结构动力学总结总

合集下载

结构动力学

结构动力学
柔度系数

L
L
L
1
2l 3 3EI
M1图
1 m
1 2m 2l 3 EI
3

3 EI 4ml 3
4ml 3 T 2 3EI
2
第十章 结构动力学简介
二、单自由度体系的受迫振动
内 蒙 古 农 业 大 学
受迫振动指体系是在干扰力 FP (t )持续作用下的振动。 单自由度体系在动荷载下的振动及相应的振动模型如图示:
3、自由振动和受迫振动
自由振动 结构在没有动荷载作用时,由初速度、初位移所引起的振动。 研究结构的自由振动,可得到结构的自振频率、振型和阻尼参数。
第十章 结构动力学简介
强迫振动 结构在动荷载作用下产生得振动。研究强迫振动,可得到结构的
内 蒙 古 农 业 大 学
动力反应。
§10-2 动力自由度
一、自由度的定义
内 蒙 古 农 业 大 学
一、多自由度体系的自由振动
1 多自由度体系振动方程的建立(以两个自由度为例来说明)
(1) 柔度法
在惯性力作用下的位移等于实际的动位移。(力法)
y2
m2 y
m1 y
21
11
P 1 1
22
P2 1
y1
12
M 1图
M 2图
第十章 结构动力学简介
t
无阻尼y- t曲线
第十章 结构动力学简介
②阻尼对振幅的影响.
内 蒙 古 农 业 大 学
振幅ae- ξω t 随时间衰减,相邻两个振幅的比
y k 1 e T 常数 yk
振幅按等比级数递减.
经过一个周期后,相邻两振幅yk和yk+1的比值的对数为:

结构动力学学习总结

结构动力学学习总结
e(
) t
2) 当 时,为临界阻尼系统,微分方程(1-9)的通解为
x(t ) e t (c1 +c2t )
(1-15)
由初始条件 x(t )
t 0
x0 , x(t )
t 0
0 ,可得
(1-16)
x(t ) e t [ x0 + ( 0 x0 )t ]

(1-7)
1.1.2 有阻尼的自由振动 单自由度系统考虑阻尼作用的自由振动方程为
mx(t )+cx(t )+kx(t )=0
(1-8)
或写为
x(t )+2 x(t )+ 2 x(t )=0
(1-9)
其中

c 2m
(1-10)
称为阻尼特性系数。常微分方程(1-9)的特征方程为
s 2 +2 s+ 2 =0
不难发现,式(1-14)和式(1-16)所表示的运动都没有振动的特征。 3) 当 时,为低阻尼临界系统,这时特征方程的根为
s1,2 i
(1-17)
其中 2 2 微分方程(1-9)的通解为
x(t ) e t ( B1 sin t + B2 cos t )
mx(t ) cx(t ) kx(t ) Pcos t
(1-25)
可知上式的通解为
x(t ) e t ( B1 sin t B2 cos t ) A sin( t )
(1-26)
将初始条件代入上式,可得到
x(t ) e t (
0 x0 sin t x0 cos t ) sin cos Ae t (sin cos t sin t ) A sin( t )

结构动力学 期末复习重点

结构动力学 期末复习重点

一1、结构动力学计算的特点?(对比静力问题)○1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。

○2与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响。

2、结构动力学是研究什么的?包含什么内容?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和 方法的一门理论和技术学科。

目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。

二、1、动力系数(有阻尼、无阻尼。

简谐、半功率点法、位移计……)2、动力系数和哪些因素有关动力放大系数受阻尼比控制,Rd 曲线形状可以反映出阻尼比的影响。

主要有两点:其一是峰值大小;其二是曲线的胖瘦。

3、动力系数在工程(隔震、调频减震)的应用4、如何用动力系数测阻尼比三、1、阻尼 阻尼也称阻尼力,是引起结构能量的耗散,使结构振幅逐渐变小的作用。

阻尼的来源:1固体材料变形时的内摩擦,或材料快速反应引起的热耗散;2结构连接部位的摩擦;3结构周围外部介质引起的阻尼。

2.阻尼比常用的测量方法及其优缺点:(1)对数衰减率法:相邻振动峰值比的自然对数值称为对数衰减率。

采用自由振动试验,测一阶振型的阻尼比较容易。

测量高阶振型阻尼比的关键是能激发出按相应振型的自由振动。

(2) 共振放大法:采用强迫振动试验,通过共振得到(Rd )max 由于静荷载下的位移较难确定,应用上存在一定的技术困难,但通过一定数学上的处理还是可以用的。

(Ust 是零频时的静位移,不容易测得。

)(3) 半功率点(带宽)法:采用强迫振动试验,测出Rd-w/wn 图上振幅值等于倍最大振幅的点,对应的长度的1/2即为阻尼比。

不但能用于单自由度体系,也可以用于多自由度体系,对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远,保证在确定相应于某一自振频率的半功率点时不受相邻自振频率的影响。

3、等效粘滞阻尼比○1、粘性阻尼是一种理想化的阻尼,具有简单和便于分析计算的优点。

结构动力学的刚度系数柔度系数汇总.

结构动力学的刚度系数柔度系数汇总.

三、自由振动微分方程的解
y(t ) Asin( t )
四、结构的自振周期和频率
k 1 m m
T
2

五、例题
m
l /2 1 EI l /2
[例1] 计算图示结构的频率和周期。 (柔度法) 解:
1 m
l 48EI
ml 3 T 2 48EI
3

48 EI ml 3
1
k22 k2
k12 k2
k2
EI∞
k11 k1 k2
1
k1
k1 、k2 —— 楼层刚度(本楼层单位侧移所需的侧向力) k11 、k12 、k21 、k22 —— 位移法的刚度系数 kij
kij
—— 第j 个结点位移发生单位位移(其它结点位移均锁固)时, 在第i 个结点位移处产生的反力。
h EI EI
3EI 3EI 6EI k k左柱 k右柱 3 3 3 h h h
总侧移刚度:
h2
h1
i1
i2
k k左柱 k右柱
3 i1 3 i2 2 2 h1 h2
∞ h
总侧移刚度:
i1
i2
12 i1 12 i2 k k左柱 k右柱 2 2 h h
(刚度并联,两者叠加)
k
k11 k
EI
1
l
3EI l3
k11 m
3 EI
l3
k m
[例7]计算图示刚架的频率和周期。
1
m EI1= I I h
k
解: (刚度法)
由柱刚度并联 得:
12 EI 24 EI k 2 3 3 h h
k 24 EI m mh3

结构动力学 总结

结构动力学 总结

结构动力学 动力特性(天生就有的,爹妈给的,不随外界任何事物改变)自振频率ω:初速度或初位移引起自由振动的圆频率振型:结构按照某自振频率振动的位移形态阻尼:振动过程中的能量耗散(主要由结构内部的特征决定的)动力作用:周期荷载、冲击荷载、随机荷载(地震)动力反应(响应):动内力、动荷载、速度、加速度结构动力学是研究动力反应的规律的学问,一般思路是先研究自由振动(目的是搞清该结构的动力特性)再研究强迫振动(动力特性+动力作用)利用振型分解反应谱法,可以将每个基本振型的参与系数求出来,这样的最大好处是可以将耦联微分方程解耦。

刚度法通式:()()()()mY t cY t kY t F t ++=1、 单自由度无阻尼自由振动(分析自由振动的目的是确定体系的动力特性:周期、自振频率)()()0my t ky t += (()[()]y t my t δ=-) (令k m ω=) 解为:00()cos sin v y t y t t ωωω=+=sin()A t ωϕ+ (22002v A y ω=+,00tan y v ωϕ=) 重要结论:由微分方程的解可以知道,无阻尼振动是一个简谐振动,其周期和自振频率为2T πω=,k mω=周期和自振频率之和自己质量与刚度有关和外界因素无关。

2、单自由度有阻尼自由振动()()()0my t cy t ky t ++= (令=22c c mw mkξ=) 即微分方程为2()2()()0y t wy t w y t ξ++=(实际建筑结构的阻尼比1ξ<)解为000()[sin cos ]t d d dv y y t e t y t ξωξωωωω-+=+=sin()t d Ae t ξωωϕ-+(21d ωωξ=-) 221000000(),d d v y y A y tg v y ξωωϕωξω-+=+=+其中 重要结论:1)由方程的解看出弱阻尼情况下的自由振动是一种衰减振动,阻尼使振幅按指数规律衰减。

高等结构动力学总结

高等结构动力学总结

结构动力学课程总结与进展综述首先谈一下我对高等结构动力学课程的认识。

结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。

它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。

这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。

既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算。

我们是航空院校,当然我们所修的高等结构动力学主要针对的是飞行器结构。

这门课程很难,我通过课程和考试学到了不少东西,当然,也有很多东西不懂,我的研究方向是动力学结构优化设计,其中我对于目前的灵敏度分析研究比较感兴趣,这门课程是我以后学习的基础。

二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别是结构力学的研究方向发生了重大变化,研究范围也得以拓宽。

长期处于被动状态的结构分析,转化到主动的结构优化设计,早期的结构优化设计,考虑的是静强度问题。

但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。

同理,在航天、土木、桥梁等具有结构设计业务的工作部门,运用结构动力学优化设计技术,必将带来巨大的经济效益。

20世纪60年代,动力学设计也称动态设计(dynamic design)开始兴起,但真正的发展则在八、九十年代,现正处于方兴未艾之际。

“动态设计”一词常易引起误解,逐被“动力学设计”所取代。

进入90年代以来,结构动力学优化设计的研究呈现出加速发展的态势,在许多方面取得了令人耳目一新的成果。

尽管如此,它的理论和方法尚有待系统和完善,其软件开发和应用与工程实际还存在着较大的距离,迄今尚存在着许多未能很好解决甚至尚未涉足的问题。

结构动力学

结构动力学

第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。

确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。

根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。

根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。

2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。

广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。

有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。

①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。

②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。

5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。

结构动力学克拉夫

结构动力学克拉夫

结构动力学克拉夫结构动力学是研究结构在外力作用下的变形和运动规律的学科。

它能够揭示结构的响应特性,并应用于工程和建筑物的设计、分析和优化等领域。

在结构动力学中,克拉夫方法是一种常用的数值分析方法,可以有效地求解结构的动力响应。

下面将详细介绍克拉夫方法的原理和应用。

克拉夫方法是一种离散激励动力分析方法,适用于求解线性多自由度系统的动力响应。

克拉夫方法的基本原理是离散化结构,将其简化为一系列互相连接的质点,然后通过求解质点的加速度、速度和位移来获取结构的动态特性。

克拉夫方法中引入了模态分析的概念,将结构的振型表示为一系列正交的模态,并通过求解每个模态的响应来得到结构的总响应。

在应用克拉夫方法进行结构动力分析时,首先需要建立结构的有限元模型。

该模型需要包括结构的几何形状、材料特性和边界条件等信息。

然后,通过解结构的动力方程可以得到结构的模态频率和振型。

一般情况下,结构的模态频率并不是均匀分布的,其中低频模态对结构的响应起主导作用。

因此,在求解结构的总响应时,可以只考虑前几个重要的低频模态。

在进行克拉夫分析时,需要给定一个外力激励。

这个外力激励可以是单个点的冲击载荷、均匀分布的动力载荷或者地震作用等。

通过将外力激励进行傅里叶变换,可以将其转化为频域中的振动谱。

然后,根据每个模态的频率和阻尼比,可以得到每个模态的响应谱。

最后,通过叠加所有模态的响应谱,可以得到结构的总响应谱。

这个总响应谱描述了结构在给定的外力激励下的动力响应特性。

克拉夫方法的优点是能够考虑结构的动态特性和边界条件,同时对结构的几何形状和材料特性并不敏感。

它可以用来分析和优化各种类型的结构,包括桥梁、建筑物、风力发电机塔等。

克拉夫方法可以帮助工程师预测结构的响应,并在设计阶段进行结构的优化,以提高结构的稳定性和安全性。

然而,克拉夫方法也有一些局限性。

首先,克拉夫方法仅适用于线性多自由度系统,对于非线性或者含有阻尼的系统,需要进行额外的处理。

【精品】结构动力学心得汇总

【精品】结构动力学心得汇总

结构动力学心得汇总结构动力学学习总结通过对本课程的学习,感受颇深。

我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。

我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。

结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。

它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。

高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。

这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。

既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。

二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。

如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。

但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。

如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。

荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。

在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。

另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)
独立参数也称为体系的广义坐标,可以是位移、转角或 其它广义量。
质量块mg 无质量弹簧k
(a) 弹簧-质点
2ust
动力反应
u
(b) 静力和动力反应
静力问题和动力问题位移反应的区别
1.4 结构离散化方法
离散化:把无限自由度问题转化为有限自由 度的过程
三种常用的离散化方法: 1、集中质量法、 2、广义坐标法、 3、有限元法。
F (t) = Asinωt F (t) = Acosωt F (t) = Asin(ωt − φ)
可以是机器转动引起的不平衡力等。
p(t)
t
(a) 简谐荷载
1.2 动力荷载的类型
(2)非简谐周期荷载
荷载随时间作周期性变化,是时间t的周期函数,但不
能简单地用简谐函数来表示。 例如:平稳情况下波浪对堤坝的动水压力;轮船螺旋 桨产生的推力等。
n =1
nπx
L
sin(.)— 形函数(形状函数),给定函数,满足边界条件;
bn(t)— 广义坐标,一组待定参数,对动力问题是作为时间的函数。
∑ u( x, t )
=
N n =1
bn
(t)
sin
nπx
L
2、广义坐标法
悬臂梁:
x
(b) 悬臂梁
用幂级数展开:

∑ u(x) = b0 + b1x + b2 x2 + L = bn xn n=0
结构动力学和静力学的本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力
惯性力的产生是由结构的质量引起的,对结构中质量位 置及其运动的描述是结构动力分析中的关键,这导致 了结构动力学和结构静力学中对结构体系自由度定义 的不同。

结构动力学小结

结构动力学小结
2
21m1 A1 ( 22 m2
2
) A2 + + 2 n mn An
k21 A1 (k22 m2 2 ) A2 k2 n An F2
2
kn1 A1 kn 2 A2 (knn mn 2 ) An Fn
m2 2 惯性力 幅值 方程 1
21 I1 ( 22
n1 I1 n 2 I 2 + +( nn
1
mn 2
) I n np 0
矩阵形式:

设在稳态阶段各质量按干扰力频率 作同步简谐振动,即取特解的形式为 yi Ai sin t
(11m1
动位移 幅值 方程
1

) A1 12 m2 A2 + +1n mn An 2 1
1 p
2
2 p
0 0
(k11 m1 ) A1 k12 A2 k1n An F1
无阻尼
有阻尼
ky 0 my
运动方程
cy ky 0 my
y 2 y 0
y (t ) y0 cos t v0 sin t
2 y 0 ,其中阻尼比 y 2 y
y (t ) e t ( y0 cos d t v0 y0
k11 k22 k k k2 ) 11 22 12 0 m1 m2 m1m2
1,2
自振频率
11m1 22 m2
2 1 2 (11m1 22 m2 ) 2 4m1m2 (11 22 12 ) 2
2 [(
k k k k k2 1 k11 k22 ) ( 11 22 )2 4( 11 22 12 )] 2 m1 m2 m1 m2 m1m2

结构动力学公式归纳总结

结构动力学公式归纳总结
0

������)������������
h.杜哈梅数值积分(当������(������)不可积时):
无阻尼体系:
������������������������(������ − ������) = sin(������������ − ������������) = ������������������������������������������������������������ − ������������������������������������������������������������
0

������)������������
其中ℎ(������ − ������) = 1 ������������������������(������ − ������)
������������
有阻尼稳态解:
������(������)
=
1 ������������������
������
∫ ������(������)������−������������(������−������)������������������������������(������
随机动荷载。所谓非随机动荷载,即荷载的变化规律我们是已经完全掌握的,可以绘制出
荷载随时间变化曲线的荷载,这类荷载一般进行所谓的数定分析以获得荷载-位移曲线。而
随机荷载是指荷载随时间的变化规律我们是无法事先知道的,比如我们需要研究的风荷
载,对这类荷载一般需要采用随机振动理论去进行求解。
下面简单概括结构动力学的理论公式:
b.有阻尼自由振动:
������������̈ (������) + ������������̇ (������) + ������������(������) = 0

结构力学知识点总结大全

结构力学知识点总结大全

结构力学知识点总结大全结构力学是研究结构的力学性能和变形规律的学科。

它主要涉及静力学、动力学、损伤和断裂力学等方面的知识。

以下是结构力学的一些基本知识点总结:1.力学基础知识力学基础知识主要包括质点静力学、刚体静力学、力的合成与分解、力矩、杠杆原理等内容。

了解这些基础知识是掌握结构力学的基础。

2.静力学静力学研究物体处于静定平衡状态下的力学性质。

常见的内容包括力的平衡、支持反力的计算、摩擦力等。

3.结构受力分析结构受力分析是指对结构中各个零件所受到的力进行分析和计算,以确定结构的受力情况。

常见的方法有力的平衡法、截面法、力法等。

4.杆件受力分析杆件受力分析是指对杆件在外力作用下的受力情况进行分析和计算。

常见的情况有轴向受力、剪力、弯矩等。

5.梁的受力分析梁是指在跨越两个或多个支点的情况下承受外力的杆件,梁的受力分析主要包括计算梁的弯曲力、剪力和挠度。

6.桁架分析桁架是由多个杆件和节点组成的结构体系,桁架分析主要研究桁架受力分析。

常见的分析方法有截面法、节点反力法等。

7.变形分析变形分析是指对结构在受力作用下的变形情况进行分析和计算。

常见的变形形式有轴向变形、剪切变形、弯曲变形和挠度等。

8.动力学动力学是研究结构在受到外力作用下的运动规律和响应情况。

常见的内容有弹性振动、阻尼振动和地震反应等。

9.材料力学性能材料力学性能是指材料在受力下所表现出的力学特性,包括材料的强度、刚度、蠕变性能等。

10.损伤和断裂力学损伤和断裂力学研究结构中的损伤和断裂行为,包括材料的疲劳断裂、断裂韧性等。

总之,结构力学是研究结构的力学性能和变形规律的学科,涵盖了静力学、动力学、损伤和断裂力学等方面的知识。

掌握这些知识对于设计和分析工程结构至关重要。

结构动力学分析及优化设计

结构动力学分析及优化设计

结构动力学分析及优化设计我国迅速发展的创新领域为结构动力学分析的发展提供了持续的支持与推动。

结构动力学分析作为一种重要的研究手段,可以帮助工程师更好地优化设计,提高结构的稳定性与安全性。

本文将介绍结构动力学分析及优化设计的相关知识。

一、什么是结构动力学分析?结构动力学分析是一种涉及结构物的动态反应的研究。

不同于静力学分析,结构动力学使我们能够评估建筑、产品和非建筑结构物的动态反应,以更加准确地预测它们长期以来的稳定性和功能性。

在结构动力学分析中,我们通常需要确定结构物的质量特征/惯性特征、刚度特征、阻尼特征和激励载荷特征,以了解结构物的动态响应。

通过确定这些特征,我们可以将结构物的响应量化,从而为理解结构物的长期性能、稳定性和安全性提供一个准确的图景。

二、结构动力学分析的详细步骤1. 模型准备在进行结构动力学分析之前,我们需要准备结构物的模型。

在模型准备阶段,我们使用先进的三维计算机辅助设计(CAD)软件,比如SolidWorks或AutoCAD 等,来创建结构物的几何模型。

2. 网格划分在完成结构物的几何模型后,我们需要进行网格划分。

该过程涉及将结构物的几何模型转换为有限元模型。

在这个阶段,将流畅的几何形状划分成小体积的网格元素。

3. 载荷定义承受荷载是结构物设计的重要方面,所以我们需要定义载荷。

在结构动力学分析中,载荷可以来自各种因素,包括重力、风、地震、机械振动等。

我们还需要考虑载荷大小,频率和振幅。

4. 材料属性定义材料属性定义是结构动力学分析的另一个重要方面。

我们会向结构物中引入不同的材料,比如混凝土、钢和木材等,为每种材料定义适当的物理和力学特性,以生成材料性能模型。

在材料属性定义的过程中,我们通常需要考虑弹性模量、泊松比和材料密度等。

5. 结构动力学分析仿真计算完成输入数据的定义后,我们可以使用一种交互式分析工具,如ANSYS等,对结构物进行结构动力学分析仿真计算。

这可以帮助我们进一步分析结构物的长期稳定性和性能,来改善结构物的设计。

《结构动力学》教学日志知识资料b

《结构动力学》教学日志知识资料b
年月日

24

总结复习
知识点串讲
年月日
学生考核成绩记录
序号
项目
出勤
作业
学号
姓名
/
/
/
/
/
/
/
/
/
/


/
/
/
/
/
/
/
/


1
5
杨金银
2
2
甄一帆
3
4
周叙霖
4
1
史宝红
5
2
李明聪
6
3
桑胜涛
7
4
崔亚歌
8
5
贾世宁
9
6
连娜
10
7
周文丽
11
8
熊治凯
12
9
薛涛
13
0
周翱翔
14
1
赵锦涛
15
2
田里
16
3
孙可锋
17
4
王浩
教研室主任主管教学院(部)长
年月日年月日
教学计划内容
授课实施记录
课内
课外作业、实验

1

第1章绪论和概述
1.1结构动力分析主要目的
1.2荷载的分类(持时和来源)
1.3动力问题的基本特性
重点:结构动力分析意义及基本概念。
难点:动力问题与静力问题区别与联系。
寻找1-2本国外结构动力学相关的教材,供学习参考。
(自愿上交)
年月日

2

第1章绪论和概述
1.4离散化主意
1.5运动方程的建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 单自由度体系—对简谐荷载的反应(续)
¾简谐振动试验确定结构的阻尼比ζ
共振放大法:
ζ=
1
= ust
半功率点法: 2Rd (ωn ) 2u0 (ωn )
ζ=ωb − ωa = ωb − ωa
2ωn
ωb + ωa
基础:动力放大系数Rd的性质。
¾滞变阻尼理论(复阻尼理论)
滞变阻尼参数η与粘性阻尼比ζ的关系:
{φ}mT [K ]{φ}n = 0, m ≠ n
证明方法,利用特征方程(即自振频率及其振型 满足的方程)证明。
第4章 多自由度体系(续)
¾振型质量、振型刚度及与自振频率的关系:
Mn
=
{φ} T n
[M
]{φ} n
Kn
=
{φ} T n
[K ]{φ} n
ωn = Kn M n
与单自由度体系三参数关系的形式完全相同。
振型坐标的标准运动方程: q&&n (t) + 2ζ nωnq&n (t) + ωn2qn (t) = −γ nu&&g (t), n = 1,2,LN
γ
n
=
{φ}nT [M
Mn
]{I}
=
{φ}nT [M ]{I} {φ}nT [M ]{φ}n
γn称为振型参与系数
第5章 结构动力反应
数值分析方法
第5章 结构动力反应数值分析方法
¾振动测量仪器:了解原理即可。
¾隔振(震)原理:
隔断输出 隔断输入
力⎫ 位移 ⎪⎬的隔振,性质完全相同 加速度⎪⎭
¾传递率:
TR =
1 + [2ζ (ω / ωn )]2
= f max
[1 − (ω / ωn )2 ]2 + [2ζ (ω / ωn )]2 p0
= u0t ug
=
u&&0 t u&&g
数值算法中的基本问题
¾ 收 敛 性:当Δt→0时,数值解是否收敛于精确解;
¾计算精度:截断误差与时间步长Δt 的关系,若误差
ε ∝ O(Δtn),则称方法具有n阶精度;
¾稳 定 性:随时间步数i的增大,数值解是否有界; ¾ 计算效率:所花费的计算时间的多少。
根据逐步积分计算公式是否为耦联方程组,逐步 积分法可分为两大类:
¾动力学的新物理量:惯性力、阻尼力。
¾建立运动方程的方法:
☼ 牛顿第二定律直接应用; ☼ D’Alembert原理:动平衡概念; ☼ 虚位移原理; ☼ Hamilton原理; ☼ 运动的Lagrange方程。
¾单自由度体系运动方程:
mu&& + cu& + ku = p(t)
第2章 分析动力学基础及运动方程的建立(续)
¾Rayleigh阻尼及其性质
[C] = a0[M ]+ a1[K]
⎨⎧a0
⎫ ⎬
⎩a1 ⎭
=
2ζ ωi + ω j
⎩⎨⎧ωi1ω j
⎫ ⎬ ⎭
,
ζi =ζ j =ζ
第4章 多自由度体系(续)
¾非经典阻尼阵的构造:
可以分别采用Rayleigh阻尼构造各子结构的阻尼 矩阵,再组合形成体系的总体阻尼阵。
第1章 概述(续)
¾动力自由度 动力计算中为确定运动过程中任意时刻全部质 量的位置所需的独立几何参数的个数。
¾结构离散化方法 ☼ 集中质量法; ☼ 广义坐标法; ☼ 有限元法。
离散化:把无限自由度问题转化为有限自由度的 过程。
第2章 分析动力学基础及 运动方程的建立
第2章 分析动力学基础及运动方程的建立
∑ {u(t)}=
[K ]−1{p(t)}−
{ } Nd
n =1
φ
n
[
1
ωn
2
q&&n (t)
+
2ξn ωn
q&n (t)]
第4章 多自由度体系(续)
¾缺少采用振型叠加法分析结构地震反应的内容
实际上令等效的地震外荷载向量{p(t)}为:
{p(t)}= −[M ]{I}u&&g
则,振型荷载为:
Pn (t) = −{φ}nT [M ]{I}u&&g
当阻尼比 ζ 较小时(工程中),ωD≈ωn,TD≈Tn。
第3章 单自由度体系 (续)
¾临界阻尼(系数)定义:ccr=2mωn=2√(km)
¾阻尼比:ζ=c/ccr,阻尼系数:c=ζ ccr=2mωnζ
⎧ < 1 低阻尼, 结构体系发生振动
ζ
⎪ ⎨
=1
临界阻尼,振动与不振动的分界点
⎪⎩ > 1 过阻尼, 结构体系不发生往复振动
第4章 多自由度体系(续)
¾振型叠加法:
N
{u(t)}= ∑{φ}n qn(t) n =1
M nq&&n (t) + Cnq&n (t) + Knqn (t) = Pn (t), n = 1, 2, L, N
Mn、Cn、Kn、Pn (t) —振型质量、振型阻尼系数、 振型刚度和振型荷载。
Cn = 2ωn M nζ n
η=2ζ( ω ) ωn
η = 2ζ (共振时)
滞变阻尼能量耗散与频率ω无关,符合结构试验规律。
¾结构对周期荷载的反应
利用Fourier级数展开,化任何周期荷载为简谐荷载。
第3章 单自由度体系—对任意荷载的反应
¾单位脉冲反应函数:h(t)。单位脉冲:δ(t) ¾复频反应函数:H(iω),单位复(简谐)荷载 eiωt
作用下结构的反应。
h(t) ←⎯F → H (iω)
¾时域解法:Duhamel积分
u(t) =
∫t 0
p(τ )h(t −τ )dτ
¾频域解法:Fourier变换
∫ u(t) = 1 ∞ H (iω)P(ω)eiωtdω
2π −∞
适用范围:应用了叠加原理,仅适用于线弹性结构结 构体系。
¾离散Fourier变换,快速付氏变换FFT
ζn — 振型阻尼比。
第4章 多自由度体系(续)
¾不满足阻尼正交条件的振型叠加解法:
(1)直接解一个低阶的代数方程组,L<N; (2)用迭代法求解; (3)用复模态法分析。
注意:对比第7章Rayleigh-Rtz法计算缩减的刚度 阵和质量阵的公式与本章采用振型展开法求振 型刚度和振型质量的公式。
第4章 多自由度体系(续)
运动约束法;静力凝聚法;混合方法。
¾重力的影响
¾地基运动的影响
第3章 单自由度体系
第3章 单自由度体系
¾无阻尼自振频率:ωn=√(k/m) ¾无阻尼自振周期:Tn=2π/ ωn
自振周期Tn(或ωn)是结构的固有特性,与振幅大小 无关(线弹性范围内)。 工程频率:fn=1/Tn
¾有阻尼自振频率:ωD=ωn√(1-ζ 2) ¾有阻尼自振周期:TD=Tn/√(1-ζ 2)
¾结构非线性反应计算方法:
用fs=fs(u)代替ku , 用增量运动方程代替全量运动方程(中心差分法除 外)。
¾采用中心差分法求解非线性反应
无需迭代,直接算。
¾采用Newmark—β求解非线性反应
在每一计算时间步内需要迭代求解. ☼ Newton—Raphson法(变刚度迭代法); ☼ 修正的Newton—Raphson法(常刚度迭代法)。
ω1 < ω2 < ω3 < L < ωN 为多自由度结构自振频率,说明结构自由振动时
以固定的频率振动,即以自振(固有)频率振动。
第4章 多自由度体系(续)
分别将结构的自振频率代入运动方程的特征方程 得到与自振频率对应的各阶振型
⎧φ1i ⎫
ωi :
{φ} i
=
⎪⎪⎨⎪φM2i
⎪⎪ ⎬ ⎪
,
i
= 1, 2,L, N
(3)正交归一化。
{ }φ n = {φ}n Mn , Mn = {φn}T [M ]{φ}n, n = 1, 2, L, N
第4章 多自由度体系(续)
¾振型的正交性: 对于N个振型和自振频率
{φ}n , ωn , n = 1,2,L, N
满足正交条件
{φ}mT [M ]{φ}n = 0, m ≠ n
1
[1− (ω /ωn )2 ]2 +[2ζ (ω /ωn )]2
无阻尼:ω→ωn时,位移→∞。
有阻尼 )
接近最大值。
¾位移反应滞后相角φ:
⎧ω ⎪⎨ω
/ ωn / ωn
→ 0, → 1,
⎪⎩ω /ωn → ∞,
φ → 0o φ → 90o φ → 180o
第3章 单自由度体系—对简谐荷载的反应(续)
第3章 单自由度体系—对任意荷载的反应(续)
¾结构地震反应初步
☼(绝对)加速度反应谱:Sa(Tn)=|ü(t)+üg(t)|max
☼(相对)位移反应谱: Sd(Tn)=|u(t)|max 关系式:Sd=Sa/ωn2, ωn2=k/m
Sa是给定的地震荷载形式(比如规范),可用公式: kSd=F=mSa求最大位移反应。 ☼常用反应谱: α=Sa/g-地震影响系数,
☼Newmark-β法:对区间[ti, ti+1]内加速度值的形式给予假 设,在离散时间点上满足运动方程。
☼ Wilson-θ法:一种等效的线性加速度法。
⎧平均加速度法
Newmark-β法可以成为 ⎪⎨线性加速度法
⎪⎩ 中心差分法
β=1 4
β=1 6 (γ= 1)
β=0
2
第5章 结构动力反应数值分析方法(续)
相关文档
最新文档