2019年上海各区初三二模数学试卷25题专题汇编(学生版)
(完整版)2019届宝山、嘉定区九年级二模数学Word版(附解析)
2019上海市宝山(嘉定)区初三二模数学试卷2019.04一. 选择题1. 32400000用科学记数法表示为( )A. 80.32410⨯B. 632.410⨯C. 73.2410⨯D. 632410⨯2. 如果关于x 的一元二次方程20x m -+=的解是负数,那么m 的取值范围是( )A. 2m ≥B. 2m >C. 2m <D. 2m ≤3. 将抛物线223y x x =-+向上平移1个单位,平移后所得的抛物线的表达式为( )A. 224y x x =-+B. 222y x x =-+C. 233y x x =-+D. 23y x x =-+4. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22S S >乙甲,那么两个队中队员的身高较整齐的是( )A. 甲队B. 乙队C. 两队一样整齐D. 不能确定5. 已知||3a =r ,||2b =r ,而且a r 和b r 的方向相反,那么下列结论中正确的是( )A. 32a b =r rB. 23a b =r rC. 32a b =-r rD. 23a b =-r r6. 下列四个命题中,错误的是( )A. 所有的正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B. 所有的正多边形是中心对称图形,正多边形的中心是它的对称中心C. 所有的正多边形每一个外角都等于正多边形的中心角D. 所有的正多边形每一个内角都与正多边形的中心角互补二. 填空题7. 计算:63a a ÷=8. 分解因式:3a a -=9. 已知关于x 的方程230x x m +-=有两个相等的实数根,那么m 的值为10. 不等式组1011x x +>⎧⎨-≤⎩的解集是11. 34=的解为12. 不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸出一个小球后放回,再随机地摸取一个小球,两次取的小球都是红球的概率为13. 为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为 人 14. 图像经过点(1,2)A 的反比例函数的解析式是15. 如果圆O 的半径为3,圆P 的半径为2,且5OP =,那么圆O 和圆P 的位置关系是16. 如图,平行四边形ABCD 的对角线AC 、BD 交于O ,过点O 的线段EF 与AD 、BC 分别交于E 、F ,若4AB =,5BC =, 1.5OE =,那么四边形EFCD 的周长为17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick ,1859-1942年)证明了格点多边形的面积公式:112S a b =+-,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积,如图格点多边形的面积是18. 如图,点M 的坐标为(3,2),动点P 从点O 出发,沿y 轴以每秒1个单位的速度向上移动,且过点P 的直线:l y x b =-+也随之移动,如果点M 关于l 的对称点落在坐标轴上,设点P 的移动时间为t ,那么t 的值可以是三. 解答题19. 计算:20211()(2019)(3)22cot30π-+--+-+︒.20. 解方程:21612422x x x x ++=-+-.21. 如图,已知,△ABC 中,AD 是边BC 上的高,E 是边AC 的中点,11BC =,12AD =,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度;(2)求cos EDC ∠的值.22. 某乒乓球管普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元; 暑期普通票正常出售,两种优惠卡仅暑期使用,不限次数,设打乒乓球x 次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图像如图所示,请根据函数图像,写出选择哪种消费方式更合算.23. 如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点.(1)求证:四边形AECF 为平行四边形;(2)如果PA PE =,联结BP ,求证:△APB ≌△EPC .24. 如图,已知对称轴为直线1x =-的抛物线23y ax bx =++与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A .(1)求点B 的坐标及此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15°,求线段CD 的长度;(3)设点P 为抛物线的对称轴1x =-上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.25. 如图已知:AB 是圆O 的直径,10AB =,点C 为圆O 上异于A 、B 的一点,点M 为弦BC 的中点.(1)如果AM 交OC 于点E ,求:OE CE 的值;(2)如果AM OC ⊥于点E ,求ABC ∠的正弦值;(3)如果:5:4AB BC =,D 为BC 上一动点,过D 作DF OC ⊥,交OC 于点H ,与射线BO 交于圆内点F ,请完成下列探究:探究一:设BD x =,FO y =,求y 关于x 的函数解析式及其定义域;探究二:如果点D 在以O 为圆心,OF 为半径的圆上,写出此时BD 的长度.参考答案一. 选择题1. C2. C3. A4. B5. D6. B一. 填空题7. 3a 8. (1)(1)a a a +- 9. 94-10. 12x -<≤ 11. 1x = 12. 19 13. 1500 14. 2y x= 15. 外切 16. 12 17. 6 18. 2或3三. 解答题19. π+20. 5x =-.21.(1)6BD =;(2)513. 22.(1)20y x =;(2)当015x ≤≤时,选普通卡;当1545x <≤时,选银卡;当45x >时,选金卡.23.(1)证明略;(2)证明略.24.(1);(2);(3).25.(1)1:2OE CE =;(2)sin ABC ∠=;(3)探究一:2057y x =-(7742x ≤<);探究二:11239BD =.。
2019年上海各区初三二模数学试卷24题专题汇编(学生版)
2019年上海各区初三二模数学试卷24题专题汇编(学生版)题型一:特殊四边形【思路点拨】按已知线段是边还是对角线分类,梯形可以按已知边分别为底分类 根据边平行或相等的条件列方程求解(2019崇明区)24.(本题满分12分,每小题满分各4分)如图8,抛物线2y x bx c =++交x 轴于点(1,0)A 和点B ,交y 轴于点(0,3)C . (1)求抛物线的解析式;(2)在抛物线上找出点P ,使PC PO =,求点P 的坐标;(3)将直线AC 沿x 轴的正方向平移,平移后的直线交y 轴于点M ,交抛物线于点N . 当四边形ACMN 为等腰梯形时,求点M 、N 的坐标.题型二:面积+三角比【思路点拨】求某个角的三角比时:① 所求角在直角三角形中,直接求② 所求角不在直角三角形中时,等角的转化或构造直角三角形(构造时一般要借助题目中的特殊度数,如30°、45°或60°) (2019奉贤区)24.(本题满分12分,每小题满分各4分) 如图9,已知平面直角坐标系,抛物线22yax bx与轴交于点A (-2,0)和点B (4,0) .xOy xA B COyx备用图(1)求这条抛物线的表达式和对称轴;(2)点C 在线段OB 上,过点C 作CD ⊥x 轴,垂足为点C ,交抛物线与点D ,E 是BD 中点,联结CE 并延长,与y 轴交于点F .①当D 恰好是抛物线的顶点时,求点F 的坐标; ②联结BF ,当△DBC 的面积是△BCF 面积的32时,求点C 的坐标.(2019闵行区)24.(本题共3小题,每小题各4分,满分12分)已知抛物线c bx x ++-=2y 经过点()0,1A 、()03,B ,且与y 轴的公共点为点C . (1)求抛物线的解析式,并求出点C 的坐标;(2)求ACB ∠的正切值;(3)点E 为线段AC 上一点,过点E 作BC EF ⊥,垂足为点F ,如果41=BF EF ,求BCE ∆的面积 图9OABxy(2019普陀区)24.(本题满分12分)在平面直角坐标系xOy 中,直线243y x m =-+(0)m >与x 轴、y 轴分别交于点A 、B 如图11所示,点C 在线段AB 的延长线上,且2AB BC =. (1)用含字母m 的代数式表示点C 的坐标;(2)抛物线21103y x bx =-++经过点A 、C ,求此抛物线的表达式;(3)在第(2)题的条件下,位于第四象限的抛物线上,是否存在这样的点P :使2PAB OBC S S =△△,如果存在,求出点P 的坐标,如果不存在,试说明理由.题型三:相似【思路点拨】相似分类思路:①一般可以找到一组固定相等的角① 边分类-相等角的两边(利用的是两边对于成比例且夹角相等) ② 角分类-若上述比例式中的边没法表示时,可按角继续分类(2019松江)24、如图,抛物线c x ax y ++=42过点A (6,0)、B (3,23),与y 轴交于点C ,联结AB 并延长,交y 轴于点D.图11xyO AB11(1)求该抛物线的表达式; (2)求△ADC 的面积;(3)点P 在线段AC 上,如果△OAP 和△DCA 相似,求点P 的坐标.题型四:已知角等或特殊角求坐标【思路点拨】本题思路:1、 直接利用相等角的正余切值相等,或者直接利用相等角证相似2、 整角转化,整个角转化成其他的角等,再找正余切或相似3、 通过角度的和差或共享角找其他角等 (2019宝山)24、如图,已知对称轴为直线1-=x 的抛物线32++=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0).(1)求点B 的坐标及此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15°,求线段CD 的长度;(3)设点P 为抛物线的对称轴1-=x 上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.(2019嘉定区)24、在平面直角坐标系xOy 中,如图,抛物线n x mx y +-=22(n m 、是常数)经过点A (﹣2,3)、B (﹣3,0),与y 轴的交点为点C. (1)求此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15°,求线段CD 的长度; (3)设点P 为抛物线的对称轴上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.(2019黄浦区)24.(本题满分12分)如图7,已知抛物线2y ax bx c=++经过原点()0,0O 、()2,0A ,直线2y x =经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作CE ∥x 轴,分别交线段OB 、AB 于点E 、F .(1)求抛物线的表达式;(2)当BC CE =时,求证:BCE ∆∥ABO ∆;OxyAB CEF(3)当CBA BOC ∠=∠时,求点C 的坐标.(2019徐汇区)24. (本题满分(12分),第(1)题满分4分,第(2)小题满分4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,抛物线c bx x y ++-=241与直线321-=x y 分别交于x 轴、y 轴上的C B 、两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,联结CD 交x 轴交于点E (1)求抛物线的表达式及点D 的坐标 (2)求DCB ∠的正切值(3)如图点F 在y 轴上,且,DCB DBA FBC ∠+∠=∠求点F 的坐标(2019杨浦区)24(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知开口向下的抛物线222y ax ax =-+与y 轴交于点A ,顶点为B ,对称轴与x 轴交于点C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N , (1)求点D 的坐标(2)求点M 的坐标(用含a 的式子表示)(3)当点N 在第一象限,且∠OMB=∠ONA 时,求a 的值【题型五】其他(2019金山)22. 已知:抛物线c bx x y ++-=2,经过点()2,1--A ,()10,B .(1)求抛物线的关系式及顶点P 的坐标.(2)若点B '与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B ',设此时抛物线顶点为点P '. ①求B B P ''∠的大小.②把线段B P ''以点B '为旋转中心顺时针旋转120,点P '落在点M 处,设点N 在(1)中的抛物线上,当B MN '∆的面积等于36时,求点N 的坐标.xy–1–2–3–41234–1–2–3–41234OxyO 第24题图(2019长宁区)24.(本题满分12分,每小题4分)如图6,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=294经过原点,且与x 轴相交于点A ,点A 的横坐标为6,抛物线顶点为点B .(1)求这条抛物线的表达式和顶点B 的坐标;(2)过点O 作AB OP //,在直线OP 上点取一点Q ,使得OBA QAB ∠=∠,求点Q 的坐标;(3)将该抛物线向左平移)0(>m m 个单位,所得新抛物线与y 轴负半轴相交于点C 且顶点仍然在第四象限,此时点A 移动到点D 的位置,4:3:=DB CB ,求m 的值.1 y1 x O(2019静安)24、在平面直角坐标系xOy 中(如图),已知抛物线)0(2≠++=a c bx ax y 经过原点,与x 轴的另一个交点为A ,顶点为P (﹣3,4).(1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛物线顶点为Q ,它与y 轴交点为B ,联结PB 、PQ ,设点B 的纵坐标为m ,用含m 的代数式表示∠BPQ 的正切值;(3)联结AP ,在(2)的条件下,射线PB 平均∠APQ ,求点B 到直线AP 的距离.。
2019年上海中考数学二模汇编 第25题
2019年上海中考数学二模汇编 第25题1.(杨浦)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦AO BC =,点D 为BC 的中点.(1)如图1,联结AC 、OD ,设OAC α∠=,请用α表示AOD ∠; (2)如图2,当点B 为AC 的中点时,求点A 、D 之间的距离;(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求 弦AE 的长.图1 图2 图32.(黄浦)已知四边形ABCD 中,AD ∥BC ,2ABC C ∠=∠,点E 是射线AD 上一点,点F 是射线DC 上一点,且满足BEF A ∠=∠.(1)如图8,当点E 在线段AD 上时,若AB=AD ,在线段AB 上截取AG=AE ,联结GE .求证:GE=DF ;(2)如图9,当点E 在线段AD 的延长线上时,若AB =3,AD =4,1cos 3A =,设AE x =,DF y =,求y 关于x 的函数关系式及其定义域;(3)记BE 与CD 交于点M ,在(2)的条件下,若△EMF 与△ABE 相似,求线段AE 的长.D A BCEF 图9ABCE F G D图83.(闵行)如图1,点P 为∠MAN 的内部一点.过点P 分别作PB ⊥AM 、PC ⊥AN ,垂足分别为点B 、C .过点B 作BD ⊥CP ,与CP 的延长线相交于点D .BE ⊥AP ,垂足为点E . (1)求证:∠BPD =∠MAN ; (2)如果sin MAN ∠=AB =BE = BD ,求BD 的长; (3)如图2,设点Q 是线段BP 的中点.联结QC 、CE ,QC 交AP 于点F .如果 ∠MAN = 45°,且BE // QC ,求PQF CEFS S ∆∆的值.E M(图2)ANQFPCDBMN A BCDP(图1)EABCDE备用图4.(金山)如图,在ABC Rt ∆中,90=∠C ,16=AC cm ,20=AB cm ,动点D 由点C 向点A 以每秒cm 1速度在边AC 上运动,动点E 由点C 向点B 以每秒cm 34速度在边BC 上运动,若点D ,点E 从点C 同时出发,运动t 秒(0>t ),联结DE .(1)求证:DCE ∆∽BCA ∆.(2)设经过点D 、C 、E 三点的圆为⊙P . ①当⊙P 与边AB 相切时,求t 的值.②在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当PFM ∆与CDE ∆相似时,求t 的值.B5.(宝山)如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B的一点,点M为弦BC的中点.(1)如果AM交OC于点E,求OE:CE的值;(2)如果AM⊥OC于点E,求∠ABC的正弦值;(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO交于圆内点F,请完成下列探究.探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.6.(静安)已知,如图,梯形ABCD 中,AD ∥BC ,2AD =,6AB BC CD ===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设BP x =,PC y =.(1)求证:PE ∥DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当P D C B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.7.(徐汇)如图,在△ABC 中,10AC BC ==,3cos 5C =,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E . (1)当P 与边BC 相切时,求P 的半径;(2)联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;(3)在(2)的条件下,当以PE 长为直径的Q 与P 相交于AC 边上的点G 时,求相交所得的公共弦的长.8.(奉贤)如图,已知△ABC ,AB =45B ∠=︒,点D 在边BC 上,联结AD ,以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF AD ⊥. (1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域; (2)如果E 是弧DF 中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长.9.(崇明)如图,在梯形ABCD 中,AD ∥BC ,8AB DC ==,12BC =,3cos 5C =,点E 为AB 边上一点,且2BE =,点F 是BC 边上的一个动点(与点B 、点C 不重合),点G 在射线CD 上,且EFG B ∠=∠,设BF 的长为x ,CG 的长为y .(1)当点G 在线段DC 上时,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当以点B 为圆心,BF 长为半径的B 与以点C 为圆心,CG 长为半径的C 相切时,求线段BF 的长;(3)当△CFG 为等腰三角形时,直接写出线段BF 的长.10.(普陀)如图12,在Rt ABC中,∠ACB=90°,AB=5,4cos5BAC∠=,点O是边AC上一个动点(不与A、C重合),以点O为圆心,AO为半径作O,O与射线AB 交于点D;以点C为圆心,CD为半径作C,设OA x=.(1)如图13,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动的过程中,如果C与线段AB只有一个公共点,请直接写出x的取值范围.11.(松江)如图,已知Rt △ABC 中,∠ACB=90°,AC=24,BC=16.点O 在边BC 上,以O 为圆心,OB 为半径的弧经过点A .P 是弧AB 上的一个动点.(1)求半径OB 的长;(2)如果点P 是弧AB 的中点,联结PC ,求∠PCB 的正切值;(3)如果BA 平分∠PBC ,延长BP 、CA 交于点D ,求线段DP 的长.· (第25题图)O BA· (备用图) O B A12.(长宁)如图,在Rt ABC 中,90ACB ∠=3AC =,4BC =,点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作P 交边AB 于另一点D ,ED DP ⊥,交边BC 于点E ;(1)求证:BE DE =;(2)若BE x =,AD y =,求y 关于x 的函数关系式并写出定义域;(3)延长ED 交CA 延长线于点F ,联结BP ,若B D P 与DAF 相似,求线段AD 的长.C ACA C A。
上海市各区2019届中考数学二模试卷精选汇编几何证明专题
几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E .(1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分图6图6∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AGGF BEAD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交ACDEFGB第23题图EBC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A .ACD B(1)求证:B是EC的中点;2,(2)分别延长CD、EA相交于点F,若EC=DCAC⋅求证:FC:=.ACAD:AF黄浦区23.(本题满分12分)如图,点E、F分别为菱形ABCD边AD、CD的中点.(1)求证:BE=BF;(2)当△BEF为等边三角形时,求证:∠D=2∠A.23. 证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO =12AC =EF =BE .——————————————————————(1分) 又△ABD 中,BE 、AO 均为中线,则G 为△ABD 的重心, ∴1133OG AO BE GE ===, ∴AG =BG ,——————————————————————————(1分) 又∠AGE =∠BGO ,∴△AGE ≌△BGO ,———— ——————————————————(1分)∴AE =BO ,则AD =BD ,∴△ABD 是等边三角形,—— —————————————————(1分) 所以∠BAD =60°,则∠ADC =120°,即∠ADC =2∠BAD . ——— ——————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD 是△ABC 的中线, M 是AD 的中点, 过A 点作AE ∥BC ,CM 的延 长线与AE 相交于点E ,与AB 相交于点F . (1)求证:四边形AEBD 是平行四边形; (2)如果AC =3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)E AFM BD图7C(2)∵AE //BC ,∴A F A EF B B C=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分)∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分)又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC . (1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分) ∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分) ∴△ADB ∽△EBF ∴DBABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅ C第23题图ABDEFCAB第23题图DE F∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分) 闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG . (1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)ABEGCFD(第23题图)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ····· (2分)∵FG ∥AD ,∴FG CFAD CA=. ··················· (1分) 同理 EF CFAB CA= . ························ (1分) 得FG AD =EFAB∵FG EF =,∴AD AB =. ···················· (1分) ∴四边形ABED 是菱形. ····················· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ········ (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······················· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ············ (1分) ∴EH DEEF AE=. ························· (1分) ∴212AE EF ED =. ······················ (1分) 青浦区AB C DEFG图923.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且 DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ·············· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ········· (1分) ∴AE //DC , ························ (1分) ∴=FM AMMD MC. ····················· (1分) ∵AD //BC ,∴=AM DMMC MB, ················ (1分) ∴=FM DMMD MB, ····················· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ············· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ······················· (1分) ∴3==DF BF a . ····················· (1分) ∵AD //BC ,∴1==AF DFEF BF, ················ (1分) ∴=AF EF , ······················· (1分) ∴四边形ABED 是平行四边形. ················ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.MFE DBA图7(第23题图)ACD EB23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分 ∵EF BF =∴四边形BCEF 是菱形……………………………………1分 (2) ∵四边形BCEF 是菱形, ∴BC =BF ∵12BF AB =∴AB =2BC ………………………………………………1分 ∵ AB ∥CD ∴ ∠DEA =∠EAB ∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AEBE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分 徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且(第23题图)FACD EB∠=∠.DCE DBC=;(1)求证:AD BE⊥,(2)延长CE交AB于点F,如果CF AB⋅=⋅.求证:4EF FC DE BD杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
2019年上海各区初三二模数学试卷25题专题汇编(学生版)
2019年上海各区初三二模数学试卷25题专题汇编(学生版)题型一、等腰三角形的分类讨论25(2019崇明)、如图,在梯形ABCD 中,AD ∥BC ,AB=DC=8,BC=12,cos C=53,点E 为AB 边上一点,且BE=2,点F 是BC 边上的一个动点(与点B 、点C 不重合),点G 在射线CD 上,且∠EFG=∠B ,设BF 的长为x ,CG 的长为y .(1)当点G 在线段DC 上时,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当以点B 为圆心,BF 长为半径的⊙B 与以点C 为圆心,CG 长为半径的⊙C 相切时,求线段BF 的长;(3)当△CFG 为等腰三角形时,直接写出线段BF 的长.题型二、动点产生的相似综合25(2019黄浦).(本题满分14分)已知四边形ABCD 中,AD ⊙BC ,2ABC C ∠=∠,点E 是射线AD 上一点,点F 是射线DC 上一点,且满足BEF A ∠=∠.(1)如图8,当点E 在线段AD 上时,若AB=AD ,在线段AB 上截取AG=AE ,联结GE .求证:GE=DF ;(2)如图9,当点E 在线段AD 的延长线上时,若AB =3,AD =4,1cos 3A =,设AE x =,DF y =,求y 关于x 的函数关系式及其定义域;(3)记BE 与CD 交于点M ,在(2)的条件下,若⊙EMF 与⊙ABE 相似,求线段AE 的长.D A BCEF 图9ABCE F G D图825(2019金山)、如图,在Rt △ABC 中,∠CC=90°,AC=16cm ,AB=20cm ,动点D 由点C 向点A 以每秒1cm 速度在边AC 上运动,动点E 由点C 向点B 以每秒34cm 速度在边BC 上运动,若点D 、点E 从点C 同时出发,运动t 秒(t > 0),联结DE. (1)求证:△DCE ∽△BCA ; (2)设经过点D 、C 、E 三点的圆为⊙P. ① 当⊙P 与边AB 相切时,求t 的值;② 在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当△PFM 与△CDE 相似时,求t 的值.25(2019长宁)、如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作⊙P 交边AB 于另一点D ,ED ⊥DP ,交边BC 于点E.(1)求证:BE=DE ;(2)若BE=x ,AD=y ,求y 关于x 的函数关系式并写出定义域;(3)延长ED 交CA 延长线于点F ,联结BP ,若△BDP 与△DAF 相似,求线段AD 的长.题型三、动点产生的面积问题思路点拨:首先考虑底乘以高。
上海市闵行区2019年中考数学二模试卷及答案(word解析版)
上海市闵行区2019年中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)、B与=(、3.(4分)(2019•闵行区二模)不等式组:的解集是()><<x≤1,∴解集为25.(4分)(2019•闵行区二模)在△ABC与△A′B′C′中,已知AB=A′B′,∠A=∠A′,要使二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•闵行区二模)计算:=2.=8.(4分)(2019•闵行区二模)因式分解:2x2y﹣xy=xy(2x﹣1).9.(4分)(2019•闵行区二模)方程的根是x=2.10.(4分)(2019•闵行区二模)已知关于x的一元二次方程x2﹣4x+m=0有两个实数根,那么m的取值范围是m≤4.11.(4分)(2019•闵行区二模)一次函数y=2(x﹣1)+5的图象在y轴上的截距为3.12.(4分)(2019•闵行区二模)已知反比例(k≠0)的图象经过点(2,﹣1),那么当x>0时,y随x的增大而增大(填“增大”或“减小).解:∵反比例函数13.(4分)(2019•闵行区二模)已知抛物线y=ax2+bx+2经过点(3,2),那么该抛物线的对称轴是直线x=.﹣﹣=..14.(4分)(2019•闵行区二模)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.=.故答案为15.(4分)(2019•闵行区二模)在▱ABCD中,AC与BD相交于点O,,,那么=(用和表示).=,,又由平行四边形法则求得:==+,则问题得解.OA=OC==,=,,=++,==(+).故答案为:.16.(4分)(2019•闵行区二模)已知:⊙O1、⊙O2的半径长分别为2、5,如果⊙O1与⊙O2相交,那么这两圆的圆心距d的取值范围是3<d<7.②17.(4分)(2019•闵行区二模)如图,在正方形ABCD中,E为边BC的中点,EF⊥AE,与边CD相交于点F,如果△CEF的面积等于1,那么△ABE的面积等于4.EC=BC18.(4分)(2019•闵行区二模)如图,在Rt△ABC中,∠C=90°,∠A=50°,点D、E分别在边AB、BC上,将△BDE沿直线DE翻折,点B与点F重合,如果∠ADF=45°,那么∠CEF= 35度.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•闵行区二模)先化简,再求值:,其中.•.时,原式=20.(10分)(2019•杨浦区二模)解方程组:)式组成方程组:或,经检验,原方程组的解是:21.(10分)(2019•闵行区二模)如图,在△ABC中,AB=AC,点D在边AB上,以点A 为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.DAF=,利用勾股定理即可求得DF=EF=DE=DAF=,==.FEG=.EGC=22.(10分)(2019•闵行区二模)为了有效地利用电力资源,电力部门推行分时用电.即在居民家中安装分时电表,每天6:00至22:00用电每千瓦时0.61元,每天22:00至次日6:00用电每千瓦时0.30元.原来不实行分时用电时,居民用电每千瓦时0.61元.某户居民为了解家庭的用电及电费情况,于去年9月随意记录了该月6天的用电情况,见下表(单位:用户去年9月总用电量约为多少千瓦时.(2)如果该用户今年3月份的分时电费为127.8元,而按照不实行分时用电的计费方法,其电费为146.4元,试问该用户今年3月份6:00至22:00与22:00至次日6:00两个时段的用电量各为多少千瓦时?(注:以上统计是从每个月的第一天6:00至下一个月的第一天6:00止)=24023.(12分)(2019•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;(2)如果AD=,求证:四边形DGEC是正方形.BG=CG=BG=CG=AB DC=24.(12分)(2019•闵行区二模)已知:在平面直角坐标系中,一次函数y=x+3的图象与y 轴相交于点A,二次函数y=﹣x2+bx+c的图象经过点A、B(1,0),D为顶点.(1)求这个二次函数的解析式,并写出顶点D的坐标;(2)将上述二次函数的图象沿y轴向上或向下平移,使点D的对应点C在一次函数y=x+3的图象上,求平移后所得图象的表达式;(3)设点P在一次函数y=x+3的图象上,且S△ABP=2S△ABC,求点P的坐标..AC==AP=2AC=2CP=CA+AP=3=,CA==AC=.AP=2AC=225.(14分)(2019•闵行区二模)如图,在平行四边形ABCD中,AB=8,tanB=2,CE⊥AB,垂足为点E(点E在边AB上),F为边AD的中点,联结EF,CD.(1)如图1,当点E是边AB的中点时,求线段EF的长;(2)如图2,设BC=x,△CEF的面积等于y,求y与x的函数解析式,并写出自变量的取值范围;(3)当BC=16时,∠EFD与∠AEF的度数满足数量关系:∠EFD=k∠AEF,其中k≥0,求k的值.,证出==AB=4PC==4PCEF=PC=2BE=EC BE=x﹣PC•﹣AD=8PF=PC==,AB=4PC===4PCEF=PC=2,=2BE=ECBE=﹣﹣PF==x﹣﹣+AD=8PC。
上海市各区2019届中考数学二模试卷精选汇编压轴题专题
3
(2)过点 O 作 OH⊥AB,垂足为点 H,则由(1)可得 AH=4,OH=3 ∵AC=x,∴ CH | x 4 | 在 Rt△HOC 中, CHO 90 ,AO=5, ∴ CO HO2 HC 2 32 | x 4 |2 x2 8x 25 ,
(1 分)
易知△CDA∽△BCA,又 AC BC2 AB2 x2 4 ,
则 AD CA 1 x2 4 x 1 17 (舍负)—————(2
AC CB
x2 4
x
2
分)
易知∠ACE<90°.
8
所以边 BC 的长为 2 或 1 17 .——————————————————(1 2
海C B 图9
C B
图 10
上
25.(1)证明:∵ AO 、 BO 是圆 O 的半径 ∴ AO BO …………1 分 ∴ OAB B …………1 分 ∵ AC ∥ OB ∴ BAC B …………1 分 ∴ OAB BAC ∴ AB 平分 OAC …………1 分
A
O
C B
升 (2)如果点 Q 在线段 AD 上(与点 A、D 不重合),设△APQ 的面积为 y,
求 y 关于 x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求 BP 的长.
E
B
AQ P
海D CB
A
D C
上图9
备用图
25.解:(1)在⊙P 中,PA=PQ,∴∠PAQ =∠PQA,……………………………(1 分) ∵AD∥BC,∴∠PAQ =∠APB,∠PQA =∠QPC,∴∠APB =∠EPC,……(1 分) ∵梯形 ABCD 中,AD∥BC,AB=DC,∴∠B =∠C,…………………………(1 分) ∴△APB∽△ECP.…………………………………………………………(1 分)
2019年上海市宝山区、嘉定区中考二模数学试题及答案
2019学年嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.l图21O2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 0 1 2 3 4 相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--. 按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm .三、简答题(本大题共7题,满分78分) 19.(本题满分10分)ACB D E图3FABC DE FMN图6计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点.(1)求AFE ∠的度数;ACBD图4(h)tO1890521 图5)(m 3y(2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分) 已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C . (1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.AC(O 1)BOP AOPAB CO 1OP 图7 O xy1- 1-11参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ). 将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质. 23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分 ∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分 ∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, C F MC F M A F E A FD ∠+︒=∠+∠=∠45, ∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分 所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-23b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH . ∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形;415433=+=+=∆∆POC APO APCO S S S 四边形; ∴23=∆APC S ,然后求523=AC 、22=AP , 利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP .(3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形. (3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分当点1O 在线段AB 上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。
上海市各区2019届中考数学二模试卷精选汇编:综合计算
综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分图4DCB A图4DCBAH∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,閘鑌视击應鹎浃蕷凱涞腻頎岖潇户赅闋峽营懑业众闹着轶嗳蛏鈾蒼滄臏農袅電门宮骆锇驊东餃鈍悬业恺脉炉疟匱傧詼桢阎諉榿镕鶩惡猫卢籮蔞偽钺錐缀泽銻胁动钫剀昙獲濟柵镬閌總總铛憐軛缫躯暧憤鯖喚。
2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)
2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)静安区19.(本题满分10分)计算:12241)1-++-20.(本题满分10分)解方程组:226,3100.x yx xy yì-=ïí+-=ïî21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)一个水库的水位在某段时间内持续上涨,表2记录了连续5小时内6个时间点的水位高度,其中x表示时间,y表示水位高度.(1)通过观察数据,请写出水位高度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.表2嘉定区19.(本题满分10分)计算:220)3(60tan 21)21()2018(π-+︒+-+--.20.(本题满分10分)解方程:21224162+--+=-x x x x .21.(本题满分10分,第(1)小题5分、第(2)小题5分)如图4,在△ABC 中,AD 是边BC 上的高,点E 是边AC 的中点,11=BC ,12=AD ,四边形DFGH 是边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求EDC ∠cos 的值.普陀区19.(本题满分10分)计算:312019212sin 60227(1)2-⎛⎫︒-+--- ⎪⎝⎭.20.(本题满分10分)解方程:242193x x x =--+.AG B HD F EC图421.(本题满分10分)如图8,已知点D 、E 分别在△ABC 的边AB 和AC 上,DE //BC ,13DE BC =,△ADE 的面积等于3.(1)求△ABC 的面积; (2)如果9BC =,且2cot 3B =,求AED ∠的正切值. 徐汇区19.(本题满分10分)计算:()()12831233-+-+---20.(本题满分10分)解方程组:22222021,.x xy y x xy y ⎧--=⎪⎨++=⎪⎩A BCDE图8BO CAABCDE第21题图21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,已知⊙O 的弦AB 长为8,延长AB 至C ,且BC =12AB , tanC =12. 求:(1)⊙O 的半径;(2)点C 到直线AO 的距离.金山区19. 计算:()()()1212312283-++-++.20. 解方程:142212=---x xx .21. 已知:如图,在ABC Rt ∆中,ο90=∠ACB ,D 是边AB 的中点,CB CE =,5=CD ,53sin =∠ABC .求:(1)BC 的长. (2)E tan 的值.(第21题图)崇明19.(本题满分10分)先化简,再求值:2221(1)121a a a a a a +-÷+---+,其中a =.20.(本题满分10分)解方程组224;20.x y x xy y +=⎧⎨+-=⎩21.(本题满分10分,每小题满分各5分)①② 如图5,已知ABC △中,6AB =,30B ∠=︒,3tan 2ACB ∠=. (1)求边AC 的长;(2)将ABC △沿直线l 翻折后点B 与点A 重合, 直线l 分别与边AB 、BC 相交于点D 、E ,求BEEC的值.虹口区19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中23m =-.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ▲ ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长.ABC图5C第21题图DBAEPQ黄浦区19.(本题满分10分)计算: ()()133tan 60cos3271301902-+--︒-︒.20.(本题满分10分)解方程:22161242x x x x +-=--+.21.(本题满分10分)如图4,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.ABCO图4青浦19.(本题满分10分)计算:.20.(本题满分10分)解方程组:21.(本题满分10分,第(1)、(2)小题,每小题5分)如图7,在△ABC 中,∠C =90°,AB 的垂直平分线分别交边BC 、AB 于点D 、E ,联结AD . (1)如果∠CAD ∶∠DAB =1∶2,求∠CAD 的度数; (2)如果AC =1,,求∠CAD 的正弦值.①② 22602 1.x xy y x y ⎧+-=⎨+=⎩;EDABC图7宝山19.(本题满分10分)计算:202)3(30cot 21)2019(21π-+︒+--+⎪⎭⎫ ⎝⎛-.21.(本题满分10分)解方程:214162++-x x =22-+x x21.(本题满分10分,第(1)、第(2)小题满分各5分)如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点, BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos ∠EDC 的值.第21题图松江19.(本题满分10分) 计算:()()121227+3116+23---+20.(本题满分10分) 解方程组:2226691x y x xy y +=⎧⎨-+=⎩21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,BC ⊥AB ,且AD ⊥BD ,BD =6,sin A =32,求梯形ABCD 的面积.②① (第21题图)CBAD图6DCB AEF奉贤19.(本题满分10分)先化简,再求值:22693111x x x x x x x -+--?--+,其中2x =20.(本题满分10分) 解方程组:226,320.x y x xy y +=⎧⎨-+=⎩21.(本题满分10分,每小题5分)如图6,已知梯形ABCD 中,AD//BC ,∠ABC=90°,BC =2AB =8,对角线AC 平分∠BCD ,过点D 作DE ⊥AC ,垂足为点E ,交边AB 的延长线于点F ,联结CF . (1)求腰DC 的长; (2)求∠BCF 的余弦值.闵行19.(本题满分10分)先化简,再求值:2214422x x xx x x x-÷-++++,其中21x=-.20.(本题满分10分)解不等式组:62442133x xx x->-⎧⎪⎨≥-⎪⎩,,并把解集在数轴上表示出来.21.(本题共2小题,每小题5分,满分10分)如图,在△ABC中,AB = AC,BC = 10,5cos13ABC∠=,点D是边BC的中点,点E在边AC上,且23AEAC=,AD与BE相交于点F.求:(1)边AB的长;(2)EFBF的值.-1-2012(第20题图)AB C(第21题图)EDF杨浦19.(本题满分10分)计算:2301(3)()(32)4cos3023--+--︒+.20.(本题满分10分)已知关于x ,y 的二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩,的解为11.x y =⎧⎨=-⎩,求a 、b 的值.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)已知在梯形ABCD 中,AD //BC ,AB =BC ,DC ⊥BC ,且AD =1,DC =3,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于点Q . (1)求AB 的长;(2)当BQ 的长为409时,请通过计算说明圆P 与直线DC 的位置关系.长宁19.(本题满分10分)A BCD Q.P先化简,再求值:)44(24222-+÷+-x x xx x ,其中3=x .20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--->- 1223)1(3)6(2 . ,x x x x ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,︒=∠90ACB ,4=AC ,3=BC ,点D 是边AC 的中点,BD CF ⊥,垂足为点F ,延长CF 与边AB 交于点E . 求:(1)ACE ∠的正切值; (2)线段AE 的长.43 2 10 -4 -3 -2 -1 图4ACBD E F。
2019年上海各区初三二模数学试卷23题专题汇编(学生版)
2019年上海各区初三二模数学试卷23题专题汇编(学生版)崇明23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=.ABCDOE F图7奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB .ABCD FG E 图8闵行(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线BD AC 、相交于点O ,AC BD 2=,过点A 作CD AE ⊥,垂足为点E ,AE 与BD 相交于点F ,过点C 作AC CG ⊥,与AE 的延长线相交于点G . 求证:(1)DOA ACG ∆∆≌;(2)AG DE BD DF ⋅=⋅2嘉定23.(本题满分12分,第(1)小题6分、第(2)小题6分)如图6,在矩形ABCD 中,点E 是边AB 的中点,△EBC 沿直线EC 翻折,使B 点落在矩形ABCD 内部的点P 处,联结AP 并延长AP 交CD 于点F ,联结BP 交CE 于点Q . (1)求证:四边形AECF 是平行四边形; (2)如果PE PA ,求证:△APB ≌△EPC .AB DCF PEQ图6黄埔23.(本题满分12分)如图6,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE∥AC,交BD的延长线于点E,交AD的延长线于点F,且满足DCE ACB∠=∠.(1)求证:四边形ABCD是矩形;(2)求证:DE ADEF CD=.AB CDEF图6OA B CD OE HF 第23题图金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.普陀23.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2.图10A BCD E徐汇22. (本题满分(12分),第(1)题满分6分,第(2)小题满分6分) 如图,已知梯形ABCD 中,E AC AB BC AD ,,=∥是边BC 上的点,且CAD AED ∠=∠,DE 交AC 于点F(1) 求证:DAF ABE ∽△△(2) 当EC AE FC AC ⋅=⋅时,求证:BE AD =杨浦1、(本题满分12分,第(1)小题6分,第(2)小题6分)V中,AB=BC,∠ABC=90°,点D、E分别是AB、BC的中点,已知:如图,在ABC点F、G是边AC的三等分点,DF、EG的延长线相交于H,联结HA、HC求证:(1)四边形FBGH是菱形(2)四边形ABCH是正方形长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =.图5 AB C DE FO宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果P A=PC,联结BP,求证:∥APB≅∥EPC.第23题图松江23.(本题满分12分,每小题各6分)如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE . (1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC , 求证:22AB BF BO =⋅.(第23题图)O EBA22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图5,在矩形ABCD 中,过AC 的中点M 作EF ⊥AC , 分别交AD 、BC 于点E 、F . (1)求证:四边形AECF 是菱形; (2)如果2CD BF BC =⋅,求∠BAF 的度数.23.(本题满分12分,第(1)小题满分8分,第(2)小题满分4分)已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .图5CFEDA BM图6BCDEF OA·OE 第23题图CABD F虹口23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC =∠E,求证:=BO OC AB FC⋅⋅.青浦23.(本题满分12分,第(1)、(2)小题,每小题6分)已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G . (1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:.BE CH AF AC ⋅=⋅GF EDA BC图9。
上海2019年初三数学二模考(概率与统计小题汇编)学生版
确定事件和随机事件 ---------------------------------------------------------------Ⅱ (2019虹口二模4)下列事件中,必然事件是( ) A .在体育中考中,小明考了满分;B .经过有交通信号灯的路口,遇到红灯;C .抛掷两枚正方体骰子,点数和大于1;D .四边形的外角和为180度.事件发生的可能性大小,事件的概率--------------------------------------------------Ⅱ (2019宝山二模12)不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,两次取的小球都是红球的概率为______ (2019崇明二模12)从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,那么抽到素数的概率是______(2019奉贤二模10)在四张完全相同的卡片上,分别画有圆、菱形、等边三角形和等腰三角形.如果从中任意抽取2张卡片,那么这两张卡片上所画图形恰好都是中心对称图形的概率是 ______ (2019黄浦二模13)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是______(2019嘉定二模13)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为______(2019金山二模13)从方程02=x ,11-=-x ,0422=+-x x 中,任选一个方程,选出的这个方程无实数解的概率为______(2019静安二模13)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是______ (2019闵行二模13)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A 的概率是______ (2019普陀二模17)如图6,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是______(2019普陀二模13)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是______(2019徐汇二模13)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是______(2019杨浦二模10)从105,,1,0,2,3π---,这七个数中随机抽取一个数,恰好为负整数的概率为______(2019长宁二模11)掷一枚材质均匀的骰子,掷得的点数为素数的概率是______数据整理与统计图表-----------------------------------------------------------------------------------------------Ⅲ(2019杨浦二模11)某学校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分。
2019年最新上海市各区九年级中考二模数学试卷精选汇编:函数综合运用及其他
九年级中考二模数学试卷精选汇编 函数综合运用专题宝山区、嘉定区22、有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图5,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy .(1)求该抛物线的表达式;(2)如果水面BC 上升3米(即3=OA )至水面EF ,点E 在点F 的左侧, 求水面宽度EF 的长.22.解:(1)根据题意:该抛物线的表达式为:b ax y +=2………………1分 ∵该抛物线最高点D 在y 轴上,4=DO ,∴点D 的坐标为)4,0(………1分 ∵10=BC ,点O 是BC 的中点 ∴点B 的坐标为)0,5(- ∴254-=a ,4=b …2分 ∴抛物线的表达式为:42542+-=x y …………………1分(2)根据题意可知点E 、点F 在抛物线42542+-=x y 上,EF ∥BC ……1分 ∵3=OA ∴点E 、点F 的横坐标都是3,…1分 ∴点E 坐标为)3,25(-……………1分 , 点F 坐标为)3,25(……1分 ∴5=EF (米)……………1分 答水面宽度EF 的长为5米.长宁区22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x=70或者x=250(舍去) (2分) 答:门票价格应该定为70元. (1分)第22题图崇明区22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y 关于x 的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56? 22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分 (2)由题意得:932565x x +=+ ………………………………………………4分 解得30x = …………………………………………………1分 ∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56奉贤区22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费. (1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?22、(1)0.27100(0)y x x =+>; (2)乙;黄浦区22.(本题满分10分)今年1月25日,上海地区下了一场大雪.这天早上王大爷去买菜,他先去了超市,发现蔬菜普遍涨价了,青菜、花菜和大白菜这两天的价格如下表.王大爷觉得超市的菜不够新鲜,所以他又去了菜市场,他花了30元买了一些新鲜菠菜,他跟卖菜阿姨说:“你今天的菠菜比昨天涨了5元/斤。
2019年上海各区初三二模数学试卷22题专题汇编(学生版)
2019年上海各区初三二模数学试卷22题专题汇编(学生版)崇明22.(本题满分10分,每小题满分各5分)崇明区在创建文明城区的活动中,有两段长度相等的彩色道砖路面的铺设任务,分别交给甲、乙两个施工队同时进行施工.如图6是反映所铺设的彩色道砖路面的长度y (米)与施工时间x (时)之间关系的部分图像.请解答下列问题: (1)求乙队在26x ≤≤的时段内,y 与x 之间的函数关系式; (2)如果甲队施工速度不变,乙队在施工6小时 后,施工速度增加到12米/时,结果两队同时完成了任 务.求甲队从开始施工到完工所铺设的彩色道砖路面 的长度为多少米?6 2 Ox (时)y (米) 3060 乙甲 50 图6奉贤22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)E -learning 即为在线学习,是一种新型的学习方式.某网站提供了A 、B 两种在线学习的收费方式.A 种:在线学习10小时(包括10小时)以内,收取费用5元,超过10小时时,在收取5元的基础上,超过部分每小时收费0.6元(不足1小时按1小时计);B 种:每月的收费金额y (元)与在线学习时间是x (时)之间的函数关系如图7所示. (1)按照B 种方式收费,当5x ³时,求y 关于x 的函数关系式. (2)如果小明三月份在这个网站在线学习,他按照A 种方式 支付了20元,那么在线学习的时间最多是多少小时?如果 该月他按照B 种方式付费,那么他需要多付多少元?5图751015 202530 1015 20 2530 x (时)y (元)O闵行22. (本题共3小题,其中第(1)小题4分,第(2)、(3)小题各3分,满分10分)甲骑自行车以10千米/时的速度沿公路行驶,3小时后,乙摩托车从同一地点出发沿公路与甲同向行驶,速度为25千米/时,设甲出发后x 小时,甲离开出发地的路程为1y 千米,乙离开出发地的路程为2y 千米,试回答下列问题:(1)求21y y 、关于x 的函数解析式(2)在同一直角坐标系中,画出(1)中两个函数的图像(3)当x 为何值时,乙追上甲,此时他们离出发地的路程是多少千米?O xy(第22题图)110 -10-1嘉定22.(本题满分10分,第(1)小题4分、第(2)小题6分)某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,如果三种消费方式对应的函数图像如图5所示,请根据函数图像,写出选择哪种消费方式更合算.OC DBA600x y黄埔22.(本题满分10分)A 、B 两地相距30千米,已知甲、乙两人分别骑自行车和摩托车从A地出发前往B 地,途中乙因修车耽误了些时间,然后又继续赶路.图5中的线段OM 和折线OCDE 分别反映了甲、乙两人所行的路程y (千米)与时间x (分)的函数关系,根据图像提供的信息回答下列问题:(1)甲骑自行车的速度是 ▲ 千米/分钟; (2)两人第二次相遇时距离A 地 ▲ 千米; (3)线段DE 反映了乙修好车后所行的路程y (千米)与时间x (分)的函数关系.请求出线段DE 的表达式及其定义域.x (分)y (千米)O30 103050 120 图5MCDE80金山22. 某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元; 方式二:如图所示.设购买门票x 张,总费用为y 万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y 与x 的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?第22题图X (张)Y (万元)100 2001610OAB普陀22. 某工厂生产一种产品,当生产数量至少为20吨,但不超过60吨时,每吨的成本y (万元/吨)与生产数量x (吨)之间是一次函数关系,其图像如图9所示. (1)求出y 关于x 的函数解析式;(2)如果每吨的成本是4.8万元,求该产品的生产数量;(3)当生产这种产品的总成本是200万元时,求该产品的生产数量.(吨)图9(万元/吨)5.66 20 6028徐汇22. (本题满分(10分),第(1)题满分5分,第(2)小题满分5分)某市植物园于2019年3月5日举办画展,按照往年的规律推算,自4月下旬起游客量每天将增加1000人,游客量预计将在5月1号达到最高峰,并持续5月4号,随后游客量每天有所减少,已知4月24号为第一天,每他的游客量y (人)与时间x (天)的函数图像如图所示,结合图像提供的信息,解答下列问题:(1)已知植物园门票15元/张,若每位游客在园内每天平均消费35天,试求5月1号的到5月4号,所以游客消费总额为多少元? (2)当x y x 关于,求11 的函数解析式。
上海市各区2019届中考数学二模试卷精选汇编综合计算专题20190128186
综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH图4DCB A图4DCBAH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC(1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)崇明区ACDB第21题图21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒=g………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥(第21题图1)ABOPCD (第21题图2)OABDPC∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒=g ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH ==……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒=g……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABCD EF(1)求△ABC的面积;(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643⨯=,AH226425-=2分)则BC=8,所以△ABC面积=1258852⨯=——————————————(1分)(2)过D作BC的平行线交AH于点F,———————————————(1分)由AD∶DB=1∶2,得AD∶AB=1∶3,则31CE CH BH ABDE DF DF AD====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F.(1)求证:AF=BE;(2)如果BE∶EC=2∶1,求∠CDF的余切值.AB CDFE图521.解:(1)∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠DAF=∠AEB,……………………………………………………………………(1分)∵AE=BC,DF⊥AE,∴AD=AE,∠ AFD=∠EBA=90°,………………………(2分)∴△ADF≌△EAB,∴AF=EB,………………………………………………………(2分)(2)设BE=2k,EC=k,则AD=BC=AE=3k,AF=BE=2k,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,DF=∴cot∠CDF=cot∠DAF=AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF的面积.第21题图21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=.(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.第21题图(第21题图)21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴22222425AB OA OB =+=+=.………………………………(1分) ∵90BAC ∠=o ,1tan 2ABC ∠=,∴5AC =. 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11255522ABC S AB AC ∆=⋅=⨯⨯=.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=o ,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=o ,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值.ABCDE 图721.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=o ,∴AE DE =. ················· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··············· (2分) ∴3=DE . ·························· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ··········· (1分)同理得5=BD . ························· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ···· (1分) ∴53=CD . ·························· (1分)∴102cos ==∠AD CD CDA . ··················· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ················ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ·············· (1分)ED A图5∵sin ∠==HD BCBAC AD AB, ∴435=-x x ,························ (1分) ∴43=x . ·························· (1分)(2)1141052233=⋅=⨯⨯=V ABD S AB DH . ·············· (1分)∵BD=2DE , ∴2==V V ABD ADE S BD S DE, ···················· (3分) ∴1015323=⨯=V ADE S . ···················· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分) 解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分(第21题图)DAC∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分 (2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC ==2分∵DE 垂直平分AC∴12CD AC = ED ⊥AC …………………………………………………1分在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE =………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出的⊙O 半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
2019年4月上海黄浦区九年级初三二模数学试卷及参考答案、评分标准(word版)
2019年上海市黄浦区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列自然数中,素数是( ▲ ) (A )1; (B )2; (C )4; (D )9.2.下列运算正确的是( ▲ ) (A ); (B )532a a a =⋅; (C ) ; (D )236a a a =÷.3.反比例函数xmy =的图像在第二、四象限内,则点(),1m -在( ▲ ) (A )第一象限;(B )第二象限;(C )第三象限;(D )第四象限.4.为了了解某校九年级400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,样本是指( ▲ ) (A )400名学生;(B )被抽取的50名学生;(C )400名学生的体重;(D )被抽取的50名学生的体重.5.下列等式成立的是( ▲ )(A )()a a --=r r ; (B )()0a a +-=r r; (C )a b b a -=-r r r r ; (D )0a a -=r r r .6.半径分别为1和5的两个圆相交,它们的圆心距可以是( ▲ ) (A )3; (B )4; (C )5; (D )6.二、填空题:(本大题共12题,每题4分,满分48分) 7= ▲ .8.因式分解:29a -= ▲ . 93的解是x = ▲ . 10.直线23y x =-的截距是 ▲ .11.不等式组25,30x x >⎧⎨-<⎩的解集是 ▲ .12.如果关于x 的方程()22210x m x m --+=没有实数根,那么m 的取值范围是 ▲ . 13.掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是 ▲ .532)(a a =a a 4)2(2=BACB 1A 1 E图3DxyOABC图2A BCDE O图114.秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表1所示),图表中c = ▲ .15.正九边形的中心角等于 ▲ °.16.如图1,点O 是ABC ∆的重心,过点O 作DE ∥AB ,分别交AC 、BC 于点D 、E ,如果AB a =u u u r r ,那么DO =u u u r ▲ (结果用a r表示).17.如图2,函数()120y x x=>的图像经过OAB ∆的顶点B 和边AB 的中点C ,如果点B 的横坐标为3,则点C 的坐标为 ▲ . 18.如图3,在ABC ∆中,90ACB ∠=︒,3sin 5B =,将ABC ∆绕顶点C 顺时针旋转,得到11A B C ∆ ,点A 、B 分别与点1A 、1B 对应,边11A B 分别交边AB 、BC 于点D 、E ,如果点E 是边11A B 的中点,那么1BDB C= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()13327130192-+-.分 数 段 频数 频率60≤x <70 6 a70≤x <8020 0.480≤x <90 15b90≤x ≤100c0.18表120.(本题满分10分)解方程:22161242x x x x +-=--+.21.(本题满分10分)如图4,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.22.(本题满分10分)A 、B 两地相距30千米,已知甲、乙两人分别骑自行车和摩托车从A地出发前往B 地,途中乙因修车耽误了些时间,然后又继续赶路.图5中的线段OM 和折线OCDE 分别反映了甲、乙两人所行的路程y (千米)与时间x (分)的函数关系,根据图像提供的信息回答下列问题:(1)甲骑自行车的速度是 ▲ 千米/分钟; (2)两人第二次相遇时距离A 地 ▲ 千米; (3)线段DE 反映了乙修好车后所行的路程y (千米)与时间x (分)的函数关系.请求出线段DE 的表达式及其定义域.23.(本题满分12分)如图6,已知四边形ABCD ,AD ∥BC ,对角线AC 、BD 交于点O ,DO =BO ,过点C 作CE ⊥AC ,交BD 的延长线于点E ,交AD 的延长线于点F ,且满足DCE ACB ∠=∠. (1)求证:四边形ABCD 是矩形;(2)求证:DE AD EF CD=.x (分)y (千米)O30 103050 120 图5MCDE80ABCO图4ABC DEF图6O24.(本题满分12分)如图7,已知抛物线2y ax bx c =++经过原点()0,0O 、()2,0A ,直线2y x =经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作CE ∥x 轴,分别交线段OB 、AB 于点E 、F . (1)求抛物线的表达式;(2)当BC CE =时,求证:BCE ∆∽ABO ∆; (3)当CBA BOC ∠=∠时,求点C 的坐标.25.(本题满分14分)已知四边形ABCD 中,AD ∥BC ,2ABC C ∠=∠,点E 是射线AD 上一点,点F 是射线DC 上一点,且满足BEF A ∠=∠.(1)如图8,当点E 在线段AD 上时,若AB=AD ,在线段AB 上截取AG=AE ,联结GE .求证:GE=DF ;(2)如图9,当点E 在线段AD 的延长线上时,若AB =3,AD =4,1cos 3A =,设AE x =,DF y =,求y 关于x 的函数关系式及其定义域;(3)记BE 与CD 交于点M ,在(2)的条件下,若△EMF 与△ABE 相似,求线段AE 的长.D A BCEF 图9ABCE F G D图8OxyAB CEF图72019年上海市黄浦区中考数学二模试卷评分标准参考一、选择题(本大题6小题,每小题4分,满分24分)1.B ;2.B ;3.C ;4.D ;5.A ;6.C . 二、填空题:(本大题共12题,每题4分,满分48分) 7.2;8.()()33a a +-; 9.8; 10.3-; 11.532x <<; 12.14m >;13.12;14.9;15.40;16.13a r .;17.()6,2;18.35.三、解答题:(本大题共7题,满分78分) 19.解:原式311-,-----------------------------------------------------------------(6分)=232-+,----------------------------------------------------------------------------(2分)=3-+-------------------(2分)20. 解:去分母得()22162x x +-=-,---------------------------------------------------------------(3分)化简得23100x x +-=,-----------------------------------------------------------------(3分)解得12x =,25x =-.----------------------------------------------------------------------------------(2分)经检验12x =是增根,∴原方程的根是5x =-.-------------------------------------------------(2分)21.解:联结AO ,交BC 于点D ,联结BO . ----------------------------------------------------------(1分)∵AB=AC ,∴»»AB AC =,------------------------------------------------------------------------------(1分)又AO 是半径,∴AO ⊥BC ,BD=CD . ---------------------------------------------------------------(2分)∵BC =,∴BD =,-------------------------------------------------------------------------------(1分)∴在Rt ABD ∆中,90ADB ∠=︒,∴222BD AD AB +=,---------------------------------------(1分)又AB =4,∴2AD =.----------------------------------------------------------------------------------------(1分) 设半径为r .在Rt BDO ∆中,∵222BD DO BO +=,-----------------------------------------------(1分)∴(()222+2r r -=,-------------------------------------------------------------------------------(1分)∴4r =. --------------------------------------------------------------------------------------------------------(1分) ∴O e 的半径为4.22. 解:(1)14,(2分); (2)20,(2分);(3)设线段DE 的表达式为()0y kx b k =+≠.-------------------------------------------------------(1分)∵线段DE 经过点()50,10D 和()80,20,----------------------------------------------------------------(1分)∴5010,8020k b k b +=⎧⎨+=⎩,∴1,320.3k b ⎧=⎪⎪⎨⎪=-⎪⎩-----------------------------------------------------------------------------(2分)∴()1205011033y x x =-≤≤.---------------------------------------------------------------------------(2分)23.证明:(1)∵AD ∥BC ,∴AD DOBC BO=,∵DO =BO ,∴AD BC =,--------------------(2分)∴四边形ABCD 是平行四边形. ------------------------------------------------------------------------(1分)∵CE ⊥AC ,∴90ACD DCE ∠+∠=︒,∵DCE ACB ∠=∠,∴90ACB ACD ∠+∠=︒,即90BCD ∠=︒,------------------------(2分)∴四边形ABCD 是矩形. --------------------------------------------------------------------------------------(1分)(2)∵四边形ABCD 是矩形,∴AC BD =,90ADC ∠=︒---------------------------------------(2分)∵AD ∥BC ,∴DE EFBD FC=.--------------------------------------------------------------------------------(1分)∴DE EFAC FC=,------------------------------------------------------------------------------------------------(1分) ∴DE AC EF FC=,∵90ADC ACF ∠=∠=︒, ∴cot AC ADDAC FC CD∠==,----------------------------------------------------------------------------------(1分) ∴DE AD EF CD=.--------------------------------------------------------------------------------------------------(1分)24.解:(1)∵抛物线2y ax bx c =++经过原点()0,0O 、()2,0A ,∴对称轴为1x =, ∵直线2y x =经过抛物线的顶点B ,∴()1,2B .--------------------------------------------------------(1分)设()212y a x =-+,--------------------------------------------------------------------------------------------(2分)∵抛物线经过原点()0,0O ,∴2a =-,∴224y x x =-+.------------------------------------------(1分)(2)∵BC CE =,∴BEF CBE ∠=∠,------------------------------------------------------------(1分)∵CE ∥x 轴,∴BEF BOA ∠=∠,-------------------------------------------------------------------(1分)∵()1,2B ,()2,0A ,∴OB AB =BOA BAO ∠=∠,-----------------------------(1分)∴CBE BEF BOA BAO ∠=∠=∠=∠,∴BCE ∆∽ABO ∆,--------------------------------------(1分)(3)记CE 与y 轴交于点M ,过点B 作BN ⊥CE ,垂足为点N .设()2,24C m m m -+. ∵BEF BOC ECO ∠=∠+∠,BFE CBA BCE ∠=∠+∠,又CBA BOC ∠=∠,BEF BFE ∠=∠,∴ECO BCE ∠=∠,-------------------------------------(1分)∴tan tan ECO BCE ∠=∠.∵CE ∥x 轴,x 轴⊥y 轴,∴90OMC BNC ∠=∠=︒,∴OM BNCM CN=,-----------------(1分)∴22242241m m m m m m -++-=-,∴11m =(舍),232m =,∴33,22C ⎛⎫⎪⎝⎭.-------------------(2分)25.解:(1)∵AG AE =,∴1802AAGE ︒-∠∠=.∵AD ∥BC ,∴180A ABC ∠+∠=︒, ∵2ABC C ∠=∠,∴1802AC ︒-∠∠=,∴AGE C ∠=∠,---------------------------------(1分)∵AD ∥BC ,∴180D C ∠+∠=︒,又180BGE AGE ∠+∠=︒,∴BGE D ∠=∠.----------(1分)∵BEF FED A GBE ∠+∠=∠+∠,∵BEF A ∠=∠,∴FED GBE ∠=∠.--------------(1分)又AB=AD ,AG=AE ,∴BG=ED ,∴GBE ∆≌DEF ∆,∴GE=DF. --------------------------(1分)(2)在射线AB 上截取AH=AE ,联结EH . ------------------------------------------------------------(1分)∵HBE A AEB ∠=∠+∠,DEF BEF AEB ∠=∠+∠,又BEF A ∠=∠,∴HBE DEF ∠=∠.∵AD ∥BC ,∴EDC C ∠=∠,180A ABC ∠+∠=︒.∵AH=AE ,∴1802AH ︒-∠∠=, 又2ABC C ∠=∠,∴H C ∠=∠,∴H EDC ∠=∠,∴BHE ∆∽EDF ∆.-------------------(1分)∴BH EHED DF=.过点H 作HP ⊥AE ,垂足为点P .∵1cos 3A =,AE AH x ==, ∴13AP x =,3PH x =,23PE x =,∴EH x =.-------------------------------------(1分)∵AB =3,AD =4,AE x =,DF y =,∴334x x y -=-,∴)4y x =>.(2分)(3)记EH 与BC 相交于点N .∵EMF ∆∽ABE ∆,BEF A ∠=∠,∴AEB EMF ∠=∠,或AEB EFM ∠=∠.-------------(1分)若AEB EMF ∠=∠,又AEB EMF ∠<∠,矛盾,∴此情况不存在. -----------------------------(1分)若AEB EFM ∠=∠,∵BHE ∆∽EDF ∆,∴BEH EFM ∠=∠,∴AEB BEH ∠=∠.------(1分)∵AD ∥BC ,∴AEB EBC ∠=∠,∴BEH EBC ∠=∠,∴3BN EN BH x ===-,∵AD∥BC,∴AB ENAH EH=,∴3x=,∴3x=.----------------------------------(2分)∴线段AE的长为3.(以上各题若有其他解法,请按评分参考按步给分)。
上海市各区2019届中考数学二模试卷精选汇编(8套,Word版,含答案)
所以 或 ,————————————(2分)
解得: 或 ,
所以点P的坐标为(5,8), .————————————————(1分)
金山区
24.(本题满分12分,每小题4分)
平面直角坐标系xOy中(如图8),已知抛物线 经过点A(1,0)和B(3,0),
(2)当CB平分∠DCO时,求 的值.
黄浦区
24.(本题满分12分)
已知抛物线 经过点A(1,0)和B(0,3),其顶点为D.
(1)求此抛物线的表达式;
(2)求△ABD的面积;
(3)设P为该抛物线上一点,且位于抛物线对称轴
右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相
似,求点P的坐标.
24.解:(1)由题意得: ,———————————————————(2分)
奉贤区
24.(本题满分12分,每小题满分各4分)
已知平面直角坐标系 (如图8),抛物线 与 轴交于点A、B(点A在点B左侧),与 轴交于点C,顶点为D,对称轴
为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
24.解:(1)∵直线 的经过点
∴ ……………………1分
∴ ………………………………1分
∵直线 的经过点
∴ ……………………1分
∴ …………………………………………1分
(2)由可知点 的坐标为
∵抛物线 经过点 、
∴
∴ ,
∴抛物线 的表达式为 …………………1分
∴抛物线 的顶点坐标为 ……………1分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年上海各区初三二模数学试卷25题专题汇编(学生版)
题型一、等腰三角形的分类讨论
25(2019崇明)、如图,在梯形ABCD 中,AD ∥BC ,AB=DC=8,BC=12,
cos C=
5
3
,点E 为AB 边上一点,且BE=2,点F 是BC 边上的一个动点(与点B 、点C 不重合),点G 在射线CD 上,且∠EFG=∠B ,设BF 的长为x ,CG 的长为y .
(1)当点G 在线段DC 上时,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当以点B 为圆心,BF 长为半径的⊙B 与以点C 为圆心,CG 长为半径的⊙C 相切时,求线段BF 的长;
(3)当△CFG 为等腰三角形时,直接写出线段BF 的长.
题型二、动点产生的相似综合
25(2019黄浦).(本题满分14分)已知四边形ABCD 中,AD ⊙BC ,2ABC C ∠=∠,点E 是
射线AD 上一点,点F 是射线DC 上一点,且满足BEF A ∠=∠.
(1)如图8,当点E 在线段AD 上时,若AB=AD ,在线段AB 上截取AG=AE ,联结GE .
求证:GE=DF ;
(2)如图9,当点E 在线段AD 的延长线上时,若AB =3,AD =4,1
cos 3
A =,设AE x =,
DF y =,求y 关于x 的函数关系式及其定义域;
(3)记BE 与CD 交于点M ,在(2)的条件下,若⊙EMF 与⊙ABE 相似,求线段AE 的长.
D A B
C
E
F 图9
A
B
C
E F G D
图8
25(2019金山)、如图,在Rt △ABC 中,∠CC=90°,AC=16cm ,AB=20cm ,动点D 由点C 向点A 以每秒1cm 速度在边AC 上运动,动点E 由点C 向点B 以每秒3
4
cm 速度在边BC 上运动,若点D 、点E 从点C 同时出发,运动t 秒(t > 0),联结DE. (1)求证:△DCE ∽△BCA ; (2)设经过点D 、C 、E 三点的圆为⊙P. ① 当⊙P 与边AB 相切时,求t 的值;
② 在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当△PFM 与△CDE 相似时,求t 的值.
25(2019长宁)、如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作⊙P 交边AB 于另一点D ,ED ⊥DP ,交边BC 于点E.
(1)求证:BE=DE ;
(2)若BE=x ,AD=y ,求y 关于x 的函数关系式并写出定义域;
(3)延长ED 交CA 延长线于点F ,联结BP ,若△BDP 与△DAF 相似,求线段AD 的长.
题型三、动点产生的面积问题
思路点拨:首先考虑底乘以高。
其次就是利用等积变形求线段比,或者用相似,相似往往需要找第三个三角形来解决问题
25(闵行).(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14
分)
如图1,点P 为∠MAN 的内部一点.过点P 分别作PB ⊥AM 、PC ⊥AN ,垂足分别为点B 、C .过点B 作BD ⊥CP ,与CP 的延长线相交于点D .BE ⊥AP ,垂足为点E . (1)求证:∠BPD =∠MAN ; (2)如果
310
sin 10
MAN ∠=
,210AB =,BE = BD ,求BD 的长; (3)如图2,设点Q 是线段BP 的中点.联结QC 、CE ,QC 交AP 于点F .如果∠MAN = 45°,且BE // QC ,求PQF
CEF
S S ∆∆的值.
E M
(图2)
A
N
Q
F
P
C D B
M N
A
B
C
D
P
(图1)
E
题型四、圆的综合
思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。
与圆有关的问题主要分两类:
1、一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会
结合三角形的相似关系来建立关系式;
2、二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,
其中圆与圆的相切关系考察频率较高,需重点掌握。
解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。
25(2019宝山)、如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B的一点,点M为弦BC的中点.
(1)如果AM交OC于点E,求OE:CE的值;
(2)如果AM⊥OC交于点E,求∠ABC的正弦值;
(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO 交于圆内点F,请完成下列探究:
探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域;
探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.
25(2019松江)、如图,已知Rt △ABC 中,∠ACB=90°,AC=24,BC=16,点O 在边BC 上,以O 为圆心,OB 为半径的弧经过点A ,P 是弧AB 上的一个动点. (1)求半径OB 的长;
(2)如果点P 是弧AB 的中点,联结PC ,求∠PCB 的正切值; (3)如果BA 平分∠PBC ,延长BP 、CA 交于点D ,求线段DP 的长.
25(2019普陀)、如图1,在Rt △ABC 中,∠ACB=90°,AB=5,cos ∠BAC=
5
4
,点O 是边AC 上一个动点(不与A 、C 重合),以点O 为圆心,AO 为半径作⊙O ,⊙O 与射线AB 交于点D ,以点C 为圆心,CD 为半径作⊙C ,设OA=x . (1)如图2,当点D 与点B 重合时,求x 的值;
(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;
(3)在点O的运动的过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.
图1 图2
25(2019杨浦)、(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知圆O 的半径长为2,点A 、B 、C 为圆上三点,弦BC=AO ,点D 为BC 中点, (1)如图1,联结AC 、OD ,设∠ OAC=α,请用α表示∠ AOD (2)如图2,当点B 为AC 的中点时,求A 、D 之间的距离;
(3)如果AD 的延长线与圆O 交于E 点,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长
(图1) (图2) (备用图)
25(2019徐汇)、如图,在△ABC 中,AC=BC=10,cos C=
5
3
,点P 是AC 边上的一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E.
(1)当⊙P 与边BC 相切时,求⊙P 的半径;
A
A
A
(2)联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;
(3)在(2)的条件下,当以PE的长为直径的⊙Q与⊙OP相交于AC边上的点G时,求相交所得的公共弦的长.
25(静安)、已知:如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6,动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC,设BP= x,PC=y
(1)求证:PE∥DC;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结PD,但∠PDC=∠B时,以D为圆心,半径为R的⊙D与⊙P相交,求R的取值范围.
题型五、动点四边形的存在性问题
25(2019奉贤)、如图,已知△ABC,AB=2,BC=3,∠B=45°,点D在边BC上,联结AD,以点A为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.
(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;
(2)如果E是DF的中点,求BD:CD的值;
(3)联结CF,如果四边形ADCF是梯形,求BD的长.。