自动控制理论-第七章
自动控制原理第七章
2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有
即
dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向
自动控制原理第七章非线性控制系统的分析
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
自动控制理论课件第七章离散系统的时域分析
已知起始状态y(1) 2,试求零输入响应。
解:在无外加输入时系统的零输入响应通常
是指n 0以后的响应起始状态是值y(1),
y(2), 各值。
y(n) y(n 1)
故有 y(n) y(1) y(2)
y(n 1) y(0) y(1)
y(n)是公比为的等比级数,故零输入响应有如下形式
是一阶非齐次差分方程。
梯形电阻网络,设各点 对地电压为 u(n), n 0,1,2,...为各节点
序号,为常数,则求其差分方程。
根据KCL, 有
u(n 1) u(n) u(n) u(n) u(n 1)
R
R
R
整理可得
u(n 1) u(n 1) (2a 1)u(n) 0
是关于节点电压的齐次差分方程。
u(n) (2a 1)u(n 1) u(n 2) 0
差分方程的阶数为未知 序列(响应序列)的最大序号与
最小序号之差。上式为 二阶差分方程。
对于一个线性是不变离散系统,若响应信号为y(n),
输入信号为f (n),则描述系统输入- 输出关系的
N阶差分方程为
y(n) a1y(n 1) a2 y(n 2) aN-1y(n N 1) aN y(n N )
an n 1 a 0
1 1 O 1
23
4n
5.正弦序列
xn sinnω0
余弦序列:xn cosn0
sinnω0
1
sin 0 t
O
1
5
10 n
1
0 : 正弦序列的频率, 序列值依次周期性重复的速率。
当
=2π 0 10
,
则序列每10个重复一次正弦包络的数值。
自动控制原理第七章采样系统
n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S
–
1 S+1
F (z)=
z z–1
–
z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t
–
kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T
–
z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。
自动控制理论第七章
E7.1Let us consider a device that consists of a ball rolling on the inside rim of a hoop [11]. This model is similar to the problem of liquid fuel sloshing in a rocket. The hoop is free to rotate about its horizontal principle axis as shown in Figure E7.1. The angular position of the hoop may be controlled via the torque T applied to the hoop from a torque motor attached to the hoop drive shaft. If negative feedback is used, the system characteristic equation is 2(4)122Ks s s s ++++=0.(a) Sketch the root locus.(b) Find the gain when the roots are both equal. (c) Find these equal roots.(d) Find the settling time of the system when the roots are equal.E7.2A tape recorder has a speed control system so that H(s)=1 with negative feedback an 2()(2)(45)KG s s s s s =+++.(a) Sketch a root locus for K, and show that the dominant toots ate s=-0.35±j0.08 when K=6.5.(b) For the dominant roots of part (a), calculate the settling time and overshoot for a step input.E7.3A control system for an automobile suspension tester has negative unity feedback and a process [12] 22(48)()(4)K s s G s s s ++=+. We desire the dominantroots to have a ζ equal to 0.5. Using the root locus, show that K=7.35 is required and the dominant roots are s=-1.3±j2.2.E7.4Consider a unity feedback system with 2(1)()45K s G s s s +=++. (a) Find the angleof departure of the root locus from the complex poles. (b) Find the entry point for the root locus as it enters the real axis. Answers: ±225o ;-2.4E7.6One version of a space station is shown in Figure E6.3 [30].It is critical to keep this station in the proper orientation toward the sun and the Earth for generating power and communications. The orientation controlling may be represented by a unity feedback system with an actuator and controller, such as 225()(24100)KG s s s s =++. Sketch the root locus of the system as Kincreases. Find the value of K that results in an unstable system. Answers: K=96E7.9The world ’s largest telescope is located in Hawaii. The primary mirror has a diameter of 10 m and consists of a mosaic of 36 hexagonal segments with the orientation of each segment actively controlled. This unity feedback system for the mirror segments has 2()(25)K G s s s s =++.(a) Find the asymptotes and draw them in the s-plane. (b) Find the angle of departure from the complex poles.(c) Determine the gain when two roots lie on the imaginary axis. (d) Sketch the root locus.E7.25A closed-loop feedback system is show in Figure E7.25. For what range of values of the parameters K is the system stable? Sketch the root locus as 0<k<∞.P7.5Automatic control of helicopters is necessary because, unlike fixed-wing aircraft which possess a fair degree of inherent stability, the helicopter control system that utilizes an automatic control loop plus a pilot is shown in FIGURE P7.5. When the pilot is not using the control stick, the switch may be considered to be open. The dynamics of the helicopter are represented by the transfer function 225(0.03)()(0.4)(0.360.16)s G s s s s +=+-=.(a) With the pilot control loop open (hands-off control), sketch the root locus for the automatic stabilization loop. Determine the gain 2K that results in a dumping for the complex roots equal to ζ=0.707. (b) For the gain 2K obtained in part (a), determine the steady-state error due to a wind gust d T (s)=1/s.(c) With the pilot loop added, draw the root locus as 1K varies from zero to ∞ when 2K is set at the value calculated in part (a).(d) Recalculate the steady-state error of part (b) when 1K is equal to a suitable value based on the root locus.P7.6An attitude control system for a satellite vehicle within the earth ’s atmosphere is shown in Figure P7.6. The transfer functions of the system are (0.20)()(0.90)(0.60)(0.10)K s G s s s s +=+-- and (2 1.5)(2 1.5)()( 4.0)c s j s j G s s +++-=+.(a) Draw the root locus of the system as K varies from 0 to ∞.(b) Determine the gain K that results in a system with a settling time (with a 2% criterion) less than 12 seconds and a damping ratio for the complex roots greater than 0.50.P7.9 The achievement of safe, efficient control of the spacing of automatically controlled guided vehicles is an important part of the future use of the vehicle =s in a manufacturing pant [14, 15]. It is important that the system eliminate the effects of disturbances (such as oil on the floor) as well as maintain accurate spacing between vehicles on a guideway. The system can be represented by the block diagram of Figure P7.9. The vehicle dynamics can be represented by 22(0.1)(2289)()(0.4)(0.8)( 1.45361)s s s G s s s s s s +++=-+++.(a) Sketch the root locus of the system.(b) Determine all the roots when the loop gain K=1K 2K is equal to 4000.P7.16Control systems for maintaining constant tension on strip steel in a hot strip finishing mill are called “loopers ”. A typical system is shown in Figure 7.16. The looper is an arm 2 to 3 feet long with a roller on the end; it is raised and pressed against the strip passing the looper is 2000 ft/min. A voltage proportional to the looper position is compared with a reference voltage and integrated where it is assumed that a change in strip tension. The time constant of the filter, т, is negligible relative to the other time constants in the system.(a) Sketch the root locus of the control system for 0<a K <∞. (b) Determine the gain a K that results in a system whose roots have a damping ratio of ζ=0.707 or greater.(c) Determine the effect of т as т increases from a negligible quantity.P7.19In recent years, many automatic control systems for guided vehicles in factories have been utilized. One system uses a guidance cable embedded in the floor to guide the vehicle along the desired lane [10, 15]. An error detector, composed of two coils mounted on the front of the cart, senses a magnetic field produced by the current in the guidance cable. An example of a guided vehicle in a factory is shown in Figure P7.19 (a). We have2( 3.681)()(1)(5)a K s s G s s s s ++=++ when a K equals the amplifier gain.(a) Sketch a root locus and determine a suitable gain a K so that the damping ratio of the complex roots is 0.707.(b) Determine the root sensitivity of the system for the complex root1r as a function of (1) a K and (2) the pole of G(s) at s=-1.P7.28To meet current U.S. emissions standards for automobiles, hydrocarbon (HC) and carbon monoxide (CO) emissions are usually controlled by a catalytic converter in the automobile exhaust. Federal standards for nitrogenoxides (NxO) emissions are met mainly by exhaust-gas recirculation (EGR)techniques. However, as NxO emissions standards were tightened from the current limit of 2.0 grams per mile to 1.0 gram per mile, these techniques alone were no longer sufficient.Although many schemes are under investigation for meeting the emissionsstandards for all three-way catalyst—for HC, CO, and NxO emissions—in conjunction with a closed-loop engine-control system. The approach is to use a closed-loop engine control, as shown in Figure P7.28 [19, 23]. The exhaust-gas sensor gives an indication of a rich or lean exhaust and compares it to a reference. The difference signal is processed by the controller, and the output of the controller modulates the vacuum, level in the carburetor to achieve the best air-fuel ratio for proper operation of the catalytic converter. The open-loop transfer function isrepresented by2321220()1025K s sG H ss s s++=++.Calculate the root locus as afunction of K. Carefully calculate where the segments of the locus enter and leave the real axis. Determine the roots when K= 2. Predict the step response of the system when K=2.AP7.1The top view of a high-performance jet aircraft is shown in Figure AP7.1 (a) [20].Sketch the root locus and determine the gain K so that the ζ of the complex poles near the j ω-axis is the maximum achievable.Evaluate the roots at this K, and predict the response to a step input. Determine the actual response and compare it to predicted response.AP7.2A magnetically levitated high-speed train “flies ” on an air gap above its rail system [24]. The air gap control system has a unity feedback system with a plant (1)(3)()(1)(4)(8)K s s G s s s s s ++=-++.The goal is to select K sothat the response for a unit step input is reasonably damped and the settling time is less than 3 seconds. Sketch the root locus, and select K so that all of the complex roots have a ζ greater than 0.6. Determine the actual response for the selected K and the percent overshoot.AP7.3A compact disc player or portable use requires a good rejection of disturbances and an accurate position of the optical reader sensor. The position control system uses unity feedback and a plant transfer function10()(1)()G s s s s p =++. The parameter p can be chosen by selecting theappropriate DC motor. Sketch the root locus as a function of p. Select p so that the ζ of the complex roots of the characteristic equation isapproximately 1/AP7.12A control system is shown in Figure AP7.12. Sketch the root locus, and select a gain K so that the step response of the system has an overshoot of less than 20% and the settling time (with a 2% criterion) is less than 5 seconds.AP7.13A control system with PI control is shown in Figure AP7.13.(a) Let 1K /p K =0.2 and determine p K so that the complex roots have maximum damping ratio.(b) Predict the step response of the system with p K set to the value determined in part (a).DP7.1 A high-performance aircraft, shown in Figure DP7.1 (a), uses the ailerons, rubber, and elevator to steer through a three-dimensional flight at10,000m and Mach 0.9 can be represented by the system in Figure DP7.1 (b), where 2218(0.015)(0.45)()( 1.212)(0.010.0025)s s G s s s s s -++=++++.(a) Sketch the root locus when the controller is a gain, so that ()c G s =K, and determine K when ζ for the roots with n w >2 is larger than 0.15 (seek a maximum ζ).(b) Plot the response, q(t), for a step input r(t)with K as in (a). (c) A designer suggests an anticipatory controller with12()(2)c G s K K s K s =+=+. Sketch the root locus for this system as Kvaries and determine a K so that the ζof all the closed-loop roots is >0.8.(d) Plot the response, q(t), for a step input r(t) with K as in (c).DP7.2 A larger helicopter uses two tandem rotors rotating in opposite directions, as shown in Figure P7.33 (a). The controller adjusts the tilt angle of the main rotor and thus the forward motion as shown in Figure DP7.2. The helicopter dynamics are represented by 210() 4.59G s s s =++, and thecontroller is selected as 21(1)()c K K s G s K s s+=+=.(a) Sketch the root locus of the system and determine K when ζ of the complex roots is equal to 0.6.(b) Plot the response of the system to a step input r(t) and find thesettling time (with a 2% criterion) and over-shoot for the system of part(a). What is the steady-state for error for a step input?(c) Repeat parts (a) and (b) when the ζ of the complex roots is 0.41. Compare the results with those obtained in parts (a) and (b).DP7.4A welding torch is remotely controlled to achieve high accuracy while operating in changing and hazardous environments [21]. A model of the welding arm position control is shown in Figure DP7.4, with the disturbance representing the environmental changes. (a) With D(s)=0,selectK and K to provide high-quality performance of the position 1control system. Select a set of performance criteria and examine the results of your design. (b) For the system in part (a), let R(s)=0 and determine the effect of a unit step D(s)=1/s by obtaining y(t).DP7.5A high-performance jet aircraft with an autopilot control system has a unity feedback and control system, as shown in Figure DP7.5. Sketch theroot locus, and predict the step response of the system, and compare it to the predicted response.DP7.10A pilot crane control is shown in Figure DP7.10 (a). The trolley is moved by an input F(t) in order to control x(t) and f(t)[13]. The model of the order to control is shown in Figure DP7.10 (b). Design a controller that will achieve control of the desired variables when ()G s=K.cDP7.13The automatic control of an air plane is one example that requires multiple-variable feedback methods. In this system, the attitude of an aircraft is controlled by three sets of surfaces: elevators, a rudder, and ailerons, as shown in Figure DP7.13 (a). By manipulating these surfaces, a pilot can set the aircraft on a desired flight path [20]. An autopilot, which will be considered here, is an automatic control system that controls the roll angle f by adjusting aileron surfaces. The deflection of the aileron surfaces by an angle q generates a torque due to air pressure on these surfaces. This causes a rolling motion of the aircraft. The aileron surfaces are controlled by a hydraulic actuator with a transfer function 1/s.The actual roll angle f is measured and compared with the input. Thedifference between the desired roll angle d f will drive the hydraulicactuator, which in turn adjusts the deflection of the aileron surface.A simplified model where the rolling motion can be considered independent of other motion is assumed, and its block diagram is shown in Figure DP7.13 (b). Assume that 1K =1 and that the roll rate f is fed back using a rate gyro. The step response desired has an overshoot less than 10% and a settling time (with a 2% criterion) less than 9 seconds. Select the parameters a K and 2K .MP7.4 A unity negative feedback system has the open loop transfer function 2(1)()36p s pG s s s +-=++. Using MATLAB, obtain the root locus as p varies; 0<p<∞. For what values of p is the closed-loop stable?MP7.8Consider the feedback control system in Figure MP7.8. Using MATLAB, plot the root locus for 0<K<∞. Find the value of K resulting in a damping ratioof the closed-loop poles equal to 0.707.MP7.9Consider the system represented in state variable fromx ·= Ax + Buy= Cx + Du,where 0101001,0.1524A B k 骣骣鼢珑鼢珑鼢珑鼢==珑鼢珑鼢珑鼢鼢珑----桫桫 C= [1 -9 12], and D= [0]. (a) Determine the characteristic equation. (b) Using Routh-Hurwitz criterion, determine the values of k for which the system is stable. (c) Using MATLAB, plot the root locus and compare the results to those obtained in (b).。
自动控制原理第七章
条件下的时间响应曲线如图所示。
四、非线性控制系统的特点
3.稳定性 3.稳定性 从曲线及方程中可以看出, 系统有两个平衡状态,即 x=0和 x=1 。 按稳定性的定义对平衡状 态 x=1来说,系统只要有一 个很小的偏离,就再也不会 回到这一平衡状态上来。 因此,x=1的平衡状态是一个不稳定的平衡状态。
第七章 非线性系统的分析
§7
非线性系统的分析
教学内容:
§7-1 非线性控制系统概述 §7-2 描述函数法 §7-3 相平面法
§7-1 非线性控制系统概述
一、引言 二、研究非线性系统的一般方法 三、典型非线性特性 四、非线性控制系统的特点
一、引言
包含一个或一个以上非线性元件或环节的系统为非线性系 统。 实际上自动控制系统的各个环节不可避免的带有某种程度 的非线性,线性系统只是非线性系统的近似。 非线性系统程度不严重时,在一定范围内或特定条件下, 可采用微偏法进行线性化,这种非线性称为非本质非线性。 如果系统的非线性具有间断点、折断点,称为本质非线性。 这时采用线性系统分析方法去研究会引起很大的误差甚至导 致错误的结论。
四、非线性控制系统的特点
3.稳定性 3.稳定性
线性系统的稳定性取决于系统的结构与参数,与起始 状态无关。 非线性系统的稳定性不仅仅和系统的结构与参数有关, 还和起始状态有直接关系。 一个非线性系统,他的某些平衡状态可能是稳定的, 某些平衡状态可能是不稳定的。因此对于非线性系统, 不存在系统是否稳定的笼统概念,要研究的是非线性系 统平衡状态的稳定性。
2 n
A +B
2 n
An ϕn = arctan Bn
一 描述函数的基本概念
非线性特性为奇对称,则直流分量 A0= 0; 同时,各谐波分量的幅值与基波相比一般都比较小; 因此,可以忽略式中的高次谐波分量,只考虑基波分量, 这种近似也称为谐波线性化。则
自动控制理论第七章精品文档
第七章 离散化控制系统
5
自动控制理论
第二节 信号的采样与复现
一、采样过程 把连续信号变成脉冲或数字序列的过程叫做采样,把采
样后的离散信号恢复为连续信号的过程称为信号的复现。
f (kT)
图7-5
2019/10/15
第七章 离散化控制系统
6
自动控制理论
图7-6
式中: f*(t)f(t)T(t)
若F (s)含有 S P 的一阶极点时,对应的留数为: Rls ipm [s(p)F(s)zzeTS]
若F (s)含有 S P 的q阶重极点时,对应的留数为:
R(q11)!limddqsq11[(sp)qF(s)zzeTS] sp
2019/10/15
第七章 离散化控制系统
f *(t) (t kT)
(7-1) ,KT —脉冲出现时刻
k
f*(t)f(kT)(tkT)
(7-2)
k
2019/10/15
第七章 离散化控制系统
7
自动控制理论
图7-7
考虑当t<0时,f(t)=0,则有
f*(t)f(kT)(tkT) k0
2019/10/15
k
2019/10/15
第七章 离散化控制系统
12
自动控制理论 图7-10
图7-11
2019/10/15
第七章 离散化控制系统
13
自动控制理论
图7-8可知,相邻两频谱不重叠交叉的条件是
s 2max
香农采样定理
s 2max
s
图-12
香农定理的物理意义是:采样角频率 s 若满足s 2max,则
25
自动控制理论
自动控制原理第七章非线性系统ppt课件
7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π
2π
ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn
自动控制原理第七章
特点
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
a
k
K
0
a
e
4
2、死区特性
0 e(t ) a
x
a
0
k
x
k e (t ) a k e (t ) a
e(t ) > a e (t ) < a
a
e
特点
常见于测量、放大元件中。死区非线性特性导致系 统产生稳态误差,且用提高增益的方法也无法消除。
0 A
a
1 N ( A)
(2)交点 b
外界干扰 外界干扰
G ( j )
A↑ A↓
该交点产生自持振荡
24
总结
G ( j ) 1 N ( A)
A b
Im
Re
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im N ( A)
G ( j ) 1 N ( A)
1 N ( A) 1 2
Im
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im 0 N ( A)
Re
A 1
0
28
G ( j )
令
Im G ( j ) 0
0 .3 K 4 .5
50 rad / s
G(jw)与负实轴 相交处的幅值
R e G ( j )
50
系统临界稳定
0 .3 K c 4 .5
1 2
K c 7 .5
自动控制理论第七章
n
z
n
F(z) r
k 1
e [F(ss)zeTS ]SP Kk 1R k
z Rkre[F s(s)zeTS]SPK
为
F(s)
z
z eTS
在 S P K 上的留数:
若F (s)含有 S P 的一阶极点时,对应的留数为: Rls ipm [s(p)F(s)zzeTS]
若F (s)含有 S P 的q阶重极点时,对应的留数为:
图7-4
2020/3/20
第七章 离散化控制系统
4
自动控制理论
计算机控制系统的优点
1)有利于系统实现高精度 2)有效地抑制噪声,提高了系统抗扰动的能力 3)不仅能完成复杂的控制任务,而且易于实现修改控制器的参数 4)有显示、报警等多种功能
分析离散系统的常用方法有两种:Z变换法和状态空间分析法。
2020/3/20
例7-4 求 解:
Z(sinat)
1 1
F(s)s2
a a2
2j 2j sja sja
1
1
F(z)
1 e
2j z jaT 1
1
e
2j z jaT 1
(sinaT)z1 1(2cosaT)z1 z2
2020/3/20
第七章 离散化控制系统
20
自动控制理论
2、留数计算法
设 f (t)的拉氏变换为F (s) ,且其为真有理式,PK 为F (s)的极点,
k 0
如果 eaTz1 1,则: F(z)1e 1aT z1zzeaT
2020/3/20
第七章 离散化控制系统
19
自动控制理论
2、部分分式法
例7-3
第七章自动控制原理
采样定理给出了选择采样周期T的依据。
7.2.2 信号复现及零阶保持器
▪ 信号复现 将数字信号转换复原成连续信号的过程称信号复现。该装置称 为保持器或复现滤波器。
▪ 零阶保持器 零阶保持器是最简单也是工程中使用最广泛的保持器。零
阶保持器的输入输出特性可用下图描述。
e*(t)
eh(t)
e*(t) 零阶保持器 eh(t)
n0
n0
采样信号的拉氏变换
E * (s) L[e* (t)] e(nT )e nTS
n0
例 e(t)=eat,试写出e*(t)表达式。
解:e (t ) e anT (t nT ) n0
物理意义:可看成是单位理想脉冲串T (t) 被输入信号e(t)进行
调制的过程,如下图所示
在图中,T(t)为载波信号;e(t)为调制信号; e*(t)为
n0
z z 1
两端对z求导数,得
(n)z n1
n0
1 (z 1)2
两边同乘(-Tz),得单位斜坡信号的z变换
nT z n
Tz
,( z 1)
n0
(z 1)2
(5) 指数函数 e(t)=e-at(a为实常数〕,则
E( Z ) e anT z n n0
1 e aT z 1 e 2aT z 2 e 3aT z 3 (*)
(s ) s o s
1/ Ts Fs ()
o TS
t
s om s
3. 采样定理(香农定理)
如果采样器的输入信号最高角频率为ωmax, 则只有当采样频率ωs≥2ωmax,才可能从采样信号
中无失真地恢复出连续信号。
s 2 max
其中
s
:
自动控制原理第七章
模拟前置滤波器常常置于传感器和模数转换器之间,它的 作用是抑制来自传感器的模拟信号中的高频噪声分量,以防 止在采样过程中出现混叠现象。
y(nT) y r - 传感器
T
数字控 制器
T
ZOH
对象
数字计算机作为数字控制器方块,它的输入端的采样开 关表示对连续时间信号进行采样,变换为离散时间信号。它 的输出端的采样开关只是一个符号,提醒这里的信号是离散 时间信号。 方块ZOH表示零阶保持器,它把离散时间信号变换为连 续时间信号。 系统的输出一般为连续时间信号,他把整个系统作为离 散时间系统分析时,是当做输出信号经过虚拟的采样开关变 成了离散时间信号来分析的。
a s(s a)
的z变换。
解: E ( s )
a 1 1 e(t ) 1(t ) e at s( s a ) s s a z z z(1 e aT ) E( z) aT z 1 z e ( z 1)(z e aT )
例 求e(t)=sint 的z变换。 解:
E ( s ) Lsint s2 2
1 1 1 E( s) ( ) 2 j s j s j
1 z z E(z) j T j T 2j ze ze 1 z ( e j T e j T ) 2 z z (e jT e jT ) 1) 2j z si nT 2 z 2 z cosT 1
* n 0 k 0 n 0
拉普拉斯变换
Y * ( s) x(nT ) g (kT nT )e kTs
k 0 n 0
令m=k-n,则k=n+m,上式变为
自动控制理论 第七章
x a( x , x)x b( x , x)x 0
相轨迹的斜率方程为
x)x b( x , x)x 令 dx dx a( x , dx x dx
2016/11/12
上式可改写成
a ( x , x ) x b ( x , x ) x x b ( x , x ) x x a( x , x)
0.5
0
2016/11/12
1
0.7 0.4
x ( x2 1)x x 0
2 0 1
x 0 2 5 6
3
x
3
0
5 2 0
2016/11/12
6
1 0 2
2016/11/12
j
s1
x
j
s1
x
0
0
x
0
0
x
s2
稳定焦点
s2
不稳定焦点
j
x
j
x
s2
s1
0
0
x
0
s1
s2
0
x
稳定节点
不稳定节点
2016/11/12
j
s1
x
0
0
x
s2
中心点
j
斜率 k s 2
x
s1
0 s2
0
x
斜率 k s 1
2016/11/12
鞍点
§7.3
x
解:原方程可写为:dx ( x x) , dx ( x x)
dx
x
dx
得等倾线方程为:
自动控制原理-第七章 非线性系统分析
p p p ( x1 , x 2 ) ( x1 x 10 ) ( x 2 x 20 ) x1 x 2 Q ( x , x ) Q ( x x ) Q ( x x ) 1 2 1 10 2 20 x1 x 2
p ( x1 , x 2 ) a ( x1 x10 ) b( x 2 x 20 ) Q( x1 , x 2 ) c( x1 x10 ) d ( x 2 x 20 )
c 区域: a Tc c k m
c k m c 1 (k m c) T T ct 0 由奇点定义: k m c 0 c 常数 c k m 1 k m c dc T dc c 区域: c 常数 奇线: c k m
§7-4
奇点及极限环
dx 0 奇点概念:相轨迹上满足 dx 0 不定式的特殊点,称为奇点。
在奇点处有多条相轨迹穿过或趋于该奇点,相当于系统处于 平衡状态 一 奇点分类:(线性系统)
2 2 n x n x 0 x 2 2 n x n x x dx 2 x dx 2 n x n x dt (*) 相轨迹方程 dx x dx x dt
介绍:典型非线性特性、相平面法、描述 函数法
§7-1引言
稳定性 1.线性系统与非线性系统区别: 输出曲线 等幅振荡 稳态输出
2.非线性特性(典型) 1)死区
0 x a y k ( x a ) x a k ( x a ) x a
0 = k ( x aSignx)
x1 a ( x1 x 10 ) b( x 2 x 20 ) x 2 c( x1 x10 ) d ( x 2 x 20 )
自动控制--第七章 串级调节系统
果副环外面的对象容积数目较多,同时有主要扰动落 在副环外面的情况,就可以考虑采用PID调节器。
2 串级调节系统的整定方法 频率:主要决定于调节对象的动态特性,整定时 ,提高副环的频率,使主、副环的频率错开,最好相 差三倍以上,以减少相互之间的影响 增益:应尽量加大副调节器的增益
(1)在通常情况下先整定副调节器后整定主 调节器
器,则可得
Z2
1 '2 '0
1 '2 T1 T2 2 ' T1T2
(7-10 )
若使串级调节系统和单回路调节系统具有同样的 衰减系数值ζ,则它们过渡过程频率之比为
Z1 T1 T2 Kc2 K02T1 1 (1 K c2 K02 )T1 T2
Z 2
T1 T2
1 T1 T2
7.1.1 串级调节系统的组成
图7-3是管式加热炉串级调节系统图7-2的框图。 干干扰扰F管2F表1表式示示加燃另原热料一料炉油部油对分本象为身分炉流为膛两及部燃分。一 压力量、部组进分分口为烧的温受装变度热置化等管—的—道变温—化度—温 对度 象2对象1
主调回 节路 器,是执由行主器变和量主的、测副量对变象它送构的装成输它置的出的,外变输主回量出、路变副,量为原 从系亦统称的外结环构或来主看环,这两个调 为炉膛料温油度出θ2口温度θ1 节副器回是路串接是工由作副的变,量因的此测,量这变送装置,副调节器执行 样的器系和统副称对为象串所级构调成节的系内统回路,亦称内环或副环
② 将副调节器置于这一求得的比例度上,把副 回路视为调节系统中的一个组成部分,用同样的方法 ,求出主回路在ψ = 0.75~0.9的衰减过程的主调节器 比例度P1s和被调量y1在出现第一个高峰时的时间tr1。 然后根据P1s 、tr1按经验公式表6-4,求出主调节器的 参数。按“先副环后主环”的原则,先放上副调节器 参数,后放上主调节器参数。如果投人运行后的调节 过程不够满意,对调节器参数再作适当调整。
自动控制原理第七章
解:1.将继电特性的参数代入相应公式得到:
4B 12 a 1 N ( A) 1 1 A A A A
2 2
1 πA N(A) 12 1 - 1 2 A
根据
( N (1A) ) ( )
a A
0,求得
1 π 的极值为 6 N ( A)
7.4.2 非线性系统结构的简化
非线性环节串联 若两个非线性环节串联,可将两个环节 的特性归化为一个特性,即以第一个非线性 环节的输入和第二个非线性环节的输出分别 作为归化后非线性特性的输入和输出,从而 作出等效非线性特性。注意,若两个非线性 特性的描述函数分别为 N1 ( A)和 N 2 ( A,等效非 ) 线性的描述函数为 N ( A)绝不等于 N1 ( A和 的 ) ) N2 (A 乘积,并且串联非线性环节的次序不可交换。 对于多个非线性环节串联,其处理方法可以 按照串联的次序,先归化前两个非线性环节, 等效后的非线性特性再与第三个环节进行归 化变换。 非线性环节并联 若两个并联的非线性环节其描述 函数分别为 和 N ( A) ,则并联后的 N 2 ( A) 1 等效非线性环节的描述函 数 。
7.2 典型非线性特性及其对系统的影响
间隙特性
也称回环,机械传动中为保证齿轮转动灵活不卡齿,主动轮、从动 轮齿轮之间必须有适当的间隙存在,使得两者不能同步运转,即从 动轮滞后主动轮。含有间隙特性的系统,其输出相位滞后于输入相 位,从而减小了系统的相稳定裕度,使系统的稳定性变坏,同时增 大了系统的稳差。
7.3 描述函数法
7.3.2 非线性特性的描述函数
非线性特性 描 述 函 数
7.3 描述函数法 描 述 函 数
非线性特性
7.4 用描述函数法分析非线性控制系统
自动控制原理第七章课件
下面从信号采样前后的信号频谱变化来分析。 设连续信号 e(t )的频谱 E(j)为有限带宽,其最大角 频率为 h 。
自动控制原理第七章课件
下面分析一下采样后e * ( t ) 的频谱。
e*(t)e(t)δT(t)e(t) δ(tn)T
n
理想单位脉冲序列 T (t)是一个以T为周期的周期函数,
可以展开成傅氏级数形式:
T(t) Cnejnst
s 2/T 为采样角频率
n
T
Cn
1 T
2
T(t)e d jnst t
T2
Cn
1 T
0
(t)dt
1
0
T
为傅氏系数
T(t)
1
Tn
ejnst
如果在控制系统中有一处或几处信号不是时间t 的连续函数,而是以离散的脉冲序列或数字脉冲序列 形式出现,这样的系统则称为离散控制系统。
系统中的离散信号是脉冲序列形式的离散系统称 为采样控制系统或脉冲控制系统。
系统中的离散信号是数字序列形式的离散系统称 为数字控制系统或计算机控制系统。
自动控制原理第七章课件
或数码,控制的过程是不连续的,不能沿用连续系统 的研究方法。
研究离散系统的工具是z变换,通过z变换,可以 把我们熟悉的传递函数、频率特性、根轨迹法等概念 应用于离散系统。 自动控制原理第七章课件
7-2 信号的采样与保持
采样器与保持器是离散系统的两个基本环节, 为了定量研究离散系统,必须用数学方法对信号的 采样过程和保持过程加以描述。 一、采样过程
采样信号
自动控制原理 第七章 采样系统理论
b0 b1 z b2 z bm z m 而 E( z) (m n) c0 c1z-1 c2z-2 1 a 1 z 1 a 2 z 2 a n z n
t 0 z
(7) 终值定理 若e (t)的z变换为E(z),函数序列e(nT)为有限值(n=0,1,2,…), 且极限 lim e ( nT ) 存在,则
n
lim[e( nT )] lim( z 1) E ( z )
n z 1
离散系统的数学模型
脉冲传递函数 脉冲传函定义
第七章
采样系统理论
离散系统的相关概念 离散系统的数学模型 离散系统的稳定性分析 离散系统的稳态误差计算
离散系统的校正
信号的采样与保持
采样过程与采样定理
采样过程
e(t) S e*(t) T e(t) e*(t)
0
t
0
T 2T
t
(a)
(b)
(c)
基本概念:
1)采样周期:采样开关经一定时间T,重复闭合,每次闭合时间为τ, τ<T,T称为采样周期。f=1/T为采样频率。 2)采样角频率:ωs=2π/T rad/s。 3)采样脉冲序列:连续时间函数经采样开关采样后变成重复周期T的时 间序列,称为采样脉冲序列。 4)采样过程:将连续时间函数经过采样开关的采样而变成脉冲序列的 过程,称为采样过程。
R(s) + - T
K s(s 4)
C(s)
K K 1 1 Z G(z) Z s( s 4) 4 s s 4 K z z K 1 e 4T 4T 4 z 1 z e 4 ( z 1)(z e 4T )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s e j ( 0, : 90 0 90 )
K K jv then, lim L( s) lim v jv lim v e 0 0 e 0 i.e. the contour encircles the origin v/2 times in the clockwise direction, and the radius is .
Im
j
=0-
r=∞
r=∞ 0
=-∞ =+∞
0 Re
=0+
22
(b) The portion from = 0+ to =+
is the polar plot of L(s).
(c) The portion from = + to =
is mapped into the origin of the L(s)-plane.
24
2. The plot of contour L for the range -< <0will be the complex conjugate of the plot for the range 0 + , and the polar plot of L( s ) will be symmetrical in the L( s)-plane about the real axis. So it is sufficient to construct the contour L for
(0+ +), and the conclusion changes to
that for the contour in the L( s)-plane, the number of counterclockwise encirclements of the ( 1, j0) point is equal to P/2.
11
Example 7.1
K L( s ) G ( s ) H ( s ) (T1s 1)(T2 s 1)
Im
N=Z=0, so the system is stable.
-1
=∞
0
=0
K Re
=1/T
12
Example 7.2 Assuming open loop transfer functien-loop transfer function.
10
Nyquist stability criterion 1. A feedback system is stable if and only if the contour Γ L in the L(s)-plane does net encircle the (-1, 0) point when the number of poles of L(s) in the right-hand s-plane is zero (P=0). 2. A feedback system is stable if and only if, for the contour Γ L, the number of counterclockwise encirclements of the (-1, 0) point is equal to the number of poles of L(s) with positive real parts.
1
7.1 Introduction
• •
Developed by H.Nyquist in 1932. Based on Cauchy’s theorem.
2
• The frequency response can be obtained experimentally. • It can be utilized to investigate the relative stability.
9
• The contour Γ F is known as the Nyquist diagram or ploar plot of F(s). • As L(s)=F(s)-1, the number of encirclements of the origin in F(s)-plane becomes the number of encirclements of -1 point in L(s)plane.
25
3. The conclusion can be expanded to the system including delay unit.
4. If the contour L(j) overpass the (-1, j0) point, that is one close-loop pole on the jaxis, the system is critically stable.
+
3. circle direction : ( ) , clockwise
We need to find the cross-over point and compare it with -1!
14
4. The cross-over point K L( j ) j (4 3 12.2 ) 22.4 2 1 The cross-over point is at 4 3 12.2 0, = 3.05, K K where L( j 3.05 )= - (1 22.4 3.05) 68.32
26
5. System with v poles at the origin • The supplement curve must be draw. • The small semicircular detour around the pole at the origin can be represented by setting
3
R(s) + -
Gc(s) H(s)
G(s)
Y(s)
Fig 7.1 A closed-loop system
F s 1 L( s) 1 Gc ( s )G ( s ) H ( s )
• Where L(s) is a rational function of s. • To ensure stability, it must be ascertained that all zeros of F(s) lie in the left-hand splane. • Propose a mapping of the right-hand splane in F(s)-plane.
(d) The portion from = to =0
is symmetrical to the polar plot.
23
Note: 1.
s
lim L( s ) lim
j
k (s z j )
m
s
(s p )
i i 1
j 1 n
0
( m n)
Chapter 7 Stability in the Frequency Domain
7.1 7.2 7.3 7.4 7.5 Introduction Mapping Contours in the s-plane Nyquist Stability Criterion Stability Margin of System Dynamics performance of closed-loop from open-loop frequency characteristic 7.6 Summary
4
7.2 Mapping Contours in the s-plane
• A contour map is a contour in one plane mapped into another plane by a relation F(s). Example: s F ( s) s2
D s -2 C -1 j A j 0 -j 1 B
Im
=0-
j
r=∞
r=∞ 0
=-∞ =+∞
0 Re
=0+
21
(a) The origin of the s-plane
s e j , 0
: 90 0 90
K K j lim L( s) lim j lim e 0 0 e 0
n i 1 M
(s p )
k k 1
• The poles of F(s) are the poles of L(s). • The zeros of F(s) are the characteristic roots of the system.
8
• For a system to be stable, all the zeros of F(s) must lie in the left-hand s-plane. • Choose a contour Γ s in the s-plane that encloses the entire right-hand s-plane, the number of encirclements of the origin of the j F(s)-plane is N=Z-P. Z: zeros in RHP P: poles in RHP r=∞ • So the number of unstable 0 poles of the system is Z=N+P
6
Another example:
s F ( s) s 1 2
j A j 0 -j 1 B
D s -2 C b -1