四年级奥数行程问题相遇问题

合集下载

小学四年级奥数题专题讲义:相遇问题与追击问题

小学四年级奥数题专题讲义:相遇问题与追击问题

行程问题之两大基本问题:相遇和追击相遇问题(一)相遇问题是研究相向运动中的速度、时间和路程三者之间关系的问题,解答这类问题,要求大家理解和掌握下面的基本数量关系:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间例1 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?分析:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。

解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米。

【边学边练】AB两地间有一条公路长2800米,甲车从A地出发5分钟后,乙车从B地出发,又经过10分钟两车相遇。

已知乙车每分钟行100米,甲车每分钟行多少米?例2 兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?分析:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。

因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。

解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。

含答案】四年级奥数行程问题精选练习(相遇、追及)

含答案】四年级奥数行程问题精选练习(相遇、追及)

含答案】四年级奥数行程问题精选练习(相遇、追及)小牛老师工作室精华讲义:小学奥数行程问题知识点一:相遇问题1.两辆汽车同时从相距325千米的两地相对开出。

甲车速度为35千米/时,乙车速度为30千米/时。

当甲、乙两车相遇时,它们各行驶了多少千米?解答:两车相对速度为35+30=65千米/时。

根据相遇问题,它们行驶的总时间相等,所以它们各行驶了325/2=162.5千米。

2.高小帅家距离学校3000米。

小帅妈妈从家出发接小帅放学,小帅也要从学校回家。

他们同时出发。

小帅妈妈每分钟比小帅多走24米。

30分钟后两人相遇。

那么小帅的速度是多少?解答:设小帅速度为v,则小帅妈妈速度为v+24.根据相遇问题,它们行驶的总时间相等,所以小帅行驶了30v米,小帅妈妈行驶了30(v+24)米。

因为两人相遇,所以它们行驶的总路程为3000米,即30v+30(v+24)=3000,解得v=48米/分钟,即小帅的速度为48/60=0.8米/秒。

3.甲、乙两辆汽车分别从A、B两地相对而行。

已知甲车的速度为38千米/时,乙车的速度为40千米/时。

甲车先行2小时后,乙车才开始出发,乙车行驶5小时后两车相遇。

求A、B两地的距离。

解答:设A、B两地的距离为d。

则甲车行驶了d+2×38千米,乙车行驶了5×40千米。

因为它们相遇,所以它们行驶的总路程相等,即d+2×38+5×40=2×38+5×40+d,解得d=342千米。

4.两列城际列车从两城同时相对开出,其中一列车的速度为40千米/时,另一列车的速度为45千米/时。

在行驶途中,两列车先后各停车4次,每次停车15分钟。

这样经过7小时后两车相遇。

求两城的距离。

解答:设两城的距离为d。

则两车相对速度为40+45=85千米/时。

因为两车在行驶途中各停车4次,所以它们行驶的总时间为7小时-4×4×15分钟=6.4小时。

(精选)四年级奥数- 问题解决 -行程问题-相遇问题2

(精选)四年级奥数- 问题解决  -行程问题-相遇问题2
零件,师傅每小时加工30个 ,徒弟每小时加工20个,几 小时以后还有70个零件没有 加工?
4、王明和妹妹两人从相距2000 米的两地相向而行,王明每分 钟行110米,妹妹每分钟行90米 ,如果一只狗与王明同时同向 而行,每分钟行500米,遇到妹 妹后,立即回头向王明跑去, 遇到王明再向妹妹跑去,这样 不断来回,直到王明和妹妹相 遇为止。狗共行了环 形跑道上跑步,小李每秒钟跑5米, 小刘每秒钟跑3米,他们从同一地点 同时出发,反向而跑,那么,二人 从出发到第二次相遇需多长时间?
3、甲、乙两人分别从相距20千米的 两地同时出发相向而行,甲每小时 走6千米,经过2小时后两人相遇, 问乙每小时行多少
3、师徒两人合作加工520个
行程问题之相遇问题2
(1)速度和×相遇时间=相遇路程 (2)相遇路程÷速度和=相遇时间 (3)相遇路程÷相遇时间=速度和 速度和:两人或两车速度的和; 相遇时间:两人或两车同时开出到 相遇所用的时间
【解题思路和方法】 简单的题目可 直接利用公式,复杂的题目变通后 再利用公式。
练习1、南京到上海的水路长392千 米,同时从两港各开出一艘轮船相 对而行,从南京开出的船每小时行 28千米,从上海开出的船每小时行 21千米,经过几小时两船相遇?

四年级奥数:行程问题之相遇问题、追及问题

四年级奥数:行程问题之相遇问题、追及问题

四年级奥数:行程问题之相遇问题、追及问题两个运动的物体,以不同的速度从不同地点出发沿同一线路相向而行,两个物体之间的距离不断缩短,直到相遇。

我们把这样的问题叫做相遇问题,相遇问题的关系式为:相遇路程=速度和×相遇时间。

解相遇问题一定要紧盯速度与相遇路程。

本篇我主要会讲到以下几种类型的题目:(1)一般相遇问题:如果两个物体是同时出发,那么相遇路程就是两个物体原来相距的路程;如果两个物体不是同时出发,那么它们的相遇路程等于两个物体原来相距的路程减去其中一个物体先走的路程;(2)中点相遇问题:相遇路程等于相遇地点与中点距离的两倍;(3)往返相遇问题:同时出发,同时停止,则中间往返的时间就是相遇时间;(4)环形相遇问题:同时、同地背向出发,相遇路程就是一周的长度。

一般相遇问题一般行程问题中,路程=速度×时间,速度=路程÷时间,时间=路程÷速度。

例题1,此类相遇问题中:相遇时间=相遇路程÷速度和。

中点相遇问题相遇问题中,路程差=速度差×时间差;速度差=路程差÷时间;时间=路程差÷速度差。

中点相遇问题中,快的多走的路程就是距离中点路程的两倍。

相遇时间=路程差÷速度差。

往返相遇问题往返相遇问题的关键是,往返行驶的时间与相遇时间相等。

环形相遇问题环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个全程,再根据相遇时间=路程÷速度和求解。

在追及问题中,必定有一个物体的速度较快,而另一个物体速度较慢,解题的关键是找到追及路程。

追及问题的关系式为:追及时间×速度差=追及路程。

两种追及路线的追及路程分别是:(1)直线追及:如果两人同时同向不同地出发,那么追及路程就是两人相距的路程;如果两人同地同向不同时出发,那么追及路程就是先走的路程;(2)环形追及:如果两人同时、同地、同向出发,那么追及问题就是一周的长;如果是不同时或不同向或不同地出发,需要结合具体情景,借助示意图和列表进行分析。

小学四年级奥数-相遇问题

小学四年级奥数-相遇问题
04
添加标题
每小时行的路程=快车每小时的路程+慢车每小时的路程
05
添加标题
450KM
06
每小时行的路程: 85+65=150(千米)
时间:450÷150=3(小时)
例3: 甲乙两站相距450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米。 若两车同时相向而行,快车行驶多少小时与慢车相遇?
甲乙两地相距1500米,两人分别从甲乙两地相向出发,10分钟后相遇。如果两人每分钟各自提速15米,仍从甲乙两地相向出发,则出发后多少秒两人相遇?
24
500
甲乙两车同时从东西两地相对开出,6小时相遇。如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。东西两地相距多少千米?
360

例8:甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?
2×1200÷(250-90)=15(分钟) 250×15-1200=2550(米) 答:A、B两地相距2550千米。 分析及详解】画图,从图中我们可以知道,甲比乙多走了2个1200,甲每分钟比乙多走250-90=160米,我们就可以求出总共走了多少时间:2×1200÷160=15分钟,那么A、B两地相距:250×15-1200=2550米
54×5+52×5
=270+260
=530(米)
(54+52)×5
=106×5
=530(米)
答:两地相距530米。
志明和小花同时从两地对面走去。经过5分钟相遇,两地相距多少米?(用两种方法解答)
1、
志明每分54米

四年级奥数-相遇问题

四年级奥数-相遇问题

相遇问题(一)例1:A、B两地相距138千米,甲、乙两人骑自行车分别从两地同时出发,相向而行。

甲每小时行13千米,乙每小时行12千米,乙在行进中因修车耽误了1小时,然后继续行进,与甲相遇。

求出发到相遇经过几小时例2:甲、乙两车分别从相距480千米的两地同时相向而行,5小时后相遇。

已知甲车每小时比乙车快8千米,相遇时乙车行了多少路程例3:A、B两地相距520千米,甲车从A地开出2小时后,乙车从B地相对开出,乙车开出后5小时后与甲车相遇,已知甲车比乙车每小时少行8千米。

问甲、乙两车每小时各行多少千米例4:某县举行长跑比赛,运动员跑到离起点5千米处要向起跑点返回,领先的运动员每分跑320米,最后的运动员每分跑305米。

起跑后多少分这两个运动员相遇相遇时离返回点有多少米练一练1.甲、乙两地相距450千米,客车10小时行完全程,货车15小时行完全程,客车和货车同时从两地出发,相向而行,几小时后相遇相遇时两车各行了多少千米2.甲、乙两人从同一地点出发,背向而行,甲以每分钟60米的速度先行,12分钟后乙才出发,乙行了20分钟后与甲相距3220米,乙每分钟行多少米3.甲、乙两地相距180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地同时出发,两人相向而行,已知摩托车车速是自行车的3倍,问多少小时后两人相遇4.两地相距320千米,甲车从一地开出1小时后,乙车从另一地相对开出,又经过4小时与甲车相遇,已知甲车每小时比乙车多行10千米,问一车每小时行多少千米5.甲、乙二人从相距116千米的A、B两地出发相向而行,甲先出发1小时。

他们二人在乙出后的4小时相遇,又已知甲比乙每小时慢2千米,求甲、乙二人的速度。

6.A、B两地相距496千米,甲车从A地出发开往B地,每小时行32千米,甲车开出半小时后,乙车从B地出发开往A地,它的速度是甲车的2倍,问乙车开出几小时后,两车相遇7.甲、乙两人骑自行车,分别从相距75千米处同时相向而行,3小时后两人相遇,已知甲骑车比一骑车每小时快5千米。

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲 乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
答:通讯员行了多少千米。
通讯员行驶的时
间与两车队的相遇 时间有什么关系?
2、A、B两地相距648千米。甲、乙两列火车从A、B两地相 对开出,甲列火车每小时行驶60千米,乙列火车每小时行驶 48千米。乙出发时,从车厢里飞出一只鸽子,这只鸽子以每 小时80千米的速度在两列火车之间往返飞行(遇到一列车后 马上返回,向另一列车飞去)。当两列车相遇时,鸽子飞行 了多少千米?

四年级奥数火车过桥和火车与人的相遇追击问题

四年级奥数火车过桥和火车与人的相遇追击问题

四年级奥数火车过桥和火车与人的相遇追击问题火车过桥常见题型及解题方法(一)、行程问题基本公式:路程?速度?时间总路程?平均速度?总时间;(二)、相遇、追及问题:速度和?相遇时间?相遇路程速度差?追及时间?追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度―人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度?人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) =(快车速度―慢车速度) ×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

例题精讲【例1】一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?一列火车长360米,每秒钟行驶16米,全车通过一条隧道需要90秒钟,求这条隧道长多少米?火车隧道长?火车行驶路程火车【例2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【例3】小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5 分钟.这座大桥长多少米?小胖用两个秒表测一列火车的车速。

小学奥数必做的道行程问题

小学奥数必做的道行程问题

一、行程问题:S=V×T;总结如下:当路程一定时;速度和时间成反比当速度一定时;路程和时间成正比当时间一定时;路程和速度成正比二、衍伸总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2两岸问题:S=3A-B;两次相遇相隔距离=2×A-B 电梯问题:S=人与电梯的合速度×时间=人与电梯的合速度×时间平均速度:V平=2V1×V2÷V1+V21、邮递员早晨7时出发送一份邮件到对面的山坳里;从邮局开始要走12千米的上坡路;8千米的下坡路..他上坡时每小时走4千米;下坡时每小时走5千米;到达目的地后停留1小时;又从原路返回;邮递员什么时候可以回到邮局解析核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡;去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地;去时每小时走6千米;回时每小时走9千米;来回共用5小时..小明来回共走了多少千米解析当路程一定时;速度和时间成反比速度比=6:9=2:3时间比=3:23+2=5小时;正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米;一辆汽车原计划用6小时从A城开到B城;汽车行驶了一半路程;因故在途中停留了30分钟..如果按照原定的时间到达B城;汽车在后半段路程速度应该加快多少解析核心公式:速度=路程÷时间前半程开了3小时;因故障停留30分钟;因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地;A;B两地的距离等于B;C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟;但在B地停留了7分钟;甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时;甲车就超过乙车..解析11-7=4分钟甲乙车的速度比=1:0.8=5:4甲乙行的时间比=4:5=16:20所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上;有一行人与一骑车人同时向南行进..行人速度为3.6千米/小时;骑车人速度为10.8千米/小时..这时有一列火车从他们背后开过来;火车通过行人用22秒;通过骑车人用26秒..这列火车的车身总长是多少米解析S=V火车-V人×时间=V火车-V车×时间V人=3.6千米/小时=1米/秒V车=10.8千米/小时=3米/秒S=V火车-1×22=V火车-3×26S=286米或者合时间比=22:26=11:13合速度比=13:11V人:V车=1:314-1:14-3=13:11所以V火车=14米/秒S=14-1×22=286米6、小刚和小强租一条小船;向上游划去;不慎把水壶掉进江中;当他们发现并调过船头时;水壶与船已经相距2千米;假定小船的速度是每小时4千米;水流速度是每小时2千米;那么他们追上水壶需要多少时间解析我们来分析一下;全程分成两部分;第一部分是水壶掉入水中;第二部分是追水壶第一部分;水壶的速度=V水;小船的总速度则是=V船+V水那么水壶和小船的合速度就是V船;所以相距2千米的时间就是:2/4=0.5小时第二部分;水壶的速度=V水;小船的总速度则是=V船-V水那么水壶和小船的合速度还是V船;所以小船追上水壶的时间还是:2/4=0.5小时7、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米;两船从某河相距336千米的两港同时出发相向而行;几小时相遇如果同向而行;甲船在前;乙船在后;几小时后乙船追上甲船解析时间=路程和÷速度和T=336÷24+32=6小时时间=路程差÷速度差T=336÷32-24=42小时8、甲、乙两港间的水路长208千米;一只船从甲港开往乙港;顺水8小时到达;从乙港返回甲港;逆水13小时到达;求船在静水中的速度和水流速度..解析流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2V顺=208÷8=26千米/小时V逆=208÷13=16千米/小时V船=26+16÷2=21千米/小时V水=26-16÷2=5千米/小时9、小明早上从家步行去学校;走完一半路程时;爸爸发现小明的数学书丢在家里;随即骑车去给小明送书;追上时;小明还有3/10的路程未走完;小明随即上了爸爸的车;由爸爸送往学校;这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间解析小明走1/2-3/10=2/10的路程;爸爸走了7/10的路程因此小明的速度:自行车的速度=2/10:7/10=2:7因此时间比就是7:27-2=5份;对应5分钟所以小明步行剩下的3/10需要7分钟那么小明步行全程需要:7/3/10=70/3分钟10、一只狗追赶一只野兔;狗跳5次的时间兔子能跳6次;狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子解析狗跳5次的时间=兔子跳6次的时间→狗跳20次的时间=兔子跳24次的时间狗跳4次的路程=兔子跳7次的路程→狗跳20次的路程=兔子跳35次的路程综上得到V狗:V兔=35:24当时间一定时;路程和速度成正比S狗:S兔= V狗:V兔=35:24=1750:1200因此狗只需要跑1750米即可11、主人追他的狗;狗跑三步的时间主人跑两步;但主人的一步是狗的两步.狗跑出10步后;主人开始追;主人跑出了多少步才追上狗解析主人跑2步的时间=狗跑3步的时间→主人跑2步的时间=狗跑3步的时间主人跑1步的路程=狗跑2步的路程→主人跑2步的路程=狗跑4步的路程综上得到主人跑2步可以追上狗4-3=1步现在狗比主人多跑了10步所以主人要跑20步12、某人从甲地前往乙地办事;去时有2/3的路程乘大客车;1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同;返回比去时少用了5小时;已知大客车每小时行24千米;小汽车每小时行72千米;甲地到乙地的路程、是多少千米解析当时间一定时;路程和速度成正比返回:时间一定;路程比=速度比=24:72=1:3=3:9去时:路程比=2:1=8:4返回的时间:3/24+9/72=1/4去时的时间:8/24+4/72=7/187/18-1/4=5/36;对应5小时12对应5×12÷5/36=432千米13、某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班;有一天早晨总工程师临时决定提前回工厂办事;匆匆从家步行出发;途中遇到接他的小汽车;立即上车到工厂;结果比平时早40分钟到达..总工程师上车时是几时几分解析A-------B----------------CAB段汽车开一个来回需要40分钟;所以AB段汽车开需要20分钟汽车是8点钟准时到A点;所以工程师上车是在8:00-0:20=7:4014、小明从家去体育馆看球赛.去时他步行5分钟后;跑步8分钟;到达体育馆..回来时;他先步行10分钟后;开始跑步;结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少解析去时的时间:5+8=13分钟回来的时间:13+3.25=16.25分钟去时步行时间:5分钟;回来步行时间:10分钟去时跑步时间:8分钟;回来跑步时间:6.25分钟跑步与步行的时间比为8-6.25:10-5=1.75:5速度比就是5:1.75=20:715、B在A;C两地之间;甲从B地到A地去送信;出发10分钟后;乙从B 地出发去送另一封信..乙出发后10分钟;丙发现甲乙刚好把两封信拿颠倒了;于是他从B地出发骑车去追赶甲和乙;以便把信调过来.已知甲、乙的速度相等;丙的速度是甲、乙速度的3倍;丙从出发到把信调过来后返回B 地至少要用多少时间解析A-----------B------------C分成如下几个部分:先追上乙;把信取到手并返回B点..用时1:3=10:30;就是10分钟再追上甲;把信交给甲并把信取到手并返回B点..用时1:3=30:90;就是30分钟再追上乙;把信交给乙并返回B点..用时1:3=50:150;就是50分钟总共用时:10+30+50=90分钟16、甲放学回家需走10分钟;乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6;甲每分钟比乙多走12米;那么乙回家的路程是几米解析甲乙路程比1:7/6=6:7甲乙时间比10:14=5:7甲乙速度比6/5:7/7=6:5=72:60所以乙的路程=60×14=840米17、在400米环形跑道上;A、B两点相距100米如图..甲、乙两人分别从A、B两点同时出发;按逆时针方向跑步..甲每秒跑5米;乙每秒跑4米;每人每跑100米;都要停10秒钟.那么;甲追上乙需要的时间是秒..解析甲每秒跑5米;则跑100米需要100/5=20秒;连同休息的10秒;共需要30秒乙每秒跑4米;则跑100米需要100/4=25秒;连同休息的10秒;共需要35秒35秒时;乙跑100米;甲跑100+5×5=125米因此;每35秒;追上25米;所以甲追上乙需要35×4=140秒18、小明从家去学校;如果他每小时比原来多走1.5千米;他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米;那么他走这段路的时间就比原来时间多几分几之解析原时间:现时间=5:4原速度:现速度=4:5=6:7.5现速度=6-1.5=4.5原速度:现时间=6:4.5原时间:现时间=4.5:66-4.5/4.5=1/319、甲、乙两列火车的速度比是5:4.乙车先发;从B站开往A站;当走到离B站72千米的地方时;甲车从A站发车往B站;两列火车相遇的地方离A;B两站距离的比是3:4;那么A;B两站之间的距离为多少千米解析A---------N---------M-----B3 4 72千米速度比=路程比=5:4=15:12路程比=3:4=15:2020-12=8份对应72千米全程=15+20×72÷8=315千米20、已知小明与小强步行的速度比是2:3;小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米;那么小明在20分钟里比小强少走几米解析小明:小强:小刚=8:12:15=48:72:9072-48×20=480米21、甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发;开始时甲的速度为8米/秒;乙的速度为6米/秒;当甲每次追上乙以后;甲的速度每秒减少2米;乙的速度每秒减少0.5米.这样下去;直到甲发现乙第一次从后面追上自己开始;两人都把自己的速度每秒增加0.5米;直到终点.那么领先者到达终点时;另一人距离终点多少米解析第一次甲追上乙;400÷8-6=200秒;S甲=200×8=1600米;S乙=200×6=1200米第二次甲速度变成6;乙速度变成5.5;400÷6-5.5=800秒S甲=800×6+1600=6400米;S乙=800×5.5+1200=5600米第三次甲速度变成4;乙速度变成5;400÷5-4=400秒S甲=400×4+6400=8000米;S乙=400×5+5600=7600米第四次开始;甲速度变成4.5;乙速度变成5.5;400÷5.5-4.5=400秒S甲=400×4.5+8000=9800米;S乙=400×5.5+7600=9800米9800<1000;因此乙先到达终点..乙跑到终点时;甲还剩下:200×5.5-4.5÷5.5=400/11米22、一支解放军部队从驻地乘车赶往某地抗洪抢险;如果将车速比原来提高1/9;就可比预定的时间20分钟赶到;如果先按原速度行驶72千米;再将车速比原来提高1/3;就可比预定的时间提前30分钟赶到..这支解放军部队的行程是多少千米解析速度比=9:10;时间比=10:9=10/3:3速度比=3:4 ;时间比=4:3=2:1.5因此;按照原速度行驶72千米需要10/3-2=4/3小时S=72×10/3÷4/3=180千米23、甲、乙两人同时从山脚开始爬山;到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍..甲到山顶时;乙距山顶还有400米;甲回到山脚时;乙刚好下到半山腰..求从山顶到山脚的距离..解析甲到山脚时;乙到半山腰→甲走1.5个上坡;乙走1.25个上坡时间一定;路程比=速度比=1.5:1.25=6:5=2400:2000因此山的高度为:2400米24、甲、乙两车分别从A;B两地同时相向开出;四小时后两车相遇;然后各自继续行驶三小时;此时甲车距B地10千米;乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地解析整体考虑总共行了7个小时;甲车比乙车多行80-10=70千米;因此甲车每小时比乙车多行10千米4小时乙行的路程=3小时甲行的路程+10乙=40千米/小时;甲=50千米/小时T=80/40-10/50=1.8小时25、从家里骑摩托车到火车站赶乘火车.如果每小时行30千米;那么早到15分钟;如果每小时行20千米;则迟到5分钟.如果打算提前5分钟到;那么摩托车的速度应是多少解析S=30×T-15/60=20×T+5/6015+5=20分钟速度比=30:20=3:2时间比=2:3=40:60正好需要:40+15=55分钟提前5分钟:55-5=50分钟时速=30×40÷50=24千米/小时26、同样走100米;小明要走180步;父亲要走120步.父子同时同方向从同一地点出发;如果每走一步所用的时间相同;那么父亲走出450米后往回走;还要走多少步才能遇到小明解析父亲走450米;走了450×120÷100=540步小明走540步;走了540÷180×100=300米两人相差450-300=150米150÷100/120+100/180=108步27、小明从家到学校时;前一半路程步行后一半路程乘车;从学校回家时;前1/3时间乘车;后2/3时间步行;结果去学校的时间比回家所用的时间多2小时;已知小明步行的速度为每小时5千米;乘车速度为每小时15千米;那么小明从家到学校的路程是千米解析回家乘车和步行的路程比是1/3×15:2/3×5=3:2所以回家乘车的路程是3/53/5-1/2=1/10;对应15千米/小时行驶1小时或5千米/小时行驶3小时S=15/1/10=150千米或者去时;路程比=1:1=5:5;速度比=5:15;时间比=1/5:1/15返回;时间比=2:1;速度比=5:15;路程比=2×5:1×15=2:3=4:6所以去时的时间=5/5+5/15=4/3;返回的时间=4/5+6/15=6/54/3-6/5=2/15;对应2小时全程=10×2/2/15=150千米28、A、B两地相距207千米;甲、乙两车8:00同时从A地出发到B地;速度分别为60千米/小时;54千米/小时;丙车8:30从B地出发到A地;速度为48千米/小时..丙车与甲、乙两车距离相等时是几点几分解析假设丙也是从8点出发;到达B点时正好是8:30那么丙走的路程就是:0.5×48=24千米;那么全程就变成:207+24=231千米丙车与甲、乙两车的距离;可以看成甲乙的平均速度与丙相遇V平=V甲+V乙÷2=57千米/小时T=231÷V平+V丙=231÷57+48=2.2小时=2小时=12分所以这时是:8:00+2:12=10:12分29、小明通常总是步行上学;有一天他想锻炼身体;前1/3路程快跑;速度是步行速度的4倍;后一段的路程慢跑;速度是步行速度的2倍.这样小明比平时早35分到校;小明步行上学需要多少分钟解析这天;路程比=1:2;速度比=4:2;时间比=1/4:2/2;时间=1/4+1=5/4平时;时间=3/1=33-5/4=7/4对应35分平时用时=35×3÷7/4=60分钟30、红光农场原定9时来车接601班同学去劳动;为了争取时间;8时同学们就从学校步行向农场出发;在途中遇到准时来接他们的汽车;于是乘车去农场;这样比原定时间早到12分钟..汽车每小时行48千米;同学们步行的速度是每小时几千米解析A------B--------------------C8点钟;同学们从A点出发;到B点遇到来接他们的车汽车来回AB需要12分钟;那么走一趟AB需要6分钟而人走AB需要:60-6=54分钟时间比=速度比的反比;54:6=48:48/9所以同学步行的速度是16/3千米/小时31、从甲地到乙地;如果提速20%;提前1小时到达;如果按原速先行120米;再提速25%;则提前40 分钟;问甲到乙的距离解析设原速度为x;两地相距y y/x=y/1.2x+1y/x=120/x+y-120/1.25x+2/3得x=45千米/小时y=270千米。

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

2×2÷(12-10)×(12+10) =4÷2×22 =2×22 =44(千米)
答:两地相距44千米。
甲一共比乙多 走了多少千米?
2、两列火车同时从A、B两地同时开出。客车每小时行 60千米,货车每小时行驶54千米,几小时后客车在超过 中点18千米处与货车相遇?求A、B两地相距多少千米。
18×2÷(60-54) =36÷6 =6(小时)
行程问题
——
甲车
乙车
相遇问题是行程问题中的重要一部分,相遇问题的特 征是:两个物体从两地出发,相向而行,共同行一段路程, 直至相遇。这类问题的基本数量关系是:总路程=速度和 ×相遇时间,这里的“速度和”是指两个物体在单位时间 内共同行的路程,还可以推导出以下的数量关系:
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
本讲我们主要解决以下几种类型:
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距离的两倍;
3、往返相遇问题:同时出发,同时停止,则中间往 返的时间就相遇时间;
A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?

四年级奥数——相遇、追及

四年级奥数——相遇、追及

四年级奥数——行程问题相遇问题1、南北两村相距90千米,甲从南村出发,他要在9分钟内赶到北村,那他每分钟至少要行多少千米?2、王叔叔因急事,以每小时78千米的车速从甲地赶往乙地,3小时后,他发现时间足够,又以每小时62千米的速度行驶了2小时,赶到了乙地,甲乙两地相距多少千米?3、小飞和小华同时从相距5320米的两地相向而行,两人行了40分钟后还相距1520米,问两人再走几分钟才能相遇?4、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?5、小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发,相向而行,3小时后相遇。

小军从甲地到乙地要12小时,小明从乙地到甲地要几小时?6、甲、乙两车同时从东西两地相对开出,6小时相遇。

如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。

东西两地相距多少千米?7、A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站50千米处相遇。

相遇后继续前进,各自到达乙、甲两站后立即返回,第二次在距乙站20千米处相遇。

甲、乙两站相距多少千米?追及问题1、甲从A出发,每小时12千米,2小时后,乙也从A地相背而行,每小时16千米,再经过4小时他们同时停下来,这时他们相距多远?2、甲、乙相背而行,甲每小时比乙多行2千米,8小时后两人相隔112千米,求甲、乙各自的速度?3、快车和慢车同时从南北两地相对开出,已知快车每小时行60千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距6千米。

慢车每小时行多少千米?4、小华和小亮的家相距410米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后两人可能相距多少米?5、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙的后面250米,乙追上需要多少分钟?6、甲、乙二人同时从A地到B地,甲每小时行10千米,乙每小时行8千米,甲行至15千米处又回去取东西,因此比乙迟1小时到B地。

四年级奥数相遇问题

四年级奥数相遇问题

火车过桥问题火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和。

⑴火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和。

⑴火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度。

对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.【例1】列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?【解析】列车的速度是(250-210)÷(25-23)=20(米/秒),列车的车身长:20×25-250=250(米).列车与货车从相遇到相离的路程差为两车车长,根据路程差速度差追击时间,可得列车与货车从相遇到相离所用时间为:(250+320)÷(20-17)=190(秒).【例2】少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?【解析】把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.车长求出后,就可以求出过桥的时间了.解:队伍长:1×(346÷2—1),=1×(173-1),=172(米);过桥的时间: (702+172)÷23, =874÷23,=38(分钟).答:整个队伍从上桥到离桥共需要38分钟.点评:此题解答时,依据行程问题的一般数量关系:(车长+桥长)÷速度=上桥到离桥的时间.【例3】少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?【解析】把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.车长求出后,就可以求出过桥的时间了.解:队伍长:1×(346÷2—1), =1×(173-1),=172(米);过桥的时间:(702+172)÷23,=874÷23,=38(分钟).答:整个队伍从上桥到离桥共需要38分钟.点评:此题解答时,依据行程问题的一般数量关系:(车长+桥长)÷速度=上桥到离桥的时间.反向运动问题即在同一道路上的两个运动物体作方向相反的运动的问题.它又包括相遇问题和相背问题。

小学四年级奥数行程问题之相遇与追及

小学四年级奥数行程问题之相遇与追及

一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识框架相遇与追及三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

例题精讲【例 1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例 2】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

小学四年级奥数行程问题相遇问题教案

小学四年级奥数行程问题相遇问题教案

小学四年级奥数行程问题相遇问题教案(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除行程问题之相遇问题相遇问题关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间例1.甲、乙两人分别从A、B两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人经过3小时相遇。

问A、B两地相距多少千米?例2.例3.小明和小华两家相距3千米,他俩同时从家里出发相向而行,小明骑车每分钟行175千米,小华步行每分钟行75米,多少分钟后两人相遇?例4.例5.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇。

A、B两地相距多少千米?例6.例7.甲、乙两车分别从A、B两地同时相向而行,甲车每小时行70千米,乙车每小时行65千米,两车相遇点距中点20千米。

求A、B两地相距多少千米?例8.路程差÷速度差=相遇时间例9.甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分后两人相距860米。

小明每分走多少米?例10.例11.A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,有经过10分钟两人相遇。

已知小军骑车比小明步行每分钟多行160米,小明步行速度是每分钟多少米?例12.例13.甲、乙两艘舰船,由相距418千米的两个港口同时相对开出,甲舰船每小时航行36千米,乙舰船每小时航行34千米,开出1小时候,甲舰船因有紧急任务,返回原港,又立即起航与乙舰船继续相对开出,经过几小时两舰船相遇?例14.例15.一支1800米长的队伍以每分钟90米的速度行进,队伍前端的通讯员用9分钟的时间跑到队伍末尾传达命令,通讯员每分钟跑多少米?例16.例17.甲、乙两车从相距360千米的两地同时出发相向而行,甲车每小时行70千米,乙车每小时行50千米。

小学数学四年级奥数题(相遇问题)行程问题小升初必考题型例题+练习

小学数学四年级奥数题(相遇问题)行程问题小升初必考题型例题+练习

例1、两列火车从两个车站同时相向出发,甲每小时行48千米,乙每小时行78千米,经过3小时两车相遇。

两个车站之间的铁路长多少千米?总路程=速度和×相遇时间甲乙1小时共走(48+78)千米。

甲乙3小时共同走了一个全程(48+78)×3=378(千米)答:两个车站之间的铁路长378千米。

练习1、华华和兰兰同时从甲、乙两地出发,相对走来,华华每分钟走60米,兰兰每分钟走50米,经过3分钟两人相遇,甲乙两地相距多少米?2、一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

4小时两车相遇。

甲、乙两个城市的路程是多少千米?例2、两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

两车多少小时后相遇?相遇时间等于什么呢?相遇时间=路程和÷速度和255÷(45+40)=3(小时)答:两车3小时后相遇。

练习1、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两地相距900米,甲、乙二人同时从两地相向而行,甲每分钟走80米,乙每分钟走100米,两人从出发到相遇共经过多少分钟?例3、甲乙两地相距288千米,一辆汽车和开一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇,已知汽车的速度是48千米/时,求拖拉机的速度?有路程和及相遇时间可以求出速度和速度和=路程和÷相遇时间288÷4=72(千米/时)72-48=24(千米/时)答:拖拉机速度是每小时4千米。

练习1、甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?2、两人骑马同时从相距165千米的两地相对跑来,5小时相遇。

第一匹马每小时跑15千米,第二匹马每小时跑多少千米?例4、甲乙两车分别从A、B两地同时出发相向而行,甲行完全程需要10小时,乙行完全程需要15小时,两个人出发后多长时间相遇?求相遇时间,要先算出速度!甲速度:300÷10=30(千米/时)乙速度:300÷15=20(千米/时)300÷(30+20)=6(小时)答:两人出发后小时相遇。

小学奥数行程问题之相遇

小学奥数行程问题之相遇

A、B两地相距400千米,甲乙两车同时从两地相对而出,甲车每小时行38千米, 乙车每小时行42千米,一只燕子以每小时50千米的速度和甲车同时出发,向乙 车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两 车才能相遇?
解:两车速度和:38+42=80(千米/小时) 燕子飞行时间:400÷80=5(小时) 燕子飞行路程:5×50=250(千米) 答:燕子飞了250千米。
添加 标题

一.
相遇问题
基本公式 路程=速 度×时间
例题分析
公式:共行路程÷相遇时间=速度和 速度和:20÷2=10(千米/小时) 小牛速度:10-4=6(千米/小时)
1、小明和小牛两家相距20千 米,某日,二人同时从家出发, 打算到对方家抄作业,2小时 后在途中相遇,小明的速度是 4千米每小时,问:小牛的速 度是多少?
8小时
表示原来速度和
7小时
表示现在速度和
解:现在速度和比原来速度和快3-1=2(千米) 原来速度和:2 × 7=14(千米/小时) 东西两地相距:14 × 8=112(千米)
答:东西两地相距112千米。
小明和小军分别从甲、乙两地同时出发,相向而行。如果按原 定速度前进,则4小时相遇,如两人各自比原定速度每小时多 走1千米,则3小时相遇。甲、乙两地相距多少千米?
客车从甲地开往乙地,货车从 乙地开往甲地,同时开出,到 达对方出发地后立即返回。第 一次相遇距乙地80千米,第二 次相遇距甲地50千米。甲、乙
两地相距多少千米?
解析:货车在共行1个全程中走 了80千米,3个全程中走了80
×3=240(千米),
到了第二次相遇点去掉50千米 就是全程240-50=190(千 米)。

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。

【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。

四年级奥数之行程问题

四年级奥数之行程问题

四年级奥数之行程问题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)行程问题知识要点:1、相遇问题(或背向问题)AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= (甲的速度-乙的速度)×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。

求该车的平均速度。

2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。

小学四年级二次相遇问题奥数练习题及答案

小学四年级二次相遇问题奥数练习题及答案

小学四年级二次相遇问题奥数练习题及答案小学四年级二次相遇问题奥数练习题及答案1. 甲乙二人分别从A、B两地同时出发,并在两地间往返行走。

第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?答案:(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.(2)甲、乙从出发到第二次相遇共行3个全程。

从第一次相遇后时到第二次相遇他们共行2个全程。

在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)250+400=650米答:两地相距650米。

2. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B 两地相距多少米?解答:丙遇到乙后此时与甲相距(50+70)×2=240米,也是甲乙的路程差,所以240÷(60-50)=24分,即乙丙相遇用了24分钟,A、B相距(70+60)×24=3120米.3. 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解题思路:解答:【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)4. 甲乙二人分别从A、B两地同时出发,并在两地间往返行走。

第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?答案:(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.(2)甲、乙从出发到第二次相遇共行3个全程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(60+54)×6 =114×6 =684(千米)
答:6小时后客车在超过中点18千米 处与货车相遇。A、B两地相距684 千米。
挑战竞赛
客车和货车同时从甲、乙两地相对开出。已知客车每小时
行60千米,经过5小时后客车已驶过中点25千米,这时与
货车还相距15千米,货车每小时行多少千米?甲、乙两地
相距多少千米?
客车每小时走60千米
?千米 25
千米
中点
货车每小时走?千米
客车走的路程是一半多25 千米,货车走的路程是全程的
一半少25+15千米,由客车5小
客车走的路程
15千米 货车走的路程
(5×60-25-25-15)÷5 275×2=550(千米)
时走的路程可以求出全程的一 半是多少呢?再分别求货车的速 度和全程。
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距的两倍;
3、往返相遇问题:同时出发,同时停止,则中间往 返的时间就相遇时间;
(418-34×2)÷(36+34) =350÷70 =5(小时)
5+2=7(小时)
答:经过7小时两舰相遇。
甲开出后又回到 原港花了几个小时?
乙舰在这段时间单独 走了多远呢?
相遇问题中,若同时出发且中途不停顿,则相遇路程就是
全程;若不同时出发或中途停顿过,则相遇路程必须减去其 中一个物体单独走的路程。
2×2÷(12-10)×(12+10) =4÷2×22 =2×22 =44(千米)
答:两地相距44千米。
甲一共比乙多 走了多少千米?
2、两列火车同时从A、B两地同时开出。客车每小时行 60千米,货车每小时行驶54千米,几小时后客车在超过 中点18千米处与货车相遇?求A、B两地相距多少千米。
18×2÷(60-54) =36÷6 =6(小时)
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
=235÷5
=47(千米)
答:货车每小时行47千米.甲、乙两地相距550千米.
中点相遇问题的解题步骤是:
(1)求快的一共多走的路程 (距离中点的路程乘2); (2)求每小时快的多走的路程 (快的减慢的);
(3)求相遇时间(用第一步的结果除以第二步的结果 ); (4)求总路程。
例3、甲、乙两个车队同时从相隔330千米的两地相向而行。 甲队每小时行60千米,乙队每小时行50千米,同时,一个人 骑摩托车每小时行80千米在两车队中间往返联络。问:两车 队相遇时,摩托车行驶了多少千米 ?
A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行 15千米,李每小时 行14千米。李在途中因修车敢误了 1小时,然后继续前 进。他们经过多少小时相遇?
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲
乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
例2、甲、乙两辆汽车同时从东、西两地相向开出,甲车每小
时行56千米,乙车每小时行48千米。两车在离中点32千米处
相遇。求东、西两地相距多少千米。
?千米



甲每小时走56千米
32千米
西
乙每小时走48千米
两车相遇时,甲走的路 程是全程的一半多32千米, 乙走的路程是一半少32千 米,则甲比乙多走了多少 千米?甲每小时比乙多走 几千米?
——相遇问题
甲车
乙车
相遇问题是行程问题中的重要一部分,相遇问题的特 征是:两个物体从两地出发,相向而行,共同行一段路程, 直至相遇。这类问题的基本数量关系是:总路程=速度和 ×相遇时间,这里的“速度和”是指两个物体在单位时间 内共同行的路程,还可以推导出以下的数量关系:
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时 ?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
4、环行相遇问题:同时、同地背向出发,相遇路 程就是一周的长度。
例1、甲、乙两人分别从相距20千米的两地同时出发, 相向而行,甲每小时走6千米,乙每小时走4千米,两 人几小时后相遇? 20千米
甲每小时走6千米
20÷(6+4) =20÷10 =2(小时) 答:两人2小时后相遇。
相遇时间=相遇路程÷速度和
(102-5×1)÷(15+14) =97÷29 =3(小时)
3+1=4(小时)
答:他们经过4小时相遇。
李耽误1小时,实际 上是赵多走了1 小时。
挑战竞赛
甲、乙两艘舰,由相距418千米的两个港口同时相 对开出,甲舰每小时行36千米,乙舰每小时行34千米, 开出1小时后,甲舰因有紧急任务,返回原港,又立即 起航与乙舰继续相对开出,经过多少小时两舰相遇?
甲的路程
乙的路程
32×2÷(56-48)×(56+48) =64÷8×104 =8×104 =832(千米)
答:东、西两地相距832千米。
中点相遇时,快的多走的路程就是距离中点路程的2倍;多走的路程所 要的时间就是相遇时间。
思维发散
1、甲、乙两人同时从两地相向跑步而行。甲每小时行 12千米, 乙每小时行10千米,两人刚好在距中点2千米处相遇。问:两 地相距多少千米?
相关文档
最新文档