第二十一单元--第七章微生物遗传学(三)
合集下载
第七章微生物遗传复旦大学普通微生物学课件
(二)噬菌体的感染实验
1953年美国人Hershey和Chase用放射性同位素方法,提 供了DNA是噬菌体遗传物质的直接证据。
用含32P和35S的培养基培养大肠杆菌H,再用被标记的大肠 杆菌H培养T2噬菌体,直至完全标记上32P和35S的T2噬菌体为 止。用标记的T2噬菌体侵染没有标记的大肠杆菌H,结果表 明,T2噬菌体外壳蛋白中有35S放射性并与细菌的细胞壁连接, 而DNA部分则有32P放射性并进如细菌的细胞质中。这一事实说 明,在噬菌体侵染细菌过程中蛋白质外壳留在细菌细胞外, 只有DNA进入了细胞,又一次证明遗传物质是DNA,而不是蛋 白质。
降解质粒以其所分解的底物命名,例如, CAM(樟脑)质粒, OCT(辛烷)质粒, XYL(二甲苯)质粒, SAL(水杨酸)质粒, MDL(扁桃酸)质粒, NAP(萘)质粒, TOL(甲苯)质粒等
“超级菌”
通过遗传工程手段构建 具有数种降解质粒的菌 株,具有广谱降解能力 的工程菌。
(一)转化实验 最早进行转化(transformation)实验的是F. Griffith(
真核生物的基因一般无操纵子结构。
大肠杆菌基因组
4100个基因,4.7×106bp 遗传信息的连续性,共价、闭合、环状 功能相关的结构基因组成操纵子 结构基因单拷贝及rRNA多拷贝 基因的重复序列少而短
质粒——原核生物遗传物质存在的一种方式
质粒:一种独立于染色体外,能进行自主复制的细胞
质遗传因子,主要存在于各种微生物细胞中。
(2)R质粒(R plasmid)
称R因子(R factor)、抗性因子( resisitrance plasmid ),包括抗 药性和抗重金属二大类
R质粒一般由两个相连的DNA片段组成
《微生物学》教学课件:07 微生物的遗传变异和育种
4)结构基因的单拷贝及rRNA基因的多拷贝;
5)基因组的重复序列少而短;
注:古生菌的基因组在结构上类似于细菌。但是信息 传递系统(复制、转录和翻译)则与细菌不同而类 似于真核生物。
四、微生物的基因组结构
第二节 遗传的物质基础
3. 真核微生物的基因组(啤酒酵母)
1)典型的真核染色体结构;
啤酒酵母基因组大小为13.5×106bp,分布在16条染色体中。
有关内容在讲细菌的接合作用 (conjugation)时具体介绍
五、质粒
第二节 遗传的物质基础
3. 质粒的主要类型——抗性因抗子性质粒在细菌间的传递 抗性因子(Resistance factor是,细R因菌子产)生抗药性的重要 包括抗药性和抗重金属二大原类因之一。
R100质粒(89kb)可使宿主对 下列药物及重金属具有抗性:
编码细菌素的结构基因及相关的基因一般位 一般无直接的结构基因,相关酶的基因多在
于质粒或转座子上
染色体上
细菌素结构基因、 涉及细菌素运输及发挥作用(processing) 的蛋白质基因、赋予宿主对该细菌素具有“免疫力”的相关产 物的基因
一般都位于质粒或转座子上,因此,细菌素可以杀死 同种但不携带该质粒的菌株。
长发育所表现出来的形态等生物学特征的总和。
表型由遗传型决定,但也和环境有关
一、遗传变异是微生物的基本第特一征节 微生物遗传变异概述
表型饰变:
即外表的修饰性改变,是发生在转录、转译水平上 的变化,不涉及遗传物质结构改变的表型变化。
特点:暂时性、不可遗传性、表现为全部个体的行为
橘生淮南则为橘,生于淮北则为枳。
第二节 遗传的物质基础
• 通常以共价闭合环状(covalently closed circle,简 称CCC)的超螺旋双链DNA分子存在于细胞中;
微生物遗传学课件
基因组学定义
基因组学是研究生物体基因组的学科,包括基因的发现、基因组结构、基因表达调 控以及基因组进化的研究。
基因组学研究旨在揭示生物体的遗传信息,以及这些信息如何影响生物体的表型和 功能。
基因组学研究对于理解生命的本质、疾病的发生和发展机制以及新药的研发等方面 具有重要意义。
基因组学研究方法
基因组测序
生物修复
生物修复
利用微生物对环境污染进行治理和修复的 技术,具有处理效果好、成本低等优点。
生物修复的应用
在土壤、水体、空气等污染治理领域广泛 应用,有效解决了许多环境问题,改善了
人类生存环境。
生物修复的原理
通过微生物对污染物的降解、转化和富集 等作用,将污染物转化为无害或低毒性的 物质,降低其对环境和人体健康的危害。
程,涉及到多种酶的参与。
转座重组
指DNA分子内部的转座元件在不 同位置之间移动的重组过程。转 座重组需要转座酶的催化,实现 DNA片段在不同位置的复制和移
动。
Hale Waihona Puke 突变与重组在微生物遗传学中的应用
基因工程
通过突变和重组技术,可以对微 生物进行基因敲除、敲入和基因 修饰,实现基因表达的调控和代
谢途径的改造。
微生物遗传学课件
目 录
• 微生物遗传学概述 • 微生物基因组学 • 微生物突变与重组 • 微生物基因表达调控 • 微生物进化与系统发育 • 微生物遗传学应用
01 微生物遗传学概述
微生物遗传学定义
微生物遗传学定义
微生物遗传学是一门研究微生物遗传、变异和演化的科学,主要关注微生物的基因组结构 、基因表达调控、基因突变与进化等基本问题。
通过调节翻译起始和翻译过程 来控制蛋白质的合成,如核糖 体结合位点的选择和mRNA的 稳定性等。
微生物学:第七章微生物的遗传和变异
第二节、微生物的突变
基因突变
染色体畸变
DNA损伤的修复
概念
突变:指遗传物质发生数量或结构变化的现象。 变异:突变导致性状的改变叫变异。 基因突变:指一个基因内部遗传物质结构或 DNA序列的任何变化,包括一对或少数几对的 缺失、插入或置换,导致遗传性状的变化。 基因型:指贮藏在遗传物质中的信息,即DNA 碱基序列。 表型:指可观察或检测到的个体性状或特征,是 特定的基因型在一定环境条件下的表现。
实验室里通过提取获得 双链DNA有转化能力,单链没有.
感受态
受体细胞能接受转化的生理状态称为感受态, 只有处于感受态的细菌才能接受转化因子, 从出现到消失约为40分钟(对数期的中期)
感觉态出现原因
细菌失去部分细胞壁的结果 细菌在细胞表面产生某种E引起
感受态的决定决定因素
细胞遗传性决定 和菌龄有关 环腺苷酸CAMP可提高1000 倍 Ca2+能促使细胞进入感受态
原理 步骤
DNA只含P不含S
Pr 只含S不含P
1:用含同位素S35, P32的培养基培养大肠杆菌 2:让T2感染上述大肠杆菌使其打是S35P32标记
3: 吸附
10分钟后 搅动
离心
上清液 沉淀
结果:上清液中含15%放射击性;沉淀中含85%放射性
植物病毒的重建实验
植物病毒蛋白质和RNA可以人为地分开, 同时又可把它们重新组合成具感染性的病毒.
喷入T1保温
6个平板共353个菌落
6个平板共28个菌落
影印培养试验
原始敏 感菌种
无药 培养基
含药 培养基
基因突变机制
碱基的置换 移码突变
染色体畸变
1 诱变的机制
(1)碱基的置换
【生物课件】第七章微生物遗传
• 将TMV在一定浓度的苯酚溶液中振荡,就能 将其蛋白质外壳与RNA核心相分离。分离后 的RNA在没有蛋白质包裹的情况下,也能感 染烟草并使其患典型症状,而且在病斑中还 能分离出正常病毒粒子。
2020/12/18
选用TMV和霍氏车前花叶病毒( HRV ) , 分 别 拆 分 取 得 各 自 的 RNA 和 蛋 白 质 , 将 两 种 RNA 分 别 与 对 方 的 蛋 白 质 外
三、微生物基因组结构的特点
(参见 P197-200)
1、原核生物(细菌、古生菌)的基因组
1)染色体为双链环状的DNA分子(单倍体);
例外:布氏疏螺旋体(Borrelia burgdorferi)的染色体是线状的
链环状的染色体在细胞中以紧密缠绕成的较致密的不规则小体形式 存在于细胞中,该小体称为拟核(nucliod),其上结合有类组蛋白蛋 白质和2020少/12/量18 RNA分子,使其压缩成一种手脚架形的致密结构。
后基因组时代(Postgenome Era)
2020/12/18
二、微生物与人类基因组计划
第二节 微生物的基因组结构
(参见 P197)
微生物基因组测序工作是在人类基因组计划的促进下开始的, 最开始是作为模式生物,后来不断发展,已成为研究微生物学 的最有力的手段。
/tdb/mdb/mdb.html
•
分离
活的SIII菌
2020/12/18
Griffith 转化试验
示意
RII型活菌
SIII型活菌
健康 健康
健康 病死
SIII型热死菌
健康 健康
健康 病死
RII型活菌
健康
病死
2020/12/18
混合培养 SIII型活菌
2020/12/18
选用TMV和霍氏车前花叶病毒( HRV ) , 分 别 拆 分 取 得 各 自 的 RNA 和 蛋 白 质 , 将 两 种 RNA 分 别 与 对 方 的 蛋 白 质 外
三、微生物基因组结构的特点
(参见 P197-200)
1、原核生物(细菌、古生菌)的基因组
1)染色体为双链环状的DNA分子(单倍体);
例外:布氏疏螺旋体(Borrelia burgdorferi)的染色体是线状的
链环状的染色体在细胞中以紧密缠绕成的较致密的不规则小体形式 存在于细胞中,该小体称为拟核(nucliod),其上结合有类组蛋白蛋 白质和2020少/12/量18 RNA分子,使其压缩成一种手脚架形的致密结构。
后基因组时代(Postgenome Era)
2020/12/18
二、微生物与人类基因组计划
第二节 微生物的基因组结构
(参见 P197)
微生物基因组测序工作是在人类基因组计划的促进下开始的, 最开始是作为模式生物,后来不断发展,已成为研究微生物学 的最有力的手段。
/tdb/mdb/mdb.html
•
分离
活的SIII菌
2020/12/18
Griffith 转化试验
示意
RII型活菌
SIII型活菌
健康 健康
健康 病死
SIII型热死菌
健康 健康
健康 病死
RII型活菌
健康
病死
2020/12/18
混合培养 SIII型活菌
微生物遗传与育种(精美课件)
第七章
微生物遗传与育种
第一节 微生物遗传的物质基础
h
2
一、遗传物质化学本质的确证
1、DNA(或RNA)是遗传信息的携带者 三个经典实验
细菌转化实验 噬菌体感染实验 病毒重建实验
h
3
细菌转化(transformation)试验
1928年,英国F. Griffith发现 研究对象
Streptococcus pneumoniae(肺炎链球菌) S型(光滑型)菌株:有致病性,菌落表面 光滑,有荚膜 R型(粗糙型)菌株:无致病性,菌落表面 粗糙,无荚膜
h
36
特殊病毒(Mu噬菌体)
与其他温和性噬菌体的差别:其基因组不论在 进入裂解周期或处于溶源状态都可随机整合到 宿主染色体的任何位置,且游离的和已整合的 基因次序是相同的。
没有固定的整合位置
h
37
转座子的遗传 效应
遗传效应
插入突变 DNA重排 极性效应
第四节 基因突变与遗传育种
h
21
真核生物基因的结构
一般无操纵子结构 存在大量不编码序列和重复序列 转录和转译在细胞中有空间间隔 基因被许多无编码功能的内含子阻隔,使编码
序列变成了不连续的外显子。
h
22
二、基因组
基因组(genome)
单倍体细胞中所含的全套遗传物质
大多数细菌和噬菌体基因组是指单个染色体 上所含的全部基因
IS与Tn主要区别
Tn携带有与转座无关的抗性基因或其它特性基因
h
34
细菌抗药性转座子的两种类型
复合转座子 基因组成的复合因子。
h
35
复杂转座子
两端具有IR或DR,而不是IS,中部的编码区不仅编 码抗性标记,还编码转座酶和解离酶。
微生物遗传与育种
第一节 微生物遗传的物质基础
h
2
一、遗传物质化学本质的确证
1、DNA(或RNA)是遗传信息的携带者 三个经典实验
细菌转化实验 噬菌体感染实验 病毒重建实验
h
3
细菌转化(transformation)试验
1928年,英国F. Griffith发现 研究对象
Streptococcus pneumoniae(肺炎链球菌) S型(光滑型)菌株:有致病性,菌落表面 光滑,有荚膜 R型(粗糙型)菌株:无致病性,菌落表面 粗糙,无荚膜
h
36
特殊病毒(Mu噬菌体)
与其他温和性噬菌体的差别:其基因组不论在 进入裂解周期或处于溶源状态都可随机整合到 宿主染色体的任何位置,且游离的和已整合的 基因次序是相同的。
没有固定的整合位置
h
37
转座子的遗传 效应
遗传效应
插入突变 DNA重排 极性效应
第四节 基因突变与遗传育种
h
21
真核生物基因的结构
一般无操纵子结构 存在大量不编码序列和重复序列 转录和转译在细胞中有空间间隔 基因被许多无编码功能的内含子阻隔,使编码
序列变成了不连续的外显子。
h
22
二、基因组
基因组(genome)
单倍体细胞中所含的全套遗传物质
大多数细菌和噬菌体基因组是指单个染色体 上所含的全部基因
IS与Tn主要区别
Tn携带有与转座无关的抗性基因或其它特性基因
h
34
细菌抗药性转座子的两种类型
复合转座子 基因组成的复合因子。
h
35
复杂转座子
两端具有IR或DR,而不是IS,中部的编码区不仅编 码抗性标记,还编码转座酶和解离酶。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– (1) 抗终代谢物结构类似物突变株的筛选 – (2) 抗药性突变株筛选
• 2. 营养缺陷型的筛选
1. 抗性突变株的筛选
(1)抗终代谢物结构类似物的突变株
用途:筛选相应代谢物的高产菌株
(所2)谓抗结药构性类突似变株物(又称代谢拮抗物)是指那些在结 筛构 似选上的a用的.和物高途方代 质于:法临谢 。筛: 界选终浓相产度应物的药(平物氨板(抗进基生行酸素分、)离的嘌;高呤产、菌维株或生遗素传等标)记相制作
某野生型能生长的最低成分的组合培养基。
完全培养基(CM,complete medium)[+]: 各种营养缺陷型能生长的天然或半组合培养基
补充培养基(SM, supplemental medium)[A]:[-]+A [B]:[-]+B
相应营养缺陷型能生长的组合或半组合培养基
三种遗传型:
野生型(wild type) 从自然界分离到的、发生营养缺陷型突变前的原始菌株。
如:b.异梯烟度平肼板(法“雷米封”)是吡哆醇的结构类似物
,利用含异烟肼梯度平板筛选异烟肼抗性突变株,
可达到定向培育吡哆醇高产突变株的目的。
加入不含异烟肼的底层
敏感
菌苔
为什么在筛选突变株抗时性 ,不能直接用代谢产物,而必 须用其加入结含异构烟类肼的似上层物? 菌落
2. 营养缺陷型突变株的筛选
(1)几个概念: 三类培养基: 基本培养基(MM, minimal medium)[-]:
(五)突变株的筛选
1. 初筛(以量为主) 方法需简便、快速
2步
初筛 复筛
(1)利用形态变异:需预先测定形态与产量的相关性
(2)根据平板颜色反应直接挑选 透明圈法(蛋白酶、脂肪酶、纤维素酶); 抑菌圈法(抗生素); 变色圈法(柠檬酸)、显色圈(氨基酸); 沉淀圈法(外毒素)
透明圈直径(H)/菌落直径(C):产量高低(初筛指标) 2. 复筛(以质为主,定量测定) 摇瓶培养,直接检测所需产物
(二) 菌悬液的制备
1. 选用单细胞或单孢子悬液(均匀、分散)
目的:①使每个细胞能均匀接触诱变剂; ②减少表型延迟现象(诱变后性状的分离及退化现象)
2. 同步培养(生理状态一致)
3. 菌龄:对诱变剂最敏感时期 营养细胞:对数期 孢子或芽孢:萌发前期
4.菌悬液的制备方法
物理诱变:生理盐水配制 化学诱变:缓冲液配制
筛选(定向) 设计有效的筛选方法,将少量正变株中的 优良菌株挑选出来。
(一) 出发菌株(original strain)
出发菌株指用于诱变育种的起始菌株。
出发菌株的选择标准: • 具有有利性状(如高产、生长速度快、营养要求粗放、
标记明显等); • 对诱变剂敏感
出发菌株的来源: •野生型菌株; •从生产中选育的自发突变菌株; •诱变获得的高产菌株
5. 菌悬液的浓度
酵母菌,霉菌的孢子:106个/mL 细菌,放线菌孢子:108个/mL
(三)诱变剂的选择及处理方法
1. 诱变剂的选择(高效,简便)
物理诱变剂:频度低,大损伤,难修复,且操作简便; 化学诱变剂:频度高,点突变,易回复突变,操作麻烦。
( NTG——超诱变剂)
UV是最常用的一种诱变剂
2. 剂量的选择
常以杀菌率来表示相对剂量(剂量-存活率曲线)
最适剂量:在提高突变率的基础上,既能扩大变异幅度, 又能使变异向正突变范围移动的剂量。
突变率随剂量的增加而提高,但到达一定程度后,再提 高剂量, 反而会使突变率下降。
正变较多出现在偏低剂量中,而负变较多出现在偏高剂 量中。
在产量变异工作中,常采用相对杀菌率为70~75%, 甚至 30~70%的剂量。
诱变育种的基本原则:
• 选择简便有效的诱变剂; • 挑选优良的出发菌株; • 处理单细胞或单孢子悬液; • 选用最适的诱变剂量; • 充分利用复合处理的协同效应; • 利用和创造形态、生理与产量间的相关指标; • 设计高效筛选方案; • 创造新型筛选方法。
二、几种重要突变株的筛选方法
• 1. 抗性突变株的筛选
[A+B+], 可在[-]生长。
营养缺陷型(auxotroph) 野生力的突变,因而只能在加有该酶合成产物的培养基中才能生长的 突变菌株(主要指合成维生素、氨基酸及嘌呤、嘧啶的能力)。
UV的剂量: 固定UV功率和照射距离,以照射时间长短来 确定剂量多少。
3. 诱变处理方法
单因素处理或多因素的复合处理: ①同一诱变剂的重复使用; ②两种或多种诱变剂的先后使用; ③两种或多种诱变剂的同时使用.
(四) 中间培养(CM,培养过夜)
目的:克服表型延迟
表型延迟(phenotypic lag):表型的改变落后于基因型改变的 现象.
分分离离性性延延迟迟的:原突因变: 的对基数因生经长DN期A中复,制单和核细细胞胞分常裂出后现变双成核纯 现象,多核细胞合的状核态也,成表倍型增才加能,表诱现变出对来数。期的细胞时,突 变一象生时须生生通代称经,理由理理常或为过性于性性发几分细延杂延延生代离胞迟合迟迟在繁延多的期:: 一殖迟代原所表由个才现分因合现杂核能象离:成出合上分。后的当来状,离,非才变。态故,变能异变其这异将细为变种的这胞纯异纯蛋些由合或种白非杂状非变或变合态变异酶异状,异细仍的态突的 胞然酶变变细出发稀为表胞现挥释纯型必的作掉合仍须推用,状最不经迟,态必终能过现 达到变异后应该表现的形态,如营养缺陷型突变株的筛选过程 。
第一节 遗传变异的物质基础 第二节 质粒 第三节 基因突变的规律及类型
1. 突变的定义 2.基因突变的特点(规律)
自发性\不对应性\独立性\稀有性\可诱变性\稳定性\可逆性 3.证明基因突变自发性和不对应性的实验证据 4.基因突变的类型
第四节 基因突变的机制
1.基因突变的分子基础
自发突变 诱发突变(化学诱变/物理诱变/生物诱变)
2.诱变及化学致癌物质的检测——Ames实验 3.DNA损伤的修复
第五节 微生物的诱变育种
一、诱变育种中的几个原则
指利用物理或化学诱变剂处理微生物群体细胞,促进其突变 率显著提高,然后设法从中选取少数符合育种目的的突变株。
2个主要环节: 诱变(随机)
选用合适的诱变剂和诱变剂量处理大量均匀 、分散的微生物细胞,以引起绝大多数细胞 致死的同时,使存活个体中的突变频率大大 提高。
• 2. 营养缺陷型的筛选
1. 抗性突变株的筛选
(1)抗终代谢物结构类似物的突变株
用途:筛选相应代谢物的高产菌株
(所2)谓抗结药构性类突似变株物(又称代谢拮抗物)是指那些在结 筛构 似选上的a用的.和物高途方代 质于:法临谢 。筛: 界选终浓相产度应物的药(平物氨板(抗进基生行酸素分、)离的嘌;高呤产、菌维株或生遗素传等标)记相制作
某野生型能生长的最低成分的组合培养基。
完全培养基(CM,complete medium)[+]: 各种营养缺陷型能生长的天然或半组合培养基
补充培养基(SM, supplemental medium)[A]:[-]+A [B]:[-]+B
相应营养缺陷型能生长的组合或半组合培养基
三种遗传型:
野生型(wild type) 从自然界分离到的、发生营养缺陷型突变前的原始菌株。
如:b.异梯烟度平肼板(法“雷米封”)是吡哆醇的结构类似物
,利用含异烟肼梯度平板筛选异烟肼抗性突变株,
可达到定向培育吡哆醇高产突变株的目的。
加入不含异烟肼的底层
敏感
菌苔
为什么在筛选突变株抗时性 ,不能直接用代谢产物,而必 须用其加入结含异构烟类肼的似上层物? 菌落
2. 营养缺陷型突变株的筛选
(1)几个概念: 三类培养基: 基本培养基(MM, minimal medium)[-]:
(五)突变株的筛选
1. 初筛(以量为主) 方法需简便、快速
2步
初筛 复筛
(1)利用形态变异:需预先测定形态与产量的相关性
(2)根据平板颜色反应直接挑选 透明圈法(蛋白酶、脂肪酶、纤维素酶); 抑菌圈法(抗生素); 变色圈法(柠檬酸)、显色圈(氨基酸); 沉淀圈法(外毒素)
透明圈直径(H)/菌落直径(C):产量高低(初筛指标) 2. 复筛(以质为主,定量测定) 摇瓶培养,直接检测所需产物
(二) 菌悬液的制备
1. 选用单细胞或单孢子悬液(均匀、分散)
目的:①使每个细胞能均匀接触诱变剂; ②减少表型延迟现象(诱变后性状的分离及退化现象)
2. 同步培养(生理状态一致)
3. 菌龄:对诱变剂最敏感时期 营养细胞:对数期 孢子或芽孢:萌发前期
4.菌悬液的制备方法
物理诱变:生理盐水配制 化学诱变:缓冲液配制
筛选(定向) 设计有效的筛选方法,将少量正变株中的 优良菌株挑选出来。
(一) 出发菌株(original strain)
出发菌株指用于诱变育种的起始菌株。
出发菌株的选择标准: • 具有有利性状(如高产、生长速度快、营养要求粗放、
标记明显等); • 对诱变剂敏感
出发菌株的来源: •野生型菌株; •从生产中选育的自发突变菌株; •诱变获得的高产菌株
5. 菌悬液的浓度
酵母菌,霉菌的孢子:106个/mL 细菌,放线菌孢子:108个/mL
(三)诱变剂的选择及处理方法
1. 诱变剂的选择(高效,简便)
物理诱变剂:频度低,大损伤,难修复,且操作简便; 化学诱变剂:频度高,点突变,易回复突变,操作麻烦。
( NTG——超诱变剂)
UV是最常用的一种诱变剂
2. 剂量的选择
常以杀菌率来表示相对剂量(剂量-存活率曲线)
最适剂量:在提高突变率的基础上,既能扩大变异幅度, 又能使变异向正突变范围移动的剂量。
突变率随剂量的增加而提高,但到达一定程度后,再提 高剂量, 反而会使突变率下降。
正变较多出现在偏低剂量中,而负变较多出现在偏高剂 量中。
在产量变异工作中,常采用相对杀菌率为70~75%, 甚至 30~70%的剂量。
诱变育种的基本原则:
• 选择简便有效的诱变剂; • 挑选优良的出发菌株; • 处理单细胞或单孢子悬液; • 选用最适的诱变剂量; • 充分利用复合处理的协同效应; • 利用和创造形态、生理与产量间的相关指标; • 设计高效筛选方案; • 创造新型筛选方法。
二、几种重要突变株的筛选方法
• 1. 抗性突变株的筛选
[A+B+], 可在[-]生长。
营养缺陷型(auxotroph) 野生力的突变,因而只能在加有该酶合成产物的培养基中才能生长的 突变菌株(主要指合成维生素、氨基酸及嘌呤、嘧啶的能力)。
UV的剂量: 固定UV功率和照射距离,以照射时间长短来 确定剂量多少。
3. 诱变处理方法
单因素处理或多因素的复合处理: ①同一诱变剂的重复使用; ②两种或多种诱变剂的先后使用; ③两种或多种诱变剂的同时使用.
(四) 中间培养(CM,培养过夜)
目的:克服表型延迟
表型延迟(phenotypic lag):表型的改变落后于基因型改变的 现象.
分分离离性性延延迟迟的:原突因变: 的对基数因生经长DN期A中复,制单和核细细胞胞分常裂出后现变双成核纯 现象,多核细胞合的状核态也,成表倍型增才加能,表诱现变出对来数。期的细胞时,突 变一象生时须生生通代称经,理由理理常或为过性于性性发几分细延杂延延生代离胞迟合迟迟在繁延多的期:: 一殖迟代原所表由个才现分因合现杂核能象离:成出合上分。后的当来状,离,非才变。态故,变能异变其这异将细为变种的这胞纯异纯蛋些由合或种白非杂状非变或变合态变异酶异状,异细仍的态突的 胞然酶变变细出发稀为表胞现挥释纯型必的作掉合仍须推用,状最不经迟,态必终能过现 达到变异后应该表现的形态,如营养缺陷型突变株的筛选过程 。
第一节 遗传变异的物质基础 第二节 质粒 第三节 基因突变的规律及类型
1. 突变的定义 2.基因突变的特点(规律)
自发性\不对应性\独立性\稀有性\可诱变性\稳定性\可逆性 3.证明基因突变自发性和不对应性的实验证据 4.基因突变的类型
第四节 基因突变的机制
1.基因突变的分子基础
自发突变 诱发突变(化学诱变/物理诱变/生物诱变)
2.诱变及化学致癌物质的检测——Ames实验 3.DNA损伤的修复
第五节 微生物的诱变育种
一、诱变育种中的几个原则
指利用物理或化学诱变剂处理微生物群体细胞,促进其突变 率显著提高,然后设法从中选取少数符合育种目的的突变株。
2个主要环节: 诱变(随机)
选用合适的诱变剂和诱变剂量处理大量均匀 、分散的微生物细胞,以引起绝大多数细胞 致死的同时,使存活个体中的突变频率大大 提高。