初一数学有理数概念
初一数学有理数知识点总结
初一数学有理数知识点总结有理数是初一数学中的重要概念,它是数的基础,也是后续数学学习的基石。
下面我们来详细总结一下有理数的相关知识点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
例如,5 可以写成 5/1。
分数则是由分子和分母组成的数,其中分母不为 0。
例如,1/2、3/5 等。
有理数可以用两个整数之比的形式表示。
二、有理数的分类1、按定义分类整数:正整数、0、负整数。
分数:正分数、负分数。
2、按性质分类正有理数:正整数、正分数。
0 。
负有理数:负整数、负分数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用:1、可以直观地表示有理数。
2、可以比较有理数的大小。
在数轴上,右边的数总比左边的数大。
例如,在数轴上表示-3 和 2,-3 在数轴的左边,2 在数轴的右边,所以-3 < 2 。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,5 和-5 互为相反数,0 的相反数是 0 。
相反数的性质:1、互为相反数的两个数的和为 0 。
2、数轴上,互为相反数的两个点位于原点两侧,且到原点的距离相等。
五、绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 。
绝对值的性质:1、正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0 。
即:当 a > 0 时,|a| = a ;当 a = 0 时,|a| = 0 ;当 a < 0 时,|a| = a 。
2、绝对值具有非负性,即|a| ≥ 0 。
例如,|5| = 5 ,|-3| = 3 ,|0| = 0 。
六、有理数的大小比较1、正数大于 0 ,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较-2 和-5 的大小。
因为|-2 |= 2 ,|-5 |=5 ,2 < 5 ,所以-2 >-5 。
七、有理数的加法1、同号两数相加,取相同的符号,并把绝对值相加。
初一数学知识点总结之有理数
初一数学知识点总结之有理数考点一:定义考点内容:整数和分数统称为有理数,这是课本上的定义。
深层次理解一下,其实只要能写成p/q(p、q为整数)的数,就是有理数。
所以考查这个概念时,只要不能写成两个整数相除的数,就不是有理数。
期末考试考查以选择题为主,难度不大。
考点二:运算这可以说是本学期的一个重点。
因为有负数参与运算,所以对于初一的孩子们来说,会出现各种各样的问题。
解决计算问题除了加强练习之外,合理使用方法也是十分重要的。
考点内容:四则运算、巧算。
有理数的四则运算不再赘述,具体内容可以参考数学书。
在运算时,建议按照如下方法进行,可以使计算变得简单一些。
1. 先处理符号。
只要处理好符号,就回归到了之前的运算,可以提升计算准确率。
比如:直接拆括号,会面临三次变号。
而先把-48变成48,把负号直接放到前面的括号里,就会好很多。
(-1/6+3/4-1/12)×48,再展开运算。
这样比直接拆括号准确率会高。
2. 每行运算只做一件事。
比如第一步只处理符号,第二步只拆括号,第三步只计算。
这样虽然过程可能会比较长,但运算结果会更加准确。
把每一步都详细写出来,会让计算更准确。
养成完整写过程的习惯,对今后的数学学习也是十分有好处的。
3. 合理使用运算定律。
初中再也没有专门的巧算题型,之前学过的运算技巧,需要随时想着使用。
比如:前面的括号可以直接算,后面的括号里有三次方,计算量稍有点大。
如果能够发现8/27可以写成(2/3)³,用这种形式和前面的运算,就会得到(-3/4×2/3)³,约分后就剩下1/2,再做立方运算会简单一些。
当遇到比较复杂的式子时,多观察10秒钟,看看是不是有啥地方可以简便计算。
养成习惯,计算这件事就会简单很多。
考点三:新概念考查新概念1:相反数。
相反数指的是一对数a和b,如果a+b=0,那么a和b就互为相反数。
这个概念很简单,形式上就是一个数加个负号或去掉负号。
初一数学有理数
初一数学有理数初一数学有理数有理数是数学中的一类数,是指可以写成分子和分母是整数的数。
在初一数学中,学生会接触到有理数的概念,并学习有理数的加减乘除运算、比较大小以及在数轴上表示等内容。
首先,我们先来了解有理数的定义。
有理数包括正整数、负整数、0以及带分数(即有分子和分母的分数)。
有理数的特点是可以表示为两个整数的比值,其中分母不能为0,而且有理数的整数部分可以是正数、负数或者零。
有理数的加减运算相对简单,只需要保持分母一致后,将分子相加或相减即可。
例如,1/3 + 2/3 = 3/3 = 1,而1/2 - 1/3 = (3-2)/6 = 1/6。
这些计算可以通过分子的运算来得到最简形式,即分子和分母的最大公约数为1。
而有理数的乘除运算较为复杂。
对于乘法运算,我们需要将分子和分母分别相乘后再进行约分。
例如,1/2 × 2/3 = (1×2) / (2×3) = 2/6,然后再将2/6约分为1/3。
而对于除法运算,我们需要将除数与被除数的倒数相乘。
例如,1/2 ÷ 2/3 = 1/2 × 3/2 = (1×3) / (2×2) = 3/4。
有理数的比较大小也是数学中重要的内容。
我们可以通过比较两个有理数的大小,来判断它们的大小关系。
当两个有理数的分母相同时,我们只需要比较分子的大小即可。
例如,1/2与3/2相比较,由于3>1,所以3/2大于1/2。
而当两个有理数的分母不同时,我们可以通过求出它们的公共分母,再进行比较。
例如,1/2与3/4相比较,我们找到它们的公共分母为4,然后比较1×2/2×2与3/4,即可得到1/2<3/4。
在数轴上表示有理数也是初一数学中的重点。
我们可以将有理数表示在数轴上的一点,而有理数的正负性则可以通过数轴上的位置来判断。
例如,正数在数轴上对应着右侧的点,负数则对应左侧的点,而0则对应数轴上的原点。
初一数学知识点归纳(全)
初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。
2. 有理数的分类:正有理数、负有理数和零。
3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。
4. 有理数的运算:加法、减法、乘法和除法。
二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。
2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。
三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。
2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。
3. 解一元一次方程的方法:移项、合并同类项、系数化为1。
四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。
2. 几何图形的分类:平面图形和立体图形。
3. 平面图形的基本性质:对称性、相似性、全等性等。
4. 立体图形的基本性质:表面积、体积、棱长等。
五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。
2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。
3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。
六、实数1. 实数的定义:有理数和无理数的统称叫做实数。
2. 实数的分类:有理数、无理数。
3. 无理数的定义:不能写成两个整数的比的数叫做无理数。
4. 实数的运算:加法、减法、乘法和除法。
七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。
2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。
3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。
初一有理数知识点总结
初一有理数知识点总结初一学习有理数作为数学的第一个大课程,学生们必须要掌握它的基本知识和技能。
有理数是数学中最基础的概念之一,它是由整数和分数组成的数集。
有理数有很多特性,例如有理数的大小可以通过绝对值大小进行判断,有理数也可以进行四则运算。
对于初一学生们来说,初步掌握有理数的相关概念和技能是非常重要的。
以下是初一有理数知识点的总结。
一、有理数的定义有理数定义为整数和分数的集合,可以用整数选出代表元,如负整数“-3”和正分数“1/3”都是有理数。
其中正整数、负整数和零可以简称为整数,正分数和负分数可以简称为分数,它们都属于有理数。
二、有理数的符号有理数可以用正号(+)和负号(-)表示,正号(+1)可以省略不写,负号(-1)必须写出来。
如果一个数没有符号,则默认它是正数。
三、有理数的大小关系有理数的大小关系可以通过它们的绝对值进行判断,若两个数的符号相同,则绝对值较大的数大;若两个数的符号不同,则绝对值较大的数小。
例如:-5>-8;-2/3 < -1/2。
四、有理数的加法有理数的加法可分为同号相加和异号相加两种情况。
同号相加,同号符号不变,把绝对值累计起来即可;异号相加,要找到较大数的符号,用绝对值较大的数的符号作为和的符号,差的绝对值作为和的绝对值。
例如:2/3+3/4 = 17/12, -3+(-5)=-8。
五、有理数的减法有理数的减法可以化为加上相反数,即:a-b = a+(-b);b可以用相反数表示,互为相反数的两个数相加等于0。
例如:2/3-3/4=1/12;-5-(-2)= -5+2=-3。
六、有理数的乘法有理数的乘法规律与正数相同,正负相乘取负,负负相乘取正,每一个非零有理数的乘法逆元是它的倒数。
例如:(-2/3)×(-3/4) =1/2。
七、有理数的除法有理数的除法可以转化为乘上倒数的方式,即 a÷b = a×(1/b),其中b≠0,1/b叫做数b的倒数。
初一数学有理数的概念
初一数学有理数的概念数学作为一门重要的学科,是我们学习过程中必不可少的一部分。
在初中阶段,有理数是数学知识的基础之一。
有理数是能够表示为两个整数的比值的数,包括正整数、负整数、零以及可以表示为两个整数的比值的分数。
有理数的概念对于我们学习和理解整数、分数、小数等数学知识非常重要。
本文将详细介绍有理数的概念、性质以及应用。
一、有理数的概念有理数是由整数和分数构成的数。
在有理数中,包括了正数、负数和零。
正数是指大于零的数,负数是指小于零的数,而零是指不大不小的数,既不是正数也不是负数。
有理数可以用分数形式或小数形式来表示,其中分数形式是指能够表示为两个整数的比值,而小数形式则是用小数来表示。
有理数的特点在于,它可以通过四则运算进行计算,且计算结果仍然是有理数。
例如,两个有理数的和、差、积都是有理数,除非遇到除数为零的情况。
这种性质使得有理数在实际生活中的运用非常广泛。
二、有理数的性质1. 有理数的比较性质有理数可以进行比较大小。
对于两个有理数a和b,根据大小关系可以分为三种情况:a>b、a<b、a=b。
当a>b时,我们可以认为a比b更大;当a<b时,我们可以认为a比b更小;当a=b时,我们可以认为a和b相等。
2. 有理数的加法性质对于任意两个有理数a和b,它们的和a+b也是一个有理数。
这意味着有理数的加法满足交换律和结合律,并且有一个零元素0,使得对于任意有理数a,都有a+0=a。
3. 有理数的乘法性质对于任意两个有理数a和b,它们的积a*b也是一个有理数。
这意味着有理数的乘法满足交换律和结合律,并且有一个单位元素1,使得对于任意非零有理数a,都有a*1=a。
4. 有理数的除法性质对于任意两个非零有理数a和b,它们的商a/b也是一个有理数。
这意味着有理数的除法满足除法性质,并且对于任意非零有理数a,都有a/1=a。
5. 有理数的逆元素性质对于任意非零有理数a,存在一个有理数b,使得a+b=0。
初一有理数的知识点总结 初一有理数知识结构图
初一有理数的知识点总结引言有理数是数学中的一个重要概念,也是初中数学的基础知识之一。
在初一学习有理数的过程中,我们需要掌握有理数的定义、有理数的大小比较、有理数的加减乘除运算等基本知识点。
本文将对初一有理数的知识点进行总结和归纳。
有理数的定义有理数是可以表示成两个整数的比值形式的数。
有理数包括整数和分数两种形式。
整数可以表示为正整数、负整数和 0,分数可以表示为有限小数或循环小数。
有理数可以用分数的形式表示为 a/b,其中 a 是整数,b 是非零整数。
例如,1/2、-3/4、5/8 都是有理数。
有理数的大小比较在初一学习有理数时,我们需要掌握有理数的大小比较。
有理数的大小比较可以通过以下几种方法进行判断: 1. 同号比大小:正数大于负数,负数小于正数。
2. 绝对值比大小:绝对值大的数较大,绝对值小的数较小。
3. 分数相等时比分子大小:如果两个分数的分母相等,分子较大的数较大。
4. 分数不等时通分比大小:将两个分数通分,然后比较分子的大小。
有理数的加减乘除运算加法运算有理数的加法运算是指两个有理数相加的操作。
有理数的加法运算规则如下: 1. 同号相加:两个正数相加,保留正号,数值相加;两个负数相加,保留负号,数值相加。
2. 异号相减:正数减去负数,保留正号,数值相加;负数减去正数,保留负号,数值相加。
3. 绝对值相等时:将同号数的绝对值相加,并使用原来的符号。
减法运算有理数的减法运算是指两个有理数相减的操作。
有理数的减法运算规则如下: 1. 减去一个数相当于加上这个数的相反数。
2. 两个数相减时,把减法变成加法,然后按照加法的规则进行计算。
乘法运算有理数的乘法运算是指两个有理数相乘的操作。
有理数的乘法运算规则如下: 1. 同号相乘为正,异号相乘为负。
2. 乘以零时结果为零。
3. 绝对值相等时,异号数相乘得负数。
除法运算有理数的除法运算是指两个有理数相除的操作。
有理数的除法运算规则如下: 1. 同号相除为正,异号相除为负。
初中七年级数学有理数的定义和分类
有理数定义及分类
有理数的定义
有理数是指两个整数的比。
有理数是整数和分数的集合。
整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。
一个相关的性质是,仅有理数可化为有限连分数。
依照它们的序列,有理数具有一个序拓扑。
有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数的分类
(一)按有理数的定义分类:
(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数包括正整数、0、负整数。
其中零和正整数统称自然数。
(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。
(二)按有理数的性质分类:
(1)正有理数:除了负数、0、无理数的数字都是正有理数。
正有理数还被分为正整数和正分数。
(2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理
数。
(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小
数表示的数。
•有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数。
初一数学有理数知识点总结
初一数学有理数知识点总结有理数是初中数学学习的重要基础,它包括整数和分数。
掌握有理数的基本概念、性质、运算法则对于后续数学学习至关重要。
以下是初一数学有理数的知识点总结:1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形式为\( \frac{p}{q} \)的数,其中p和q都是整数,且q不等于0。
2. 有理数的分类:有理数可以分为正有理数、负有理数和零。
正有理数是分子和分母同号的分数,负有理数是分子和分母异号的分数,零可以看作是分子为0的分数。
3. 有理数的性质:- 封闭性:有理数的加、减、乘、除(除数不为零)运算结果仍然是有理数。
- 有序性:有理数可以比较大小,正有理数大于零,零大于负有理数,正有理数大于负有理数。
- 可加性:任意两个有理数相加仍然是有理数。
- 可乘性:任意两个有理数相乘仍然是有理数。
4. 有理数的运算法则:- 加法:同号有理数相加,取相同符号,绝对值相加;异号有理数相加,取绝对值较大的数的符号,绝对值相减。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:同号得正,异号得负,绝对值相乘。
- 除法:除以一个数等于乘以这个数的倒数。
5. 有理数的运算律:- 交换律:加法和乘法都满足交换律,即a+b=b+a和ab=ba。
- 结合律:加法和乘法都满足结合律,即(a+b)+c=a+(b+c)和(ab)c=a(bc)。
- 分配律:乘法对于加法满足分配律,即a(b+c)=ab+ac。
6. 有理数的比较大小:- 正数大于零,零大于负数。
- 两个负数比较大小,绝对值大的反而小。
7. 有理数的四则运算:- 先算乘除,后算加减。
- 同级运算,从左到右进行。
- 有括号的先算括号里面的。
8. 有理数的化简:- 化简分数,使分子和分母没有公因数。
- 化简带分数,将带分数转换为假分数。
9. 有理数的近似计算:- 四舍五入法:根据需要保留的小数位数,从该位数的下一位开始,四舍五入得到近似值。
通过以上知识点的学习和掌握,可以为进一步的数学学习打下坚实的基础。
初一数学@有理数的概念
第一章 有理数一、全章知识结构二、回顾正数、负数的意义及表示方法1、大于0的数叫做正数;正数的表示方法:a>0,2、在正数前面加上“-”号,表示比0小的数叫做负数;负数的表示方法:a<03、0即不是正数也不是负数。
正数,负数表示具有相反意义的量。
三、有理数的分类1、定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数 2、有理数的分类:(1)按定义分类: (2)按性质符号分类:3、数轴:规定了原点,正方向和单位长度的直线叫做数轴。
数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;(4)在数轴上可求任意两点间的距离:两点间的距离=|x -y|=|y -x|四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数 1、相反数:只有符号不同的两个数互为相反数。
(1)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。
(2)代数意义:只有符号不同的两个数。
(3)互为相反数的特性:a+b=0,0的相反数是0。
(4)会求一个数的相反数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数a 的相反数为 a-b 的相反数为 2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-1 3、非负数:(1)就是大于或等于0的数:a 0(2)数轴上,在原点的右边包括原点的点表示的数 (3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a 0(5)数轴上,在原点的左边包括原点的点表示的数 4、绝对值:(1)几何意义:一个数的绝对值就是它到原点的距离。
(2)代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
初一数学有理数知识点与经典例题
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
2024新版初一数学教材笔记
2024新版初一数学教材笔记一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:5是正整数, -3是负整数,0.5(即(1)/(2))是分数, -0.333…(即-(1)/(3))也是分数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 任何一个有理数都可以用数轴上的一个点来表示。
例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。
- 数轴上右边的数总比左边的数大。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 -3互为相反数,0的相反数是0。
- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 例如,|3| = 3,| - 3|=3。
- 两个负数比较大小,绝对值大的反而小。
如| - 5| = 5,| - 3| = 3,因为5>3,所以 - 5< - 3。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如,3x, - 2,a都是单项式。
- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,在单项式 - 2x²y中,系数是 - 2,次数是2 + 1=3。
2. 多项式。
- 几个单项式的和叫做多项式。
例如,2x+3y是多项式。
- 在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如,多项式3x² - 2x+1中,有三项,分别是3x²、 - 2x、1,其中1是常数项,这个多项式的次数是2。
3. 整式的加减。
- 整式加减的实质就是合并同类项。
- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。
初一数学有理数知识点归纳
初一数学有理数知识点归纳1. 有理数的定义有理数是可以表示为两个整数的比的数,包括正整数、负整数、零以及分数。
2. 有理数的表示有理数可以用分数表示,分子和分母都是整数,并且分母不为零。
3. 有理数的比较3.1 比较运算符有理数的比较可以使用以下运算符进行:小于(<)、大于(>)、小于等于(<=)、大于等于(>=)和等于(==)。
### 3.2 比较规则当两个有理数进行比较时,按照数轴上的大小关系来比较。
对于两个数a和b,如果a在b的左边,则a小于b;如果a在b的右边,则a 大于b。
当a等于b时,a等于b。
4. 有理数的四则运算4.1 加法有理数的加法遵循以下规则: - 正数加正数,结果为正数; - 负数加负数,结果为负数; - 正数加负数,结果的符号由绝对值大的数决定; - 零加任何数,都等于这个数本身。
4.2 减法有理数的减法可以通过加法来实现。
将减数取相反数,然后使用加法进行运算。
4.3 乘法有理数的乘法遵循以下规则: - 正数乘正数,结果为正数; - 负数乘负数,结果为正数; - 正数乘负数,结果为负数; - 零乘任何数,都等于零。
4.4 除法有理数的除法可以通过乘法来实现。
将被除数乘以除数的倒数,即可得到商。
5. 有理数的约分有理数可以进行约分,即将分数的分子和分母同时除以一个相同的数,得到一个等价的分数。
6. 有理数的逆元有理数a的逆元是指一个有理数b,满足a与b的乘积等于1。
对于非零有理数a,其逆元可以表示为1/a。
7. 有理数的绝对值有理数的绝对值表示这个数的大小,忽略符号。
对于一个非负数,其绝对值等于其本身;对于一个负数,其绝对值等于其去掉符号后的值。
8. 有理数的倒数有理数的倒数表示这个数的倒数值。
对于一个非零有理数a,其倒数表示为1/a。
9. 有理数的平方根对于一个正有理数a,其平方根表示为一个有理数b,满足b的平方等于a。
10. 有理数在数轴上的表示有理数可以用数轴上的点来表示。
初一数学有理数公式大全
初一数学有理数公式大全1.有理数的定义:有理数是可以用两个整数的比来表示的数,包括整数和分数,用Q表示。
2.有理数四则运算:(1)加法:a + b = c(2)减法:a - b = c(3)乘法:a × b = c(4)除法:a ÷ b = c (b ≠ 0)3.有理数绝对值:对于一个有理数a,它的绝对值为|a|,如果a≥0,则|a|=a;如果a<0,则|a|=-a。
4.有理数相反数:对于一个有理数a,它的相反数为-a,即-a使得a + (-a) = 0。
5.有理数的乘方:对于有理数a,a的n次方记为aⁿ,其中n为正整数。
(1)a⁰ = 1 (当a≠0时)(2)a¹ = a(3)aⁿ⁺ᵐ= aⁿ × aᵐ(4)(aⁿ)ᵐ= aⁿᵐ6.有理数的倒数:对于一个非零的有理数a,它的倒数记作1/a或a⁻¹,满足a × (1/a) = 1。
7.有理数乘法的交换律和结合律:(1)交换律:a × b = b × a(2)结合律:(a × b) × c = a × (b × c)8.有理数加法和乘法的分配律:(1)加法的分配律:a × (b + c) = a × b + a × c(2)减法的分配律:a × (b - c) = a × b - a × c9.有理数的乘方性质:(1)任何非零有理数的零次方都等于1:a⁰ = 1 (a≠0)(2)非零有理数取负次方的倒数等于该数的正次方:(a⁻ⁿ) = 1/(aⁿ)(a≠0)(3)任何有理数的一次方等于其本身:a¹ = a(4)任何非零有理数的n次方都等于该非零有理数连乘n次:aⁿ =a × a × a ×…× a (连乘n次)10.有理数的比较:(1)若a>b,则a-b>0(2)若a<b,则a-b<0(3)若a=b,则a-b=011.有理数的约分:对一个分数a/b,如果a和b有公因数,则可以约去公因数,保留最简形式。
初一数学第二章知识点总结
初一数学第二章知识点总结一、有理数的基本概念1. 有理数的定义:有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b 是整数,且b≠0。
2. 有理数的分类:- 正有理数:大于0的有理数。
- 负有理数:小于0的有理数。
- 零:既不是正数也不是负数的有理数。
3. 有理数的性质:- 封闭性:加法、减法、乘法和除法(除数不为零)在有理数集内封闭。
- 加法和乘法的交换律、结合律。
- 减法和除法的逆元存在性。
二、有理数的运算1. 加法运算:- 同号相加:取相同的符号,绝对值相加。
- 异号相加:取绝对值较大的数的符号,绝对值相减。
- 任何数与零相加等于原数。
2. 减法运算:- 减去一个数等于加上这个数的相反数。
3. 乘法运算:- 同号得正,异号得负,绝对值相乘。
- 任何数与零相乘等于零。
4. 除法运算:- 除以一个不等于零的数等于乘以这个数的倒数。
- 零除以任何非零数等于零。
5. 混合运算:- 先乘除后加减。
- 同级运算从左到右进行。
三、绝对值与有理数比较1. 绝对值:- 绝对值表示一个数距离零的距离,用符号“| |”表示。
- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。
2. 有理数的比较:- 正数大于零,负数小于零。
- 两个负数比较大小,绝对值大的反而小。
四、有理数的简化1. 简化的概念:- 简化是有理数分数形式的最简表示,即分子和分母没有公因数。
2. 简化的方法:- 找出分子和分母的最大公因数,然后分子分母都除以这个数。
五、分数的加减乘除1. 分数的加法:- 需要找到公共分母,然后按照同分母分数的加法规则进行计算。
2. 分数的减法:- 同样需要找到公共分母,然后按照同分母分数的减法规则进行计算。
3. 分数的乘法:- 分子乘分子,分母乘分母。
4. 分数的除法:- 分子乘分母的倒数。
六、小数与有理数的互化1. 小数转化为有理数:- 根据小数点后的位数,将小数乘以10的相应次方,转化为分数形式。
初一数学上有理数与无理数的概念和练习(有详细的答案!)
有理数和无理数的概念与演习 【1 】常识清单1界说:有理数:我们把可以或许写成分数情势nm (m.n 是整数,n≠0)的数叫做有理数. 无理数:①无穷②不轮回小数叫做无理数.2有理数的分类整数和分数都可以写成分数的情势,它们统称为有理数.零既不是正数,也不是负数.有限小数和无穷轮回小数是有理数.3无理数的两个前提前提: (1) 无穷(2)不轮回4两者的差别:(1)无理数是无穷不轮回小数,有理数是有限小数或无穷轮回小数.(2)任何一个有理数后可以化为分数的情势,而无理数则不克不及. 经典例题例1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-61,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r.例2:下列说法准确的是:()A.整数就是正整数和负整数B.分数包含正分数.负分数闯关全练一.填空题:(1)我们把可以或许写成分数情势nm (m.n 是整数,n≠0)的数叫做. (2)有限小数和都可以化为分数,他们都是有理数.(3)小数叫做无理数.(4)写出一个比-1大的负有理数.(1)无理数与有理数的差都是有理数;(2)无穷小数都是无理数;(3)无理数都是无穷小数;(4)两个无理数的和不一定是无理数.(5)有理数不一定是有限小数.答案例1: 无理数有:3π,0,3.101001000……,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-61,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r 例2:B (A,还有0 C,还有0 D,无穷不轮回) 闯关全练一.(1)有理数(2)无穷轮回小数.(3)无穷不轮回小数.(4)答案不独一,如:-0.5二.(1)错,如3π-0=3π (2)错,如:0.333…(3)对,无理数的两个前提前提之一无穷(4)对,3π+(-3π)=0 (5)对,如:0.333…。
初一数学有理数知识点的归纳
初一数学有理数知识点的归纳一.知识框架二.知识概念1.有理数:1凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2相反数的和为0a+b=0a、b互为相反数.4.绝对值:1正数的绝对值就是其本身,0的绝对值就是0,负数的绝对值就是它的相反数;特别注意:绝对值的意义就是数轴上则表示某数的点返回原点的距离;2绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0小,负数永远比0大;3正数大于一切负数;4两个负数比大小,绝对值小的反而大;5数轴上的两个数,右边的数总比左边的数大;6大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数乘法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相乘,挑绝对值很大的符号,用很大的绝对值乘以较小的绝对值;3一个数与0相加,仍得这个数.8.有理数乘法的运算律:1加法的交换律:a+b=b+a;2加法的结合律:a+b+c=a+b+c.9.有理数加法法则:乘以一个数,等同于加之这个数的相反数;即a-b=a+-b.10.有理数乘法法则:1两数相加,同号为也已,异号为负,并把绝对值相加;2任何数同零相乘都得零;3几个数相加,存有一个因式为零,四维零;各个因式都不为零,内积的符号由负因式的个数同意.11.有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac.12.有理数乘法法则:除以一个数等同于除以这个数的倒数;特别注意:零无法搞除数,.13.有理数乘方的法则:1正数的任何次幂都就是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:-an=-an或a-bn=-b-an,当n为正偶数时:-an=an或a-bn=b-an.14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫作底数,相同因式的个数叫作指数,乘方的结果叫作幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.对数数的准确位:一个对数数,四舍五入至那一位,就说道这个对数数的准确至那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后秦九韶,最后以此类推.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
人教版初一数学 1.2.1 有理数的概念PPT课件
探究新知
归纳总结
小学里学过的数除0外都是正数;正数前面添上“-” 号的数是负数;0既不是正数,也不是负数,它表示正 数、负数的界限.
有理数的分类方法不是唯一的,可以按整数和分数分成 两大类,也可以按正有理数、零、负有理数分成三大类.
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
有理数 零
正分数
负整数 负有理数
负分数
探究新知
注意 :①分类的标准不同,结果也不同; ②分类的结果应无遗漏、无重复; ③零是整数,但零既不是正数,也不是负数.
探究新知
填一填
(1)既是分数又是负数的数是__负_分__数__; (2)非负数包括___正__数___和____0___; (3)非正数包括___负__数___和____0___;
非负有理数集合:{ 有理数集合:{
整数不是分数};;
2.π大于0是正数不是 正有理数.
}.
巩固练习
① 0___是____整数,0___是____有理数; ② -5___是____整数,-5___是____有理数; ③ -0.3__是___负分数,-0.3__是___有理数.
当堂训练
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数
-15 +6 -2 -0.9
1
3 0 3 1 0.63 -4.95
5
4
(1)正整数集合:{ +6 , 1 }
(2)负整数集合:{ (3)正分数集合:{ (4)负分数集合:{
-15 , -2 }
初一数学有理数知识点
初一数学有理数知识点在初中数学中,有理数是一个非常重要的概念。
有理数包括整数、分数和零这三类数。
掌握有理数的概念和运算规则,对于学习高中数学和解决实际生活问题都起着关键作用。
下面将介绍初一数学中有理数的基本概念和一些重要的知识点。
一、有理数的概念有理数包括整数、分数和零这三类数。
整数包括正整数、负整数和零,分数包括带分数和真分数。
带分数由整数部分和真分数部分组成,真分数的分子小于分母。
除零以外的整数和分数都是有理数。
二、有理数的比较与排序在比较两个有理数的大小时,可以采用以下方法:1. 如果两个有理数的整数部分不同,那么它们的大小可以直接通过比较整数部分的大小得出结论;2. 如果两个有理数的整数部分相同,那么可以通过将它们化为同分母的分数,然后比较分数的大小;3. 对于负数和正数的比较,一般来说正数大于负数。
三、有理数的加减法1. 两个有理数的加法:将两个有理数的分母化为相同,并将分子相加即可;如果有理数中有负数,则可以将负号括在括号外,然后两个负数的加法可以转化为正数的加法,最后再加上负号。
2. 两个有理数的减法:将减法问题转化为加法,即取减数的相反数,然后按照加法的规则进行运算。
四、有理数的乘除法1. 两个有理数的乘法:将两个有理数的分子和分母分别相乘,然后化简分数即可。
如果两个有理数符号相同,则结果为正数;如果符号不同,则结果为负数。
2. 两个有理数的除法:将除数的倒数与被除数相乘,即可得到结果。
五、有理数的混合运算有理数的混合运算包括加减乘除四则运算的综合运用。
在进行混合运算时,需要根据运算规则和优先级的要求,按照从左到右的顺序进行运算。
同时也要注意括号的使用,合理运用括号可以改变运算顺序,得到正确的结果。
六、有理数的应用有理数在现实生活中的应用非常广泛。
例如,温度的正负、钱的收入和支出、海拔的高低等都可以用有理数来表示。
通过运用有理数,可以解决很多实际问题,如购物、计算功力和计算利润等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学》第一章有理数的所有概念
基础知识:
1、大于0的数叫做正数;小于0的数叫做负数。
2、0既不是正数也不是负数。
3、正整数、0、负整数、正分数、负分数这样的数称为有理数。
(有限小数和无限循环小数都可化为分数)
4、通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左
(或下)为负方向;
(3)选取适当的长度为单位长度。
5、绝对值相等,只有负号不同的两个数叫做互为相反数。
6、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
8、有理数减法法则
减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)
9、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,
积相等。
表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
10、有理数的除法法则
除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得负,异号得正,并把绝对值相除。
0除以任何一个不等于0的数,都得0.
11、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
n a中,a叫做底数,n叫做指数。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
12、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
13、科学技术法:把一个大于10的数表示成n
a10
的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。
14、近似数(书上46页自己看看)
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
一、(1)所有有理数组成的数集叫做有理数集;
二、(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0;即对任何有理数a,它的。