旋转 知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案

教学内容

图形的旋转

1、旋转:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中点O叫做旋转中心,转动的角叫做旋转角。

对应点:如果图形上一点P经过旋转后,变为P’,那么这两个点叫做对应点。

旋转的三要素:旋转中心、旋转方向、旋转角

2、旋转的性质:(1)对应点到旋转中心的距离相等。(2)对应点与旋转中心所连线段的夹角等于旋转角。(3)旋转后的两个图形全等。

例:如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).

(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;

(2)点A1的坐标为_________;

(3)四边形AOA1B1的面积为_________.

想一想:在第(1)题中,旋转中心与旋转角分别是什么?

并且,你能得出哪些线段相等?哪些角相等呢?

3、中心对称:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

推论:两个图形同时绕某一点旋转180°,旋转后的图形不变,那么这两个图形成中心对称。

4、中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

5、中心对称图形的判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

6、坐标系中对称点的特征:

(1)关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(X,Y)关于原点的对称点为点Q(-X,-Y)

(2)关于X轴对称的点的特征:两个点关于X轴对称时,它们的坐标中X相等、Y符号相反,即点P(X,Y)关于原点的对称点为点Q(X,-Y)

(3)关于Y轴对称的点的特征:两个点关于Y轴对称时,它们的坐标中Y相等、X符号相反,即点P(X,Y)关于原点的对称点为点Q(-X,Y)

1

相关文档
最新文档