数学建模,姜启源第十章_统计回归模型
第姜启源数学模型复习总结
第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。
建模的一般方法及其在建模中的应用。
建模的一般步骤(每步的主要内容与问题)。
建模的全过程(框图)4个环节的含义。
模型的特点(技艺性)。
模型分类(表现特征),建模中的能力培养。
数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。
模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。
抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地.数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。
§3实例1:椅子问题:实际问题转换为数学问题的方法:位置用角度,放平问题转化为连续函数的零点问题(连续函数的零点定理)矩形椅子问题:(1)用θ表示椅子对角线AC 与x 轴的夹角,因为假设地面是连续曲面,椅子各点到地面的距离是θ的连续函数。
设相邻的,A B 两点到地面的的距离之和为()f θ,,C D 两点到地面的距离之和为()g θ,令()()()h f g θθθ=-,则()h θ是θ的连续函数。
(2)因为假设地面是相对平坦的,在任一位置至少三只脚着地,不妨设0θ=时,(0)0,g(0)0f >=,(0)(0)(0)0h f g =->。
(3)将椅子旋转π,则,A B 旋转到原来,C D 的位置,,C D 旋转到,A B 的位置,即AB 与CD 的位置互换,因此有()(0)0,()f(0)0f g g ππ===>,因此()()()g(0)f(0)0h f g πππ=-=-<, 即连续函数()h θ在[0,]π两端点异号,由连续函数的介值定理(零点定理),知存在一点*θ使*()0h θ=,即**()()f g θθ=。
数学建模课程教学大纲(可编辑修改word版)
《数学建模》课程教学大纲英文名称:Mathematical Modeling课程编号:适用专业:理工科类(专科)总学时数:30学分:2一、课程的性质、目的与任务本课程是联系数学与实际的桥梁,是数学在各个领域广泛应用的媒介。
通过本课程的教学使学生了解利用数学理论和方法去分析和解决实际问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。
二、课程教学内容及要求第一章建立数学模型(2 学时)1、教学内容数学模型与数学建模、数学建模的基本方法和步骤、数学模型的特点和分类2、重点、难点重点:数学模型与数学建模难点:数学建模的基本方法和步骤3、教学基本要求(1)了解数学模型与数学建模过程。
(2)了解数学建模竞赛规程。
(3)掌握几个简单的智力问题模型。
第二章初等模型(2 学时)1、教学内容双层玻璃窗的功效、动物的身长与体重2、重点、难点重点:初等方法建模的思想与方法难点:初等方法建模的思想与方法3、教学基本要求了解比例模型及其应用。
第三章简单的优化模型(2 学时)1、教学内容存贮模型、最优价格2、重点、难点重点:存贮模型难点:存贮模型教学基本要求(1)掌握利用导数、微分方法建模的思想方法。
(2)能解决简单的经济批量问题和连续问题模型。
第四章数学规划模型(4 学时)1、教学内容线性规划建模、奶制品的生产与销售、接力队的选拔与选课策略、钢管和易拉罐下料2、重点、难点重点:线性规划方法建模难点:线性规划方法建模、Lindo 软件的使用。
3、教学基本要求(1)掌握线性规划建模方法。
(2)了解对偶单纯形的经济意义。
(3)了解 Lindo 和Lingo 数学软件在解决规划问题中的作用。
第五章微分方程模型(4 学时)1、教学内容传染病模型、药物在体内的分布与排除、人口的预测和控制。
2、重点、难点重点:微分方程方法建模难点:微分方程方法建模。
3、教学基本要求(1)掌握微分方程建模的基本方法。
数学模型姜启源 ppt课件
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介
数模学习(姜启源笔记)
天大万门数模写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是~~ 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:一,“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;二,模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;三,用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。
姜启源数学建模资料
姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。
备要付生产准备费,产量大于需求时要付贮存费。
该厂生产能力非常大,即所需数量可在很短时间内产出。
生产能力非常大,即所需数量可在很短时间内产出。
已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。
试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。
),每次产量多少一次(生产周期),每次产量多少,使总费用最小。
不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。
求需求量、准备费、贮存费之间的关系。
<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。
件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。
元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。
元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。
数学模型 姜启源
数学模型
数学模型
精选ppt
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称
学时
36
数学模型与数学建模 Mathematical Modeling
学分 课程类别
3 专业选修课
先修课程
微积分、线性代数、概率论与数理统计
课程简介
本课程是计算机及管理专业的一门专业选修课。也是本科生参加数学建 模竞赛的辅导课程。数学模型是架于数学理论和实际问题之间的桥梁。 数学建模是应用数学解决实际问题的重要手段和途径。本书介绍数学建 模中常用的一些基本概念、理论和典型的数学模型,包括:数据拟合, 网络模型,优化模型,离散模型、随机模型,时间序列预报模型,回归 分析及其试验设计。通过数学模型和数学建模有关问题的论述和模型实 例的介绍,使学生应用数学解决实际问题的能力有所提高。
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
精选ppt
9
《数学模型》 姜启源 主编
第一章 建立数学模型
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌精选握ppt 对象特征 的‘问题’25
《数学建模》课程教学大纲
《数学建模》课程教学大纲课程编号:20811012总学时数:32(理论 32)总学分数:2课程性质:专业基础和专业课程适用专业:数学与应用数学、信息与计算科学一、课程的任务和基本要求:课程的性质和任务:数学建模是数学与应用数学专业、信息与计算数学专业的一门必修课程,是大学数学课程的重要组成部分,它是在数学分析、高等代数、概率论与数理统计等课程基础上开设的重要教学环节,它将数学知识、实际问题与计算机应用有机地结合起来,旨在培养学生运用所学知识解决实际问题的意识和创新思维,激发学生学习数学的兴趣,了解数学广泛的应用领域,提高学生的综合素质和分析问题、解决问题的能力。
课程的基本要求:1、在大学数学基础课的教学内容基础上进一步突出培养学生解决实际问题的能力;2、学会运用数学知识建立实际问题的数学模型并求解,对较复杂的问题能够使用数学软件或编程求解;二、基本内容和要求:(一)建立数学模型内容:(1)初等建模示例:椅子能在不平地面上放稳吗,预报人口增长等;(2)有关数学建模的基本知识。
目的和要求:理解数学模型的意义、内容和方法,掌握建立数学模型的一般步骤。
(二)初等模型内容:(1)建模示例:公平席位分配,双层玻璃窗的功效等;(2)讨论与交流:录音机计数器,商品的包装。
目的和要求:由建模实例进一步了解和熟悉建模的方法和步骤,了解对实际问题的分析、抽象过程,基本掌握用初等方法建立数学模型。
(三)简单的优化模型内容:(1)建模示例:存储模型,森林救火,最优价格等;(2)讨论与交流:冰山运输目的和要求:基本掌握建立静态优化模型的一般方法,会利用微分法解决优化问题。
(四)数学规划模型内容:(1)建模示例:奶制品的生产与销售,汽车生产与原油采购,钢管和易拉罐下料等;(2)讨论与交流:自来水的输送,接力队员的选拔目的和要求:理解规划优化模型的思想与意义,掌握建立规划模型的一般方法,能够利用优化软件求解规划模型的解。
(五)微分方程模型内容:(1)建模示例:传染病模型,战争模型,药物在体内的分布和排除,人口的预测和控制等;(2)讨论与交流:烟雾的扩散和消失目的和要求:基本掌握用微分方程建立动态模型,并能够利用稳定性理论对问题的解进行讨论。
姜启源《大学数学实验》第10章
135
140
柜台高度直方图
平均值
频数表和直方图给出某个范围的状况,
无法直接给出具体值,如确定柜台具体高度 平均值 (mean,简称样本均值)定义为
1 n x xi n i 1
x 115 .26
可作为设计柜台高度的参考值
例:两个班的一次考试成绩
序号
甲班 乙班
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
现象1:甲班平均值:82.75分,乙班平均值:81.75分
结 论:大致表明甲班的平均成绩稍高于乙班 现象2:甲班90分以上7人,但有2人不及格,分数分散 乙班全在73分到90分之间,分数相对集中
考试成绩直方图
14 18 16 12
甲
乙
14 12
10
8
10 8 6
6
4 4 2 2 0 40
0 40
60
P(a X b)
概率密度与分布函数
对于连续随机变量
P(a X b) p( x)dx
a b
概率密度函数(Probability density function,简称 概率密度) : p ( x) 0 p( x)dx 1 概率分布函数(Cumulative distribution function, x 简称分布函数)
100 110 136 97 104 100 95 120 119 99
126
118 105
113
117 95
115
114 117
108
106 109
93
110 140
116
《数学建模》课件:第十章 统计回归模型
回归和拟合比较相近,但并不一样。对拟合而言, 一个Y变量对应一个X变量,而回归分析的一个Y变 量则有可能对应多个X变量。从这个角度说,拟合 也属于回归的一种。
/view/0aa4c90c844769eae009ed7d.html? re=view (回归分析的基本理论及软件实现)
linear(线性): y 0 1 x1 m xm
purequadratic(纯二次):
y 0 1x1 m xm
n
jj
x
2 j
j1
interaction(交叉): y 0 1x1 m xm jk x j xk
1 jkm
quadratic(完全二次): y 0 1x1 m xm jk x j xk
6.80
0.55
9.26
问题分析
注意到牙膏是生活必需品,顾客在购买同类 产品时常常会更在意不同品牌之间的价格差异, 而不是他们价格本身。
因此,在研究各因素对销售量的影响时,用价 格差代替公司销售价格和其他厂家平均价格更为合 适。 下面建立牙膏销售量与价格差、广告费之间的关系 模型。
基本模型
y 10
(1) beta=nlinfit(X,Y,function,beta0) (2) [beta,r,J]=nlinfit(X,Y,function,beta0)
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型; 题 预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、
1
xn1
xn2
《数学建模(一)》课程教学大纲-公选课
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。
数学建模姜启源统计回归模型
区间 [7.8230,8.7636]
yˆ 8.3272 (百万支)
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
区间 [7.8953,8.7592]
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
Stats~ 检验统计量
R2,F, p
R2=0.9054 F=82.9409 p=0.0000
结果分析 y 0 1x1 2 x2 3x22
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进 y 0 1x1 2 x2 3x22
x1和x2对y 的影响独立
参数
0 1
参数估计值 17.3244 1.3070
置信区间 [5.7282 28.9206] [0.6829 1.9311 ]
• 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1 2 29 30
本公司价 格(元) 3.85 3.75 3.80 3.70
数学建模的基本方法 机理分析 测试分析
《数学模型》(第五版)-姜启源 第9章
早产率
H0: q0=q1, H1: q0≠q1
检验结果(α=0.05)
拒绝H0, 接受H1 拒绝H0, 接受H1(t=4.0304) 拒绝H0, 接受H1 接受H0, 拒绝H1(t=0.5663)
• 吸烟孕妇的新生儿体重比不吸烟孕妇的低、且 新生儿体重低的比例高,在统计学上有显著意义.
• 吸烟与不吸烟孕妇孕期和早产率的差别难以肯定 是显著的(若α将接受怀孕期均值相等的假设)
x1
1.0000 0.0809 -0.0534 0.0705 0.0237 -0.0603
x2
1.0000 -0.3510 0.0435 -0.0964 -0.0096
x3
1.0000 -0.0065 0.1473 -0.0678
x4
1.0000 0.4353 0.0175
x5
1.0000 -0.0603
X2
-3.28762 -3.0933 0.0020
X3
-0.00895031 -0.1043 0.9170
X4
1.15497 5.6415 0.0000
X5
0.0498335 1.9910 0.0467
X6
-10 -8 -6 -4 -2
0
2
-8.3939 -8.8248 0.0000
RMSE
16.5
X5
X6
-10 -8
-6
-4
-2
0
2
Coeff. t-stat 0.451168 15.2000 -3.26733 -3.0320 0.104543 1.2775
1.31198 7.1138 0.118183 5.2127
-8.3744 -8.6027
姜启源报告
——《数学模型》(第五版) 简介
dx rx dt
清华大学 姜源
jiangqy@
• 数学建模教材的发展和存在的问题 • 《数学模型》(第五版)的定位与特色
• 《数学模型》(第五版)的内容和课件
预告 姜启源、谢金星、叶俊编写的《数学模型》
max U ( x1 , x2 ,, xn ) s.t.
n
px
i 1
i i
s
诚恳希望提出宝贵意见
谢 谢 大 家!
《数学模型》第五版的内容安排
• 全书共含案例约90个,其中新案例约30个 (包括全国竞赛赛题8个),改编约10个. • 全书共含习题约230个,其中复习题约占1/3, 放在每一节后面,训练题约占2/3,放在每 一章后面. 《数学模型(第五版)习题参考解答》 同时出版.
与教材配套的数字课程
• 拓展案例约60个:来自编者在数学建模、数
• 2011年后建模和实验教材出版的数量渐缓.
数学建模课程和教材存在的问题
• 案例研究是数学建模的主要教学形式,但是 陈旧、偏难的案例对学生的吸引力下降. • 模型求解的数学方法过多,案例成为方法的
应用题,向传统的数学课程和教材靠拢,失
去引入数学建模教学的初衷.
• 成为建模竞赛的培训手段,课程只为参赛者
1987 年 出 版 的 《 数 学模型》(第一版)
数学建模教材的发展
• 1992年开始举办的全国大学生数学建模竞赛 对课程教学和教材建设起了巨大的推动作用. • 竞赛培训内容逐渐成为数学建模教材的重要 组成部分. • 1999年数学实验课程和教材开始出现,2000 年后建模与实验结合的课程和教材逐渐增多. • 2001-2010年是建模和实验教材飞速发展的十 年,这类教材出版了200本以上.
《数学建模》教学大纲
《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。
它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。
通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。
学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。
要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。
不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。
2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。
课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。
除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。
上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。
数学模型第五版姜启源
数学模型第五版姜启源简介数学模型是一门研究数学与实际问题应用的学科。
姜启源教授的《数学模型》系列教材是广大数学爱好者和学习者的宝贵资料。
本文将介绍数学模型第五版姜启源的内容和特点。
内容概述数学模型第五版姜启源这本书主要涵盖了以下方面的内容:1.数学模型的基本概念:介绍数学模型的定义、分类以及数学模型构建的基本步骤。
2.线性规划:介绍线性规划的基本概念、线性规划模型的建立和求解方法,以及线性规划在实际问题中的应用。
3.整数规划:介绍整数规划的基本概念、整数规划模型的建立和求解方法,以及整数规划在实际问题中的应用。
4.图论与网络优化:介绍图论的基本概念、常见图论模型的建立和求解方法,以及图论在实际问题中的应用。
5.随机模型:介绍随机模型的基本概念、常见随机模型的建立和求解方法,以及随机模型在实际问题中的应用。
6.动态规划:介绍动态规划的基本概念、动态规划模型的建立和求解方法,以及动态规划在实际问题中的应用。
特点分析数学模型第五版姜启源具有以下几个特点:综合性本书对数学模型的研究内容进行了系统的整理和,包括线性规划、整数规划、图论与网络优化、随机模型以及动态规划等多个方面。
这使得读者能够从不同角度了解数学模型的应用领域和解决方法。
理论与实践结合本书不仅介绍了数学模型的理论基础,还结合实际问题进行案例分析和求解过程。
通过实际案例的引入,读者能够更好地理解数学模型和解决实际问题的方法。
解题思路明确本书对每一类数学模型都给出了清晰的解题思路和求解方法,从数学模型的建立到求解过程,都有详细的讲解和示例演示。
这有助于读者掌握解题的方法和技巧,提高数学建模能力。
应用广泛性数学模型是一门跨学科的学科,本书所涉及的数学模型方法和应用领域非常广泛,适用于工科、理科以及经济管理等多个领域。
,无论是学生还是研究者,都能从本书中获得实用的知识。
数学模型第五版姜启源是一本内容丰富、方法全面的数学模型教材。
它系统地介绍了数学模型的基本概念、建立方法和求解技巧,以及在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 0 1 x1 2 x2 x
2 3 2
y 0 1 x1 x1
y~被解释变量(因变量) x1, x2~解释变量(回归变量, 自变量)
y 10
9.5 9 8.5 8 7.5 7 5 5.5 6 6.5 7 7.5 x 2
0, 1 , 2 , 3 ~回归系数 ~随机误差(均值为零的
销售 周期 1 2
29 30
3.80 3.70
3.85 4.25
5.80 6.80
0.05 0.55
7.93 9.26
基本模型
y ~公司牙膏销售量 x1~其它厂家与本公司价格差 x2~公司广告费用
y 10
9.5 9 8.5 8 7.5 7 -0.2 0 0.2 0.4 0.6
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
2 ˆ ˆ ˆ ˆ ˆ y 0 1x1 2 x2 3 x2
ˆ 8.2933 (百万支) y
区间 [7.8230,8.7636]
2 ˆ ˆ ˆ ˆ xx ˆ 0 1x1 2 x2 3 x2 y 4 1 2
y的90.54%可由模型确定 p远小于=0.05
2的置信区间包含零点
F远超过F检验的临界值 模型从整体上看成立 x2对因变量y 的 影响不太显著
(右端点距零点很近)
x22项显著
可将x2保留在模型中
销售量预测 y ˆ ˆ x ˆ x ˆ x2 ˆ 0 1 1 2 2 3 2
数学建模的基本方法
10.1 牙膏的销售量 问 题
建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量 收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其它厂家同类牙膏的平均售价
本公司价 格 (元 ) 3.85 3.75 其它厂家 价格(元) 3.80 4.00 广告费用 (百万元) 5.50 6.75 价格差 (元) -0.05 0.25 销售量 (百万支) 7.38 8.51
2 x= [1 x1 x2 x2 ] ~n4数 据矩阵, 第1列为全1向量
输出 b~的估计值
bint~b的置信区间
r ~残差向量y-xb
rint~r的置信区间
alpha(置信水平,0.05) 参数
0 1 2 3
参数估计值 置信区间 17.3244 [5.7282 28.9206] 1.3070 [0.6829 1.9311 ] -3.6956 [-7.4989 0.1077 ] 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0000
ˆ 8.3272(百万支) y
区间 [7.8953,8.7592]
ˆ 略有增加 y
预测区间长度更短
ˆ 与x1,x2关系的比较 两模型 y ˆ x ˆ x ˆ x2 ˆ xx ˆ ˆ x ˆ x ˆ x2 y ˆ ˆ y 0 1 1 2 2 3 2 4 1 2 0 1 1 2 2 3 2
价格差x1=其它厂家价格x3-本公司价格x4 估计x3 调整x4 控制x1 通过x1, x2预测y 控制价格差x1=0.2元,投入广告费x2=650万元
ˆ ˆ x ˆ x ˆ x2 8.2933 (百万支) ˆ y 0 1 1 2 2 3 2
销售量预测区间为 [7.8230,8.7636](置信度95%)
第十章
统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金
10.3 酶促反应
10.4 投资额与国民生产总值和 物价指数
机理分析 测试分析 由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型 回归模型是用统计分析方法建立的最常用的一类模型 • 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
正态分布随机变量)
2 y 0 1 x2 2 x2
MATLAB 统计工具箱 模型求解 2 y 0 1 x1 2 x2 3 x2 由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
输入 y~n维数据向量
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握
知道销售额在 7.83203.7 29(百万元)以上
模型改进
2 y 0 1 x1 2 x2 3 x2
参数估计值 置信区间 x1和x2对y 0 17.3244 [5.7282 28.9206] 的影响独立 1 1.3070 [0.6829 1.9311 ] 2 -3.6956 [-7.4989 0.1077 ] 3 0.3486 [0.0379 0.6594 ] x1和x2对y R2=0.9054 F=82.9409 p=0.0000 的影响有 2 y 0 1 x1 2 x2 3 x2 4 x1 x2
参数
交互作用
参数
0 1 2 3 4
参数估计值 置信区间 29.1133 [13.7013 44.5252] 11.1342 [1.9778 20.2906 ] -7.6080 [-12.6932 -2.5228 ] 0.6712 [0.2538 1.0887 ] -1.4777 [-2.8518 -0.1037 ] R2=0.9209 F=72.7771 p=0.0000
Stats~ 检验统计量 R2,F, p
结果分析
参数
2 y 0 1 x1 2 x2 3 x2
参数估计值 置信区间 0 17.3244 [5.7282 28.9206] 1 1.3070 [0.6829 1.9311 ] 2 -3.6956 [-7.4989 0.1077 ] 3 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0000