命题的定义及四种命题 PPT
02简易逻辑--命题的四种形式
“非 p” 假 真 真 形式的复合 假 假 假
假 真 假 真时为真, 其 假 假 假 它情形为假.
命题与 p 的 真假相反;
“p 或 q”形式的复合命题当 时为假, 其它情形为真;
p
与
q
同时为假
6.注意 ①由简单命题构成复合命题时, 不一定是简单地加“或、且、 非”等逻辑联结词; 另外应注意含“或、且、非”等词汇的命 题也不一定是复合命题, 在进行命题的合成或分解时一定要检 验是否符合复合命题的“真值表”, 如果不符要作语言上的调 整②. 命题的“否定”是学习上的重点, 因为这是“反证法”证 明的第一步. 必须注意, 命题的“否定”与一个命题的“否命 题”是两个不同的概念: 对命题 p 的否定(即非 p )是否定命题 p 所作的判断; 而“否命题”是对“若 p 则 q”形式的命题而言,
一、命题的有关概念
1.命题 可以判断真假的语句.
2.逻辑联结词 “或”、“且”、 3.简单命题 不含“逻非辑”联. 结词的命题. 4.复合命题 含有逻辑联结词的命题.
5.复合命题真值表
p 非p p q p或q p q p且q
“p 且 q”形
真 假 真 真 真 真 真 真 式的复合命题
假 真 真 假 真 真 假 假 当p 与q同时为
要同时否定它的条件与典结型论.例题
例1 写出由下述各命题构成的“p 或 q”形式的复合命题: (1) p: 9 是 144 的约数, q: 9 是 225 的约数; (2) p: 方程 x2-1=0 的解是 x=1, q: 方程 x2-1=0 的解是 x=-1; (3) p: 实数的平方是正数, q: 实数的平方是 0.
(1)9 是 144 的约数或 9 是 225 的约数(9 是 144;
《命题的四种形式》PPT课件
命题:能够判断真假的语句叫做命题.
• 思考下面的命题②③④与命题①有何关系? ①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相等,那么它们全等; ③如果两个三角形不全等,那么它们的面积不 相等; ④如果两个三角形的面积不相等,那么它们不 全等.
②与①互 为逆命题
否命题:当 c>0时,若a≤b,则ac≤bc
逆否命题:当 c>0时,若ac≤bc ,则 a≤b
2)若x=y,则 x y
真
逆命题:若 x y ,则x=y
假
否命题:若x≠y,则 x y
假
真 真
逆否命题:若 x y ,则x≠y
真
第8页/共32页
例3与命题“若m M ,则nM ”等价的
命题是 ( D)
3)真值:命题的否定的真值与原命题 相反 ; 而否命题的真值与原命题 无关 。
第11页/共32页
例4、写出下列命题的否定形式及否命题。 1)全等三角形的面积相等 命题的否定:全等三角形的面积不相等
否命题:不全等的三角形面积不相等
2)若 m2 n2 a2 b2 0 ,则实数m、n、a、b全为零 命题的否定:若 m2 n2 a2 b2 0,则实数m、n、
逆命题: 若ab=0,则a=0.
假
否命题:若a≠0,则ab≠0.
假
逆否命题:若ab≠0,则a≠0.
真
第18页/共32页
练习1 写出下列命题的逆命题、否命题与逆否命题,
并判断它们的真假.
(1) 若a2>b2,则a>b.
假
逆命题: 若a>b,则a2>b2.
假
否命题:若a2≤b2,则a≤b.
假
四种命题及其关系
四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
四种命题的概念
第7页/共10页
四种命题的概念
4、写出下列命题的逆命题,并判断原命题和逆命题的真假:
(1)若 x2 1,则x 1 (2)对顶角相等; (3)等腰三角形的两腰相等; (4)x2 2x 8 0 的解集为空集。
解:(1)逆命题是:若 x 1,则x2 1
原命题是假命题,逆命题是真命题 (2)逆命题是:如果两个角相等,则这两个角是对顶角
解:逆命题:当 c>0时,若ac>bc,则a>b 否命题:当 c>0时,若a≤b,则ac≤bc 逆否命题:当 c>0时,若ac≤bc,则a≤b
注意:本题中的“当c>0时”是大前提,不论在写逆命题、否命题或逆否命 题时都应该把它写在最前面;而本题原命题的条件p时:若a>b,结 论是:ac>bc.
第6页/共10页
第4页/共10页
四种命题的概念
例2、写出命题“若xy=0,则x=0或y=0的逆命题、否命题、逆否命题 解:逆命题:若x=0或y=0,则xy=0
否命题:若xy≠0,则x≠0且y≠0 逆否命题:若x≠0或y ≠0,则xy≠0 注意:(1)┓(p或q)=(┓p)且(┓q)
┓(p且q)=(┓p)或(┓q) (2)要写出原命题的逆命题,否命题,逆否命题关键是要找出原命
原命题是真命题,逆命题是假命题 (3)逆命题是:如果一个三角形有两边相等,那么这个三角形
是等腰三角形 原命题是真命题,逆命题是真命题
(4)逆命题是:空集是 x2 2x 8 0 的解集
第8页/共10页
四种命题的概念
课后小结: 1、四种命题的概念; 2、四种命题的表示方法; 3、能根据原命题写出原命题的逆命题、否命题及逆否命题。
观察下列两个命题,说出他们的不同之处 (1)同位角相等,两直线平行。 (2)两直线不平行,同位角不相等。
命题及四种命题培训课件.ppt
像这样,一个命题的条件和结论恰好是另一 个命题的条件的否定和结论的否定,这样的两个 命题叫做互否命题,其中一个叫原命题,另一个 叫原命题的否命题.
vv
否命题
一般地,把条件p,结论q的否定分别记作“ p, q”, 读作“非p”、“非q”.
因此若原命题为“若p,则q”, 则否命题为:若 p,则q”
真
逆命题:若ab=0,则a=0 假
否命题:若a 0,则ab 0 假
逆否命题:若ab 0,则a 0 真
4原命题:若a b,则a2 b2 假
相等; • ④如果两个三角形的面积不相等,那么它们不
全等;
vv
观察命题①与命题②的条件和结论之间 分别有什么关系?
①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相等,那么它们全等;
可以发现命题①与②的 条件与结论互换了
像这样,一般地,对于两个命题,如果一个命 题的条件和结论分别是另一个命题的结论和条 件,那么我们把这样的两个命题叫做互逆命题, 其中一个命题叫原命题,另一个叫做原命题的 逆命题。
正面 词语 否定
等于 大于 小于 不等于 不大于 不小于
是 不是
都是 不都是
正面 词语 否定
全 不全
至少有 一个
一个也 没有
能 不能
P或q
非p且 非q
P且q
非p或 非q
vv
例1.写出下列命题的逆命题、否命题与逆否
命题并判断真假
1原命题:若x2 3x 2 0,则x 2
假
逆命题:若x 2,则x2 3x 2 0
的,可以判断真假的陈述句叫做命题. 命题的定义的要点:能判断真假的陈述句.
命题的概念命题的四种形式及关系命题的否定和否命题的区别
一、命题的概念1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
二、命题的否定与否命题有什么区别1.命题的否定只否定该命题的结论,而否命题则否定原命题的条件和结论。
比如:“若a>0.则a+b>0”这个命题的否定是“存在a>0,使得a+b<=0”,否命题是“存在a<=0,使得a+b<=0”;在大学阶段,“只否定命题结论”的说法不一定正确,根据真值表,在A为假命题的情况下,非(A=>B)与A=>非B并不是逻辑相等的。
参考:滑铁卢大学数学教材对于“若A则B”式命题的否定为“A且非B”。
2.一个命题与它的否定形式是完全对立的。
两者之间有且只有一个成立。
数学中常用到反证法,要证明一个命题,只需要证明它的否定形式不成立就可以了。
而对于否命题,它是否成立和原命题是否成立没有直接关系。
三、举例命题的否定与否命题的易错题1、写出“若a,b都是正数,则a+b大于等于2√ab.”的否命题。
解答:若a,b不都是正数,则a+b大于等于2√ab.。
评注:“都是正数”的否定是“不都是正数”而不是“都不是正数”.如果把“a,b都是正数”理解成“a是正数且b是正数”,则其否定也可写成“a不是正数或b不是正数”。
2、写出“两个奇数的和是偶数”的否命题与命题的否定。
解答:否命题:若两个数不全是奇数,则它们的和不是偶数。
命题的否定:两个奇数的和不是偶数。
评注:(1)“两个奇数的和是偶数”意思是“有两个数全是奇数,则它们的和是偶数”。
(2)“是偶数”的否定是“不是偶数”,而不是“是奇数”。
3、写出下列命题的否定:(1)有些常数数列不是等比数列。
(2)平行四边形是菱形。
解答:(1)任意一个常数数列都是等比数列。
四种命题的关系 PPT课件
四种命题的相互关系: 回顾
四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真 假性;
(2)两个命题为互逆命题或互否命题,它们的 真假性没有关系.
回顾:
• 交__题__。_
• 同否时命否题定。原命题的条件和结论,所得的命 题是________
• 交换原命逆题否的命条题件。和结论,并且同时否定, • 所原得命的题命: 题若是p,__则__q______ 逆命题:若q,则
p
四种命题之间的相互关系
原命题 若p 则q
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
四种命题中的真假性有什么规律?
原命题 凡质数都是奇数 假
逆命题 凡奇数都是质数 假
否命题 不是质数就不是奇数 假
逆否命题 不是奇数就不是质数 假
几条结论:
1、真假个数一定是偶数,即0个,2个,4个。 2、两个命题互为逆否命题,它们有相同的真假性。 3、两个命题为互逆命题或互否命题,它们的真假性没有关系。
离不相等.
真
四种命题中的真假性有什么规律?
原命题 两个三角形全等,则它们的面积相等. 真 逆命题 两个三角形的面积相等,则它们全等. 假 否命题 两个三角形不全等,则它们的面积不相等.
假 逆否命题 两个三角形的面积不相等,则它们不全等.
真
四种命题中的真假性有什么规律?
原命题“若m ≤ 0,或n ≤ 0,则m+n ≤ 0”假
反证法的一般步骤:
(1)假设命题的结论不成立,即假
反设
设结论的反面成立;
(2)从这个假设出发,经过推理
归谬
论证,得出矛盾;
(3) 由矛盾判定假设不正确,
命题的定义及四种命题(共29张PPT)
课堂小结
定义3:条一件般和结地论,对于两个命题,如果一个
命题否的定
否恰定好是另一个命题的结论的
和条件的
,那么我们把这样的两个命题叫做 逆否命题
互为
.其中一个命题叫做原命题,另一
个命题叫做原命题的逆否命题.
否命题:若┐p,则┐q
例如,原命题:同位角相等,两直线平行。
否命题:同位角不相等,两直线不平行。
观察命题(1)与命题(4)的条件和结论之间分别 有什么关系?
若f(x)是正弦函数,则f(x)是周期函数; 1. (5)3 能被2整除; q 逆命题:若一个整数能被5整除,则这个数的末位数字是0. 若f(x)不是周期函数p,则f(x)不是正弦函数. 4. 若整数a能被2整除,则a是偶数;
命题“若整数a是素数,则a是奇数。”具有“若p则
q”的形式。
p
q
通常,我们把这种形式的命题中的p叫做命题
的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不 是唯一的形式,也可写成“如果p,那么q” “只要 p,就有q”等形式。
“若p则q”形式的命题的书写
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论 。
条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
”具有(“若p1则q)”的形垂式。 直于同一条直线的两个平面平行;
若x)是正弦函数,则f(x)是周期函数;
若两个平面垂直于同一直线,则这两个平面平行。 真 如何判断一个语句是不是命题?
(1) 原命题:若一个整数的末位数字是0,则这
个整数能被5整除;
真命题
《四种命题的关系》课件
根据主语对它的属性或成员进行判断。范畴命 题分为 A、E、I、O 四种类型。
陈述命题
对客观事实或事件进行陈述。
定义命题
用于说明一个概念或对象的定义。
命题函数
包含变量的命题,可为真或假,取决于变量的 赋值。
命题的关系
1 等价命题
具有相同真值的命题,它们的真值表完全一 致。
2 逆命题
若 p → q,则 q → p 为逆命题。
《四种命题的关系》PPT 课件
探索四种命题之间的关系,了解命题的定义、类型和逻辑关系图等。让我们 一起深入了解命题逻辑。
命题的定义
陈述性语句
命题是可以为真或假的陈述性语句,由主语和谓语组成。
语法结构
命题是一种特定的语法结构,通常由主语和谓语组成。
符号表示
命题可以用符号表示,如 p真,则 ¬p 为假。
4 逆否命题
若 p → q,则 ¬q → ¬p 为逆否命题。
关系图
逻辑关系图
用图形表示命题的相互关系,包 括等价、逆、否、逆否关系。
圆形图示
用圆形、箭头等图形形式展示命 题之间的关系。
线段图示
利用线段将命题相关性表示出来, 形成直观的逻辑关系图。
《四种命题的概念》课件
总结与提高
命题是推理的基础,对于 逻辑思维的培养非常重要。
学习命题需要掌握分类、 逻辑运算、等价和蕴含等 概念。
通过练习,不断提高命题 推理的能力。
命题的分类
按照真值的不同分类
分为真命题、假命题和不确定命 题。
按照语法结构的不同分类
分为简单命题、复合命题和开放 命题。
分类时需要注意哪些问题?
注意排除歧义和重复,以及分类 的合理性。
命题的逻辑运算
1
命题有哪些逻辑运算符?
非、与、或、异或、蕴含和等价。
2
逻辑运算符的运算规则是什么?
按照真值表和优先级进行计算。
四种命题的概念
在这个PPT课件中,我们将探讨命题的定义、分类、逻辑运算以及等价和蕴含。 掌握这些概念非常重要,它们为逻辑思维提供了基础。
命题的定义
什么是命题?
命题是可以判断真假的陈述句。
命题的特点有哪些?
命题具有真假性、确定性和稳定性。
命题与语句的关系是什么?
命题是语句的一种,但不是所有语句都是命题。
3
逻辑运算符的真值表是怎样的?
根据运算规则,可以列出运算符的真值表。
命题的等价和蕴含
什么是等价命题?
两个命题在任何情况下的真假值均相同。
什么是蕴含命题?
如果一个命题的真,则另一个命题一定为真。
Байду номын сангаас
等价命题的特点有哪些?
其中一个命题可以替换为另一个命题,而不影响 命题间的逻辑关系。
蕴含命题的特点有哪些?
高中数学1.1.2四种命题优秀课件
再见
紧密高考
新课学习
命题方向1 ⇨四种命题的概念
[题目]:写出以下命题的逆命题、否命题与逆否命题. (1)正数的平方根不等于0; (2)当x=2时,x2+x-6=0; (3)假设a>b,那么ac2>bc2.
规律总结
新课学习
『规律总结』 写出四种命题的方法 (1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否认原命题的条件和结论,所得的命题是否命题; (3)交换原命题的条件和结论,并且同时否认,所得的命题是逆否命 题.
新课学习
否命题
互否命题: 对于两个命题,其中一个命题的条件和结论分别是另一个 命题的___条_件__的_否__认____和___结__论_的__否_认____.我们把这样的两 个命题叫做互否命题,如果把其中一个命题叫做原命题, 那么另一个命题叫做原命题的___否_命__题__. 假设原命题为“假设p,那么q〞,那么其否命题为 “____假_设__¬p_,__那_么__¬q_〞.
新课学习
[标准解答] (1)原命题:假设a是正数,那么a的平方根不等于0; 逆命题:假设a的平方根不等于0,那么a是正数; 否命题:假设a不是正数,那么a的平方根等于0; 逆否命题:假设a的平方根等于0,那么a不是正数; (2)原命题:假设x=2,那么x2+x-6=0; 逆命题:假设x2+x-6=0,那么x=2. 否命题:假设x≠2,那么x2+x-6≠0; 逆否命题:假设x2+x-6≠0,那么x≠2. (3)原命题:假设a>b,那么ac2>bc2; 逆命题:假设ac2>bc2,那么a>b; 否命题:假设a≤b,那么ac2≤bc2; 逆否命题:假设ac2≤bc2,那么a≤b.
高中必修一命题及其关系充分条件与必要条件 PPT
充分条件与必要条件得判定
【例2】 (2013年高考湖南卷)“1<x<2”就是“x<2”成立得( )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件
[解析] 当1<x<2时,x<2成立;当x<2时,1<x<2不一定成立,所以 “1<x<2”就是“x<2”成立得充分不必要条件、
[答案] A
反思总结
判断充分条件与必要条件得策略
(1)寻求q得必要条件p,即以q为条件推出结论p; (2)寻求q得充分条件p,即求使q成立得条件p; (3)寻求q得充要条件p,从上述两方面入手,若得到得结论都正确,则p 为q得充要条件、
变式训练
2、“a+c>b+d”就是“a>b且c>d”得( )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
解析:由题意得A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},故 A∪B=C,则“x∈A∪B”就是“x∈C”得充要条件、
答案:C
四种命题及其真假判断
【例1】 (2014年南京模拟)有下列几个命题: ①“若a>b,则a2>b2”得否命题; ②“若x+y=0,则x,y互为相反数”得逆命题; ③“若x2<4,则-2<x<2”得逆否命题、 其中真命题得序号就是________、 [解析] ①原命题得否命题为“若a≤b则a2≤b2”错误、 ②原命题得逆命题为:“若x,y互为相反数,则x+y=0”正确、 ③原命题得逆否命题为“若x≥2或x≤-2,则x2≥4”正确、 [答案] ②③
四种命题
则a+b≠1.
逆否证法
常用的“结论词”与“反设词”列表如 下: 原结论 原结论
词 至少有 一个 至多有 一个 至少有 n个 至多有 n个 反设词 一个也没有 至少有两个 至多有n-1个
词 对所有x 存在某x不成立 成立 对任意x 存在某x成立 不成立 p或 q p且 q 非p且非q
反设词
至少有n+1个
非p或非q
知识要点:
一、四种命题的概念:
原命题: 若 p 则 q . 逆命题: 若 q 则 p . 否命题: 若 p 则 ┐q .
逆否命题:若 ┐ q 则 ┐p.
举例
二、等价性:
1、原命题为真,它的逆否命题一定真;
2、原命题为真,它的逆命题、否命题不
一定真; 3、一个命题与它的逆否命题是等价的.
举例
三、四种命题之间的关系:
6
至少有一个大于0.
例3、已知正实数a、b、c满足
a+b+c=1,在关系式
3(1-a2)≤4(b+c),
3(1-b2)≤4(c+a), 3(1-c2)≤4(a+b)中,
试证明至少有一个成立.
例4、已知a和b均为正有理数,且 a和
b 都是无理数,证明 a b是无理数.
例5、证明:若a2+2ab+b2+a+b-2≠0,
返回
例2、判断下列命题的真假,并写出它 们的逆命题、否命题、逆否命题. (1)若a>b,则ac2>bc2;
(2)若在二次函数y=ax2+bx+c中,
b2-4ac<0,则该二次函数图象
与x轴有公共点.
返回
例3、判断下列命题的真假:
四种命题ppt课件
完整版ppt课件
21
说明:在通常情况下, 复合命题“p或q”否定为“非p且非 q”, “p且q”否定为“非p或非q”, “全为”否定为“不全为”, “都为”否定为“不都为”
完整版ppt课件
22
命题的否定形式与否命题
写出下列各命题的否定形式及命题的否命题, 并分别判断它们的真假: (1)面积相等的三角形是全等三角形; (2)有些质数是奇数; (3)所有的方程都不是不等式; (4)末位数字是0或5的整数,能被5整除;
完整版ppt课件
20
练习4:已知a,b,c,d是实数, 若a=b,c=d,则a+c=b+d。
原命题:已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.
逆 命 题 : 已 知 a , b , c , d 是 实 数 , 若 a + c = b + d , 则 a = b , c = d .
完整版ppt课件
4
学生活动
原命题:
1.如果两个三角形全等,那么它们的面积相等.
相
互
条件
结论
逆
逆命题:
同
命
题
2.如果两个三角形的面积相等 ,那么它们全等.
条件
完整版ppLeabharlann 课件结论5学生活动 (1)如果两个三角形全等,那么它们的面积相等.
(3)如果两个三角形不全等,那么它们的面积不相等.
完整版ppt课件
(3)如果两个三角形不全等,那么它们的面积不相等.
(4)如果两个三角形的面积不相等,那么它们不全等. 观
命题2,3,4与命题1有何关系?
考
察 与
思
完整版ppt课件
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 负数的立方是负数 若一个数是负数,则这个数的立方是负数。真
(5) 对顶角相等 若两个角是对顶角,则这两个角相等。 真
(6) 能被2整除的整数是偶数 若一个整数能被2整除,则这个整数是偶数。 真
(7) 菱形的对角线互相垂直且平分 若四边形是菱形,则它的对角线互相垂直且平分。 真
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
大家学习辛苦了,还是要坚持
继续保持安静
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的形式。 p
q
通常,我们把这种形式的命题中的p叫做命 题的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式 而不是唯一的形式,也可写成“如果p,那么q” “只要p,就有q”等形式。
练习
1、将命题“a>0时,函数y=ax+b的值随x值 的增加而增加”改写成“p则q”的形式,并 判断命题的真假。
解:a>0时,若x增加,则函数y=ax+b的值也 随之增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
逆命题:两直线平行,同位角相等。
观察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
1.
3.
若若f(fx(x)不)是是正正弦弦函函数数,p,则则f(fx(x)是)不周是期周函期数函;数q .
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定
分别记作 “┐p” “┐q”。
互否命题
原命题:若p,则q
1. 若f(x)是正弦函数,则f(x)是周期函数; 2. 若f(x)是周期函数,则f(x)是正弦函数; 3. 若f(x)不是正弦函数,则f(x)不是周期函数; 4. 若f(x)不是周期函数,则f(x)不是正弦函数。
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
否命题:若┐p,则┐q
例如,原命题:同位角相等,两直线平行。 否命题:同位角不相等,两直线不平行。
判断为真的语句叫真命题。 判断为假的语句叫假命题。
如何判断一个语句是不是命题?
1) 7是23的约数吗? 2) X>5. 3) -2<a<3. 4) 画线段AB=CD.
疑问句 开语句 祈使句
判断一个语句是不是命题,关键看这语句是否符合 “是陈述句”和“可以判断真假” 这两个条件。
有些语句中含有变量,在不给定变量的值之前,我 们无法确定这语句的真假,这样的语句叫开语句。
2. 若f(x)是周期函数,p 则f(x)是正弦函数;q
q
p
互逆命题:一个命题的条件和结论分别是另一个命题的 结论和条件,这两个命题叫做互逆命题。 原 命 题:其中一个命题叫做原命题。 逆 命 题:另一个命题叫做原命题的逆命题。
即 原命题:若p,则q
逆命题:若q,则p
例如,原命题:同位角相等,两直线平行。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
例3 把下列命题改写成“若p则q”的 形式,并判定真假。
(1)垂直于同一条直线的两个平面平行; 若两个平面垂直于同一直线,则这两个平面平行。真 (2)两个全等三角形的面积相等; 若两个三角形全等,则这两个三角形的面积相等。真
(4)若平面上两条直线不相交,则这两条直线平行.
(是,真)
(5) (2)2 2 (是,假)
(6)x>15. (不是命题)
练习 判断下列语句是否是命题 .
(1)求证 3 是无理数。
(2) x22x10.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。
(6)若 x R ,则 x24x70.
3. 把下列命题改写成“若p则q”的形 式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
命题及其关系
1.1.2 四种命题
下列四个命题中,命题(1)与命题(2)(3)(4) 的条件和结论之间分别有什么关系?
看看下列语句是不是命题?
1) 今天天气如何?
不是(疑问句)
2) 你是不是作业没交? 不是(疑问句)
3) 这里景色多美啊! 不是(感叹句)
4) -2不是整数。
是
5) 4>3。
是
6) x>4。
不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
(1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。
(2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
命题的定义及四种命题
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 2整除; (6)若x2=1,则x=1.
命题的概念
一般地,在数学中,我们把用语言、符号 或式子表达的,可以判断真假的陈述句叫做 命题
ห้องสมุดไป่ตู้
“若p则q”形式的命题的书写
对于一些条件与结论不明显的命题,一般 采取先添补一些命题中省略的词句, 确定 条件与结论。
如命题:“垂直于同一条直线的两个平面 平行”。
写成“若p则q”的形式为: 若两个平面垂直于同一条直线,则这
两个平面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。