化和图像旋转具有一定的不变性。
5. ORB(Oriented FAST and Rotated BRIEF)ORB 是一种特征点检测和描述子生成算法,由Rublee等人于2024年提出。
ORB 算法结合了FAST 点检测和BRIEF 描述子生成算法,同时引入了旋转不变性和仿射不变性,提高了算法的鲁棒性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2
1.2.1
Fast-Hessian Detector
The Hessian
The SURF detector is based on the determinant of the Hessian matrix. In order to motivate the use of the Hessian, we consider a continuous function of two variables such that the value of the function at (x, y ) is given by f (x, y ). The Hessian matrix, H , is the matrix of partial derivates of the function f .
1
SURF: Speeded Up Robust Features
In this section, the SURF detector-descriptor scheme is discussed in detail. First the algorithm is analysed from a theoretical standpoint to provide a detailed overview of how and why it works. Next the design and development choices for the implementation of the library are discussed and justified. During the implementation of the library, it was found that some of the finer details of the algorithm had been omitted or overlooked, so Section 1.5 serves to make clear the concepts which are not explicitly defined in the SURF paper [1].
i≤x j ≤y
I (x, y ) =
i=0 j =0
I (x, y )
(1)
Figure 1: Area computation using integral images Using the integral image, the task of calculating the area of an upright rectangular region is reduced four operations. If we consider a rectangle bounded by vertices A, B, C and D as in Figure 1, the sum of pixel intensities is calculated by: = A + D − (C + B ) (2)
2
det(H ) =
(4)
The value of the discriminant is used to classify the maxima and minima of the function by the second order derivative test. Since the determinant is the product of eigenvalues of the Hessian we can classify the points based on the sign of the result. If the determinant is negative then the eigenvalues have different signs and hence the point is not a local extremum; if it is positive then either both eigenvalues are positive or both are negative and in either case the point is classified as an extremum. Translating this theory to work with images rather than a continuous function is a fairly trivial task. First we replace the function values f (x, y ) by the image pixel intensities I (x, y ). Next we require a method to calculate the second order partial derivatives of the image. As described in Section ?? we can calculate derivatives by convolution with an appropriate kernel. In the case of SURF the second order scale normalised Gaussian is the chosen filter as it allows for analysis over scales as well as space (scale-space theory is discussed further later in this section). We can construct kernels for the Gaussian derivatives in x, y and combined xy direction such that we calculate the four entries of the Hessian matrix. Use of the Gaussian allows us to vary the amount of smoothing during the convolution stage so that the determinant is calculated at different scales. Furthermore, since the Gaussian is an isotropic (i.e. circularly symmetric) function, convolution with the kernel allows for rotation invariance. We can now calculate the Hessian matrix, H , as function of both space x = (x, y ) and scale σ .
H (x, σ ) =
Lxx (x, σ ) Lxy (x, σ ) Lxy (x, σ ) y (x, σ )
,
2
(5)
g (σ ) Here Lxx (x, σ ) refers to the convolution of the second order Gaussian derivative ∂ ∂x 2 with the image at point x = (x, y ) and similarly for Lyy and Lxy . These derivatives are known as Laplacian of Gaussians. Working from this we can calculate the determinant of the Hessian for each pixel in the image and use the value to find interest points. This variation of the Hessian detector is similar to that proposed by Beaudet [2]. Lowe [9] found performance increase in approximating the Laplacian of Gaussians by a difference of Gaussians. In a similiar manner, Bay [1] proposed an approximation to the Laplacian of Gaussians by using box filter representations of the respective kernels. Figure 2 illustrates the similarity between the discretised and cropped kernels and their box filter counterparts. Considerable performance increase is found when these filters are used in conjunction with the integral image described in Section 1.1. To qauntify the difference we can consider the number of array accesses and operations required in the convolution. For a 9 × 9 filter we would require 81 array accesses and operations for the original real valued filter and only 8 for the box filter representation. As the filter is increased in size, the computation cost increases significantly for the original Laplacian while the cost for the box filters is independent of size.