数据结构排序方法的比较

合集下载

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度相关概念1、稳定排序(stable sort)和⾮稳定排序稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。

反之就是⾮稳定排序。

2、内排序(internal sorting)和外排序(external sorting)在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调⼊内存,并借助内存调整数在外存中的存放顺序排序⽅法称为外排序。

排序算法【冒泡排序】(Bubble Sort)冒泡排序⽅法是最简单的排序⽅法。

这种⽅法的基本思想是,将待排序的元素看作是竖着排列的“⽓泡”,较⼩的元素⽐较轻,从⽽要往上浮。

在冒泡排序算法中我们要对这个“⽓泡”序列处理若⼲遍。

所谓⼀遍处理,就是⾃底向上检查⼀遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下⾯,就交换它们的位置。

显然,处理⼀遍之后,“最轻”的元素就浮到了最⾼位置;处理⼆遍之后,“次轻”的元素就浮到了次⾼位置。

在作第⼆遍处理时,由于最⾼位置上的元素已是“最轻”元素,所以不必检查。

⼀般地,第i遍处理时,不必检查第i⾼位置以上的元素,因为经过前⾯i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n2)。

【选择排序】(Selection Sort)选择排序的基本思想是对待排序的记录序列进⾏n-1遍的处理,第 i 遍处理是将[i..n]中最⼩者与位置 i 交换位置。

这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n2 )。

【插⼊排序】(Insertion Sort)插⼊排序的基本思想是,经过i-1遍处理后,L[1..i-1]⼰排好序。

第i遍处理仅将L插⼊L[1..i-1]的适当位置,使得L[1..i]⼜是排好序的序列。

要达到这个⽬的,我们可以⽤顺序⽐较的⽅法。

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构 两次 排序方法

数据结构 两次 排序方法

数据结构两次排序方法
常见的数据结构排序方法有多种,下面介绍两种常用的排序方法:
1. 冒泡排序(Bubble Sort):
冒泡排序是一种简单直观的排序算法。

它通过重复地遍历要排序的序列,每次比较相邻的两个元素,如果它们的顺序错误就交换它们,直到整个序列有序。

具体步骤如下:
- 从序列的第一个元素开始,依次比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置。

- 对整个序列进行一轮遍历后,最大的元素就会被调整到最后的位置。

- 重复上述步骤,每次遍历都将未排序部分中最大的元素调整到合适的位置,直到整个序列有序。

2. 快速排序(Quick Sort):
快速排序是一种高效的排序算法,基于分治的思想。

它通过选择一个基准元素,将序列分为两个子序列,其中一个子序列中的元素都比基准元素小,另一个子序列中的元素都比基准元素大,然后对子序列进行递归排序。

具体步骤如下:
- 选择一个基准元素(通常选择第一个或最后一个元素)。

- 将序列分为两个子序列,小于基准元素的放在左边,大于基准元素的放在右边。

- 对左右两个子序列递归地进行快速排序。

- 合并左子序列、基准元素和右子序列,得到排序后的序列。

冒泡排序的时间复杂度为O(n^2),而快速排序的平均时间复杂度为O(nlogn),因此在大多数情况下,快速排序是更优的选择。

数据结构课程设报告—各种排序算法的比较

数据结构课程设报告—各种排序算法的比较

数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。

排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。

每种排序过程中均显示每一趟排序的细节。

程序的输入:输入所需排序方式的序号。

输入排序的数据的个数。

输入具体的数据元素。

程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。

b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。

开始时建立一个初始的有序序列, 它只包含一个数据元素。

然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。

c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。

等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。

d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

数据结构(C语言版)实验报告 (内部排序算法比较)

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。

在数组内部前半部为排好序的记录,后半部是未排好序的。

⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。

折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。

冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。

也不会改变相等记录的相对位置。

2-路归并排序:将两个有序表合并成⼀个有序表。

每次划分的两个⼦序列前后相邻。

合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。

因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。

基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。

分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。

(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。

经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。

但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。

这种跳跃式的移动导致该排序⽅法是不稳定的。

快速排序:改进的冒泡排序。

冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。

快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。

数据结构与算法(12):排序

数据结构与算法(12):排序

int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

其次,说⼀下稳定性的好处。

排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。

基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。

另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。

回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。

(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。

⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。

所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。

那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。

⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。

(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。

当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。

数据结构 排序

数据结构 排序
数据对象全部存放在内存的排序;外排序是 指在排序期间全部对象个数太多,不能同时 存放在内存,必须根据排序过程的要求,不 断在内、外存之间移动的排序。

排序的时间开销: 排序的时间开销是
衡量算法好坏的最重要的标志。排序的 时间开销可用算法执行中的数据比较次 数与数据移动次数来衡量。
内排序分类
• 依不同原则 插入排序、交换排序、选择排序、归 并排序和计数排序等。 依所须工作量 简单排序---时间复杂度o(n2) 先进排序方法---时间复杂度o(n logn) 基数排序---时间复杂度o(d.n)
08
08 08 25*
i=3
21 21
i=4
21 16
25 21
25* 25
49
16
08 08
16
25* 49
16
21 16
25 21
25* 49 25
08
08
i=5
08
25* 49
直接插入排序的算法
typedef int SortData; void InsertSort ( SortData V[ ], int n ) {
希尔排序 (Shell Sort)

基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
//按非递减顺序对表进行排序

数据结构 -第13周内排序第7讲-内排序的比较.pdf

数据结构 -第13周内排序第7讲-内排序的比较.pdf

90
2
70
90
3
80
72
4
70
72
标识
k1
k2
k2简单选择排序
4
70
72
3
80
72
1
80
90
2
70
90
标识
k1
k2
k1直接插入排序
4
70
72
相对次序不改变
2
70
3
80
90 72
相对次序不改变
1
80
90
答案为D。
4、如何选择合适的排序算法
因为不同的排序方法适应不同的应用环境和要求,所以选择 合适的排序方法应综合考虑下列因素:
O(n2)
最好情况 O(n) O(nlog2n)
O(n2) O(n2) O(n2) O(nlog2n) O(nlog2n) O(d(n+r))
O(n) O(nlog2n) O(n2) O(nlog2n) O(nlog2n) O(d(n+r))
空间复杂度
O(1) O(1) O(1) O(1) O(log2n) O(1) O(1) O(n) O(r)
考虑2:k2选择直接插入排序还是简单选择排序 ? 稳定性
例如:
标识
k1
k2
1
80
90
2
70
90
பைடு நூலகம்
3
80
72
4
70
72
标识
k1
k2
k2直接插入排序
3
80
72
4
70
72
1
80
90
2
70

数据结构与算法-排序

数据结构与算法-排序
构成的逆序记录对。
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序

CONTENTS

01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入

数据结构(C语言)第八章 排序

数据结构(C语言)第八章 排序

直接插入排序过程
0 21 1 25 2 49 3 4 25* 16 5 08 temp
i=1
0 21
21
1 25
25 25
2 49
49 49
3 4 25* 16
25* 16 25* 16
5 08
08 08
temp 25
i=2
21
49
21
25
25 25
49
49 25*
25* 16
25* 16 49 16
希尔排序 (Shell Sort)

基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
第八章 排序
概述
插入排序
交换排序 选择排序 归并排序 基数排序 各种内排方法比较
概 述

排序: 将一个数据元素的任意序列,重新
排列成一个按关键字有序的序列。

数据表(datalist): 它是待排序数据对象的
有限集合。

主关键字(key): 数据对象有多个属性域,
即多个数据成员组成, 其中有一个属性域可用 来区分对象, 作为排序依据,称为关键字。也 称为关键字。
直接插入排序 (Insert Sort)

基本思想 当插入第i (i 1) 个对象时, 前面的 R[0], R[1], …, R[i-1]已经排好序。这时, 用 R[i]的关键字与R[i-1], R[i-2], …的关键字顺 序进行比较, 找到插入位臵即将R[i]插入, 原 来位臵上的对象向后顺移。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据结构第十章 排序

数据结构第十章 排序
7
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].

数据结构课程设计排序算法总结

数据结构课程设计排序算法总结

排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。

(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。

折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。

(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。

(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。

(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。

数据结构中最优和最差相同的排序算法

数据结构中最优和最差相同的排序算法

数据结构中最优和最差相同的排序算法最优和最差相同的排序算法:计数排序
计数排序是一种非比较排序算法,它的时间复杂度为O(n+k),其中n为待排序元素的个数,k为元素的取值范围。

计数排序的思想是统计每个元素出现的次数,然后根据元素出现的次数将元素排列起来。

计数排序的最优情况和最差情况是相同的,即当待排序元素的取值范围比较小且元素分布比较均匀时,计数排序的时间复杂度可以达到O(n)。

这是因为在这种情况下,计数排序只需要进行一次遍历,统计每个元素出现的次数,然后根据元素出现的次数将元素排列起来即可。

例如,对于一个包含n个元素的数组,如果元素的取值范围只有0到10,那么计数排序的时间复杂度就是O(n+10),即O(n)。

在这种情况下,计数排序是最优的排序算法。

然而,当待排序元素的取值范围比较大或者元素分布不均匀时,计数排序的时间复杂度就会变得很高。

例如,如果元素的取值范围是0到10^6,但是只有几个元素的值在这个范围内,那么计数排序的时间复杂度就会变成O(n+10^6),即O(n)的时间复杂度优势就不存在了。

计数排序是一种非常适合处理元素取值范围比较小且元素分布比较
均匀的排序算法。

在这种情况下,计数排序的时间复杂度可以达到O(n),是最优的排序算法。

但是,当元素取值范围比较大或者元素分布不均匀时,计数排序的时间复杂度就会变得很高,不再是最优的排序算法。

数据结构中的树、图、查找、排序

数据结构中的树、图、查找、排序

数据结构中的树、图、查找、排序在计算机科学中,数据结构是组织和存储数据的方式,以便能够有效地对数据进行操作和处理。

其中,树、图、查找和排序是非常重要的概念,它们在各种算法和应用中都有着广泛的应用。

让我们先来谈谈树。

树是一种分层的数据结构,就像是一棵倒立的树,有一个根节点,然后从根节点向下延伸出许多分支节点。

比如一个家族的族谱,就可以用树的结构来表示。

最上面的祖先就是根节点,他们的后代就是分支节点。

在编程中,二叉树是一种常见的树结构。

二叉树的每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉搜索树是一种特殊的二叉树,它具有特定的性质,即左子树中的所有节点值都小于根节点的值,而右子树中的所有节点值都大于根节点的值。

这使得在二叉搜索树中查找一个特定的值变得非常高效。

二叉搜索树的插入和删除操作也相对简单。

插入时,通过比较要插入的值与当前节点的值,确定往左子树还是右子树移动,直到找到合适的位置插入新节点。

删除节点则稍微复杂一些,如果要删除的节点没有子节点,直接删除即可;如果有一个子节点,用子节点替换被删除的节点;如果有两个子节点,通常会找到右子树中的最小节点来替换要删除的节点,然后再删除那个最小节点。

接下来,我们聊聊图。

图是由顶点(也称为节点)和边组成的数据结构。

顶点代表对象,边则表示顶点之间的关系。

比如,社交网络中的用户可以看作顶点,用户之间的好友关系就是边。

图可以分为有向图和无向图。

有向图中的边是有方向的,就像单行道;无向图的边没有方向,就像双向车道。

图的存储方式有邻接矩阵和邻接表等。

邻接矩阵用一个二维数组来表示顶点之间的关系,如果两个顶点之间有边,对应的数组元素为 1,否则为 0。

邻接表则是为每个顶点建立一个链表,链表中存储与该顶点相邻的顶点。

图的遍历是图算法中的重要操作,常见的有深度优先遍历和广度优先遍历。

深度优先遍历就像是沿着一条路一直走到底,然后再回头找其他路;广度优先遍历则是先访问距离起始顶点近的顶点,再逐步扩展到更远的顶点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L.List[i]=L.List[j];
L.List[j]=t;
}
}
L.List[left]=L.List[i];
L.List[i]=temp;
quicksort(L,left,i-1);
quicksort(L,i+1,right);
}
4.选择排序
每次将无序序列中最小的元素放入有序段的尾部,以此增大有序段的长度。具体实现如下:
j--;
while(i<j&&L.List[i]<=temp)
i++;
if(i<j)
{
int t=L.List[i];
L.List[i]=L.List[j];
L.List[j]=t;
}
}
L.List[left]=L.List[i];
L.List[i]=temp;
quicksort(L,left,i-1);
cj(L);
srand(time(0));
int n;
printf("请输入随机数的个数:\n");
scanf("%d",&n);
for(int i=0;i<n;i++)
{
int a=rand()%101;
insert(L,a);
}
printf("原始序列如下:\n");
travell(L);
printf("\n");
insert1(L,0,i-1,L.List[i]);
}
}
2.冒泡排序
冒泡排序采用消除逆序的方法,将所有逆序消除即为有序,每次扫描表将发现逆序消除,最终将最大元素放入表尾,以此类推最终实现排序。具体实现如下:
void Buttel(Sqlist &L)//冒泡排序
{
for(int i=0;i<L.length-1;i++)
k=k-gap;
}
L.List[k+gap]=temp;
}
}
}
}
四、实验结果
直接插入排序
冒泡排序
选择排序
快速排序
希尔排序
五、实验主要代码如下
typedef struct
{
int *List;
int length;
int size;
}Sqlist;
void insertsort(Sqlist &L)//插入排序
for(int j=0;j<L.length-i-1;j++)
{
if(L.List[j]>L.List[j+1])
{
int temp=L.List[j];
L.List[j]=L.List[j+1];
L.List[j+1]=temp;
flag=0;
}
}
if(flag==1)
break;
}
}
void selectsort(Sqlist &L)//选择排序
{
if(left>right)
return;
int i,j,temp;
temp=L.List[left];
i=left;
j=right;
while(i<j)
{
while(i<j&&L.List[j]>=temp)
j--;
while(i<j&&L.List[i]<=temp)
i++;
if(i<j)
{
int t=L.List[i];
for(int i=0;i<L.length;i++)
{
int min=L.List[i];
int k=i;
for(int j=i;j<L.length;j++)
{
if(L.List[j]<min)
{
min=L.List[j];
k=j;
}
}
if(k!=i)
{
L.List[k]=L.List[i];
L.List[i]=min;
quicksort(L,i+1,right);
}
void shellsort(Sqlist &L)//希尔排序
{
int i,j,k,temp;
int gap;
for(gap=L.length/2;gap>0;gap=gap/2)
{
for(i=0;i<gap;i++)
{
for(j=i+gap;j<L.length;j=j+gap)
{
for(i=0;i<gap;i++)
{
for(j=i+gap;j<L.length;j=j+gap)
{
if(L.List[j]<L.List[j-gap])
{
temp=L.List[j];
k=j-gap;
while(k>=0&&L.List[k]>temp)
{
L.List[k+gap]=L.List[k];
{
if(L.List[j]<L.List[j-gap])
{
temp=L.List[j];
k=j-gap;
while(k>=0&&L.List[k]>temp)
{
L.List[k+gap]=L.List[k];
k=k-gap;
}
L.List[k+gap]=temp;
}
}
}
}
}
int main()
{
Sqlist L;
L.List[i]=min;
}
}
}
void quicksort(Sqlist &L,int left,int right)//快速排序
{
if(left>right)
return;
int i,j,temp;
temp=L.List[left];
i=left;
j=right;
while(i<j)
{
while(i<j&&L.List[j]>=temp)
{
for(int i=1;i<L.length;i++)
{
if(L.List[i]<L.List[i-1])
insert1(L,0,i-1,L.List[i]);
}
}
void Buttel(Sqlist &L)//冒泡排序
{
for(int i=0;i<L.length-1;i++)
{
int flag=1;
{
for(int i=0;i<L.length;i++)
{
int min=L.List[i];
int k=i;
for(int j=i;j<L.length;j++)
{
if(L.List[j]<min)
{
min=L.List[j];
k=j;
}
}
if(k!=i)
{
L.List[k]=L.List[i];
{
if(L.List[i]>c)
break;
}
for(int j=b;j>=i;j--)
{
L.List[j+1]=L.List[j];
}
L.List[i]=c;
}
void insertsort(Sqlist &L)//插入排序
{
for(int i=1;i<L.length;i++)
{
if(L.List[i]<L.List[i-1])
{
int flag=1;
for(int j=0;j<L.length-i-1;j++)
{
if(L.List[j]>L.List[j+1])
{
int temp=L.List[j];
L.List[j]=L.List[j+1];
L.List[j+1]=temp;
flag=0;
}
}
if(flag==1)
break;
}
}
3.快速排序
每次排序选取第一个元素作为基准元素,用两个指针分别重表尾和表头扫描表,将比这个元素元素小的放在左边,比这个元素大放在右边,那么分别对左边部分和右边部分进行同样操作,最终实现表的排序,采用分治的思想。具体实现如下:
void quicksort(Sqlist &L,int left,int right)//快速排序
}
}
5.希尔排序
由于直接插入排序影响效率一个因素是元素在插入时,所需的移动步伐,当表基本有序的时候,算法的执行效率较高。希尔排序通过减小增量的方法可能满足这个条件,用增量将表分组,然在每一组进行直接插入排序依次来减小移动的步伐。具体实现如下:
int i,j,k,temp;
int gap;
for(gap=L.length/2;gap>0;gap=gap/2)
printf("排序后的序列:\n");
/*quicksort(L,0,L.length-1);//快速排序*/
相关文档
最新文档