2-3-2-4-2-5(黄昆-固体物理)-教案

合集下载

黄昆固体物理课件

黄昆固体物理课件

̯ ҂➘⤵⮳ⵃ⾥ 䆐
҂➘⤵ ⵃ⾥ ҂⮳㐂 ㏳ ㇁ 喈 Ƞ⻪ Ƞ⩤ ͺ䬣Ⱗρҋ⩗̽䓿 㻳 Д䬿 㘬̽⩗䕃⮳ ⼀ȡ
҂ ㆪ
҂喈 喉喚 ̯ ⮳ 㻳 ⮳ ҂喈䪮⼺ 喉喌Һ 喚 ♥⮳ ⯿ȠⅣ Д ϩ ⮳ ҂䩆Ƞ⵴ 䘬 ҂喛
XCH001_055 XCH001_0001_03 CaCO3 䰙㟠㐂 ⮳㐂 喌 XCH001_055 倇⍘䊴 ҂YBaCuO ҂⮳㐂 ȡ
䲍 ҂喈䲍 喉喚 ⮳ ⇐ ⶝⮳ 喈ⴜ⼺ 喉喌 喚⣪⦲Ƞᾐ㘥Ƞ ȡ
XCH001_036_01 XCH001_036_02 Be2O3 䲍 㐂 ȡ
҂喚1984 Shechtmanへϩ ε⩗ 䕎 ∄ ⮳AlMn 䜀͜⮳⩤ 㵼 ͜喌 ⣟ε σ䛼 ⼟⮳ ◨ 喌 ◨⮳ 䨿⼺ ̼ων ҂⮳ 喌 Ϻν ҂ 䲍 ҂ͺ䬣⮳ ⮳⟥ 喌⼟ͩ ȡ
⤵ ҂喚 㐂 㻳 ⮳ ҂喌 ҂喛
䭴 ҂喚 ҂͜ ̼㻳 喌 㻳 喈 喉⮳㗻 ͜ 䛾̼㻳 ⮳ ҂ 䔀ͽ ⮳ ҂ȡ
λ ҂➘⤵⮳ 䓶⼺
҂ 㻳 ⮳ ҄ ⟥ ҂ ⮳ ⼟ ̽ Ѕ➘⤵ 䉗ͺ䬣 ̯ 㖃㈪喛 ҂ ⮳㻳 䘗㻳 ⮳ ȡ
̲ͅ㏙ 喈䄄 ДṜ⤲ ⼞⮳ὐ 㼒䛹 㼒ⴢ⮳ 䉗 㼒⤵䲑喛
ͅ㏙喌䭮㓬ӌ䃓ͩ 㼒ⴢ ҂ ⩠̯ϊ ⮳ȠⰧ ⮳Ƞ 㵻 䲑 ⮳ Ć ⴢć 㻳 䛼 䯵㔻 ⮳ 䔈͙ ⵯ̹喛
Όͅ㏙͜ 喌 㤡 ε⾩䬣◨䭤 䄣喌ằ ε ⮳➨ ȡ
Όͅ㏙ 喛䉨 ≊ 喌⚹ Ƞ 㒆へ⠛⿺ ε ν ҂ 㻱 ҄㐂 ⮳⤵䃩҂㈪喌ͩ䔊̯ₔⵃ⾥ ҂㐂 ⮳㻳 ӊε⤵䃩ӌ 喌 ⼞㉞⮳ 䛾 侻κ Όͅ㏙ϩЛ䔇 㐂ε㠔 䛼㺰⮳㏾侻㻳 Һ ν ҂℃☜⮳ 䮵⣯ 喌 ν䜀 ☜ ⩤ 䉗⮳偾 喍Ҋ 喌ͩε䔊̯ₔε㼒䔈ϊ㏾侻㻳 ⮳ 䉗喌 ⣟ε̯ϊ 䄣ȡ
ͅ㏙ ➨冰 ≊ѕ ⿺ε㏾ ⮳䜀 㜙⩠⩤ 䃩へ喌 ͅ㏙ 喌䔀В➘⤵ ⮳ 喌ҮϩЛ ҂⮳䃓䃵䔊 ε̯͙ ⮳䭥⃤Ƞ 喌X ㏮ ӊεϩㆪⰣ ⿔ ҂ 䘗㐂 ⮳ ȡ

固体物理电子教案黄昆

固体物理电子教案黄昆

固体物理电子教案黄昆教案章节:第一章引言教学目标:1. 了解固体物理的基本概念和研究内容。

2. 掌握固体物理的基本研究方法和手段。

3. 理解固体物理的重要性和在现代科技中的应用。

教学内容:1. 固体物理的基本概念和研究内容:固体物质的性质、晶体结构、电子态等。

2. 固体物理的基本研究方法:实验方法、理论方法和计算方法。

3. 固体物理的重要性和在现代科技中的应用:半导体器件、超导材料、磁性材料等。

教学活动:1. 引入固体物理的概念,引导学生思考固体物质的性质和特点。

2. 通过示例和图片,介绍晶体结构的基本类型和特点。

3. 讲解电子态的概念,引导学生了解固体中电子的分布和行为。

4. 介绍固体物理的基本研究方法,如实验方法、理论方法和计算方法。

5. 通过实际案例,展示固体物理在现代科技中的应用和重要性。

教学评估:1. 进行课堂提问,检查学生对固体物理基本概念的理解。

2. 布置课后作业,要求学生掌握晶体结构的基本类型和特点。

3. 进行小组讨论,让学生展示对固体物理研究方法的理解。

教案章节:第二章晶体结构1. 掌握晶体结构的基本概念和分类。

2. 了解晶体结构的空间点阵和晶胞参数。

3. 理解晶体结构的物理性质和电子态。

教学内容:1. 晶体结构的基本概念:晶体的定义、晶体的特点。

2. 晶体结构的分类:离子晶体、共价晶体、金属晶体、分子晶体。

3. 晶体结构的空间点阵:点阵的定义、点阵的类型。

4. 晶胞参数:晶胞的定义、晶胞的类型。

5. 晶体结构的物理性质和电子态:电性质、热性质、光学性质等。

教学活动:1. 通过示例和图片,引入晶体结构的概念,引导学生了解晶体的特点。

2. 讲解晶体结构的分类,让学生掌握不同类型晶体的特点。

3. 介绍晶体结构的空间点阵,引导学生了解点阵的定义和类型。

4. 讲解晶胞参数的概念,让学生掌握晶胞的定义和类型。

5. 通过示例和图片,介绍晶体结构的物理性质和电子态,引导学生理解其重要性。

教学评估:1. 进行课堂提问,检查学生对晶体结构基本概念的理解。

232425(黄昆固体物理)教案

232425(黄昆固体物理)教案

§ 2.3 金属性结合;§ 2.4 范德瓦耳斯结合;§2.5 元素和化合物晶体结合的规律性1. 教学目的和要求: 通过讲解使学生明白得并把握金属性结合和范德瓦耳斯结合;明白得元素和化合物晶体结合的规律性2.教学重点:金属性结合和范德瓦耳斯结合。

3.教学难点:范德瓦耳斯结合。

4.教学时刻:45分钟。

5.教学方式:PPT文档。

6.作业:学生课后温习。

一.金属性结合(1)金属性结合的概念第I族、第II族元素及过渡元素都是典型的金属晶体,它们的最外层电子一样为1~2个。

组成晶体时每一个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉醉”在由价电子组成的“电子云”中。

如图XCH002_004所示。

这种情形下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑彼此作用的能愈低,表现为原子聚合起来的作用。

(2)金属晶体结合力金属晶体结合力:主若是原子实和电子云之间的静电库仑力,对晶体结构没有特殊的要求,只要求排列最紧密,如此势能最低,结合最稳固。

因此大多数金属具有面心立方结构,即立方密积或六角密积,配位数均为12。

立方密积(Cu、Ag、Au、Al)(面心立方结构)(配位数12)六角密积(Be、Mg、Zn、Cd)体心立方结构(Li、Na、K、Rb、Cs、Mo、W)(配位数8)良好的导电本领,结合能比前面两种晶体要低一些,过渡金属的结合能较大。

晶体的平稳是依托库仑作使劲和必然的排斥力而维持的。

排斥来自两个方面(a) 但体积减小,电子云的密度增大,电子的动能将增加(b) 当原子实彼此接近到必然的距离时,它们的电子云发生显著的重叠,将产生强烈的排斥作用。

金属性结合对原子的排列没有特殊的要求,这使得容易造成原子排列的不标准性,使其具有专门大的范性。

二.范德瓦耳斯结合(1)范德瓦耳斯结合的概念元素周期表中第VIII族(惰性)元素在低温下所结合成的晶体,是典型的非极性分子晶体。

黄昆 固体物理 讲义 第二章

黄昆 固体物理 讲义 第二章

第二章 固体的结合晶体结合的类型 晶体结合的物理本质固体结合的基本形式与固体材料的结构、物理和化学性质有密切联系 § 2.1 离子性结合元素周期表中第I 族碱金属元素(Li 、Na 、K 、Rb 、Cs )与第VII 族的卤素元素(F 、Cl 、Br 、I )化合物(如 NaCl , CsCl ,晶体结构如图XCH001_009_01和XCH001_010所示)所组成的晶体是典型的离子晶体,半导体材料如CdS 、ZnS 等亦可以看成是离子晶体。

1. 离子晶体结合的特点以CsCl 为例,在凝聚成固体时,Cs 原子失去价电子,Cl 获得了电子,形成离子键。

以离子为结合单元,正负离子的电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构;,,,Na K Rb Cs Ne Ar Kr Xe FClBrI++++−−−−⇒⇒⇒⇒离子晶体的模型:可以把正、负离子作为一个刚球来处理;离子晶体的结合力:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。

当排斥力和吸引力相互平衡时,形成稳定的离子晶体; 一种离子的最近邻离子为异性离子;离子晶体的配位数最多只能是8(例如CsCl 晶体);由于离子晶体结合的稳定性导致了它的导电性能差、熔点高、硬度高和膨胀系数小;大多数离子晶体对可见光是透明的,在远红外区有一特征吸收峰。

氯化钠型(NaCl 、KCl 、AgBr 、PbS 、MgO)(配位数6) 氯化铯型(CsCl 、 TlBr 、 TlI)(配位数8)离子结合成分较大的半导体材料ZnS 等(配位数4) 2. 离子晶体结合的性质 1)系统内能的计算晶体内能为所有离子之间的相互吸引库仑能和重叠排斥能之和。

以NaCl 晶体为例,r 为相邻正负离子的距离,一个正离子的平均库仑能:∑++−++321321,,2/122322222102)(4)1('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。

《固体物理》课程教学大纲

《固体物理》课程教学大纲
审核
意见
张金仓
(签名)
上海大学理学院(公章)
年月日
7.教学环境:课堂









教学目的:
固体物理学是物理学中的重要分支,本课程是新材料和新器件技术的基础理论,是物理专业及其相近专业非常重要的基础课、必修课。课程强调对固体物理学的科学方法、物理图象的理解。学生通过本课程的学习要求掌握固体物理学的基本概念、基本模型和方法,了解它们在各类技术中的应用,为进一步学习专业课,为毕业后从事科研和高新技术工作打下坚实的基础。
难点:晶格振动的量子化、声子的概念。
(四)晶体缺陷(4学时)
掌握和理解:
1.缺陷类型,缺陷统计数目
2.热计数目,肖脱基缺陷和夫仑克缺陷。
难点:热缺陷的运动、产生和复合,缺陷扩散的微观机制。
(五)固体电子论基础(10学时)
掌握和理解:
1.电子气的能量状态,电子气的费密能量
十一、了解三维布洛赫定理,进行能带计算的一般方法和步骤。
课程
内容

学时
分配


















(一)晶体结构(12学时)
掌握和理解:
1.晶体特征、空间点阵,晶格的周期性、基矢,原胞、晶胞,晶列、晶面指数
2.倒易点阵,倒格子原胞(布里渊区)
3.晶体的对称性、晶系、布喇菲原胞
4.密堆积、配位数
5.首选教材:《固体物理学》(上)方俊鑫、陆栋上海科学技术科学出版社1980
参考书目:《固体物理学》黄昆人民教育出版社1988

2024年高中物理2.4固体教案新人教版选择性必修第三册

2024年高中物理2.4固体教案新人教版选择性必修第三册
教学难点与重点
1. 教学重点
(1)固体的微观结构:讲解晶体的原子排列、晶格结构以及非晶体的特点,强调晶体结构的规则性和对称性对固体性质的影响。
举例:以二氧化硅晶体为例,说明其晶格结构如何决定其物理性质。
(2)固体的力学性质:介绍固体的弹性、塑性、硬度等概念,强调弹性模量、屈服强度等关键参数。
举例:讲解金属的弹性模量对实际应用的影响,如建筑结构、机械设计等。
答案:
- 弹性:材料在去除外力后能恢复原状的特性。例如,橡胶的弹性使其适用于制造轮胎和减震器。
- 塑性:材料在受到外力作用时能够发生永久变形而不破裂的能力。金属如铜和铝的塑性使其可以通过热加工成型为各种形状。
- 硬度:材料抵抗划痕和压痕的能力。金刚石是自然界最硬的材料之一,常用于切割工具和磨料。
详细补充和说明:
- 准备固体的力学、热学及电学性质相关的图表和数据,用于解释固体的物理性能参数。
- 搜集固体材料在实际应用中的视频资料,如晶体硅在太阳能电池中的应用、金属在建筑结构中的应用等,以增强学生的现实联系感。
- 制作PPT课件,整合以上资源,以便于课堂展示和讲解。
3. 实验器材:
- 准备晶体模型、显微镜等,用于观察晶体结构。
- 在工程中,选择合适的弹性模量材料对于确保结构的安全性和减少变形至关重要。
3. 热导率
- 热导率受材料中声子的散射和传播影响,材料的纯度、晶体缺陷和微观结构都会影响热导率。
- 在热管理设计中,高热导率的材料有助于提高热交换效率,如散热器的设计。
4. 半导体
- 半导体的导电性可以通过掺杂控制,掺杂剂可以是五价元素(如磷)或三价元素(如硼)。
小组讨论:让学生分组讨论固体物理在未来科技发展中的潜在应用和改进方向,并提出创新性的想法或建议。

固体物理教学大纲课程名称固体物理课程性质专业必修课

固体物理教学大纲课程名称固体物理课程性质专业必修课

固体物理教学⼤纲课程名称固体物理课程性质专业必修课《固体物理》教学⼤纲⼀、课程名称:固体物理⼆、课程性质:专业必修课三、课程教学⽬的:(⼀)课程⽬标:通过固体物理学课程的学习,使学⽣树⽴起晶体内原⼦、电⼦等微观粒⼦运动的物理图像及其有关模型,掌握晶体内微观粒⼦的运动规律及其与晶体宏观性能的物理联系,深刻理解晶体宏观性能的微观物理本质,为进⼀步学习和研究固体物理学各种专门问题及相关领域的内容建⽴初步的理论基础。

(⼆)教学⽬标:第⼀章晶体结构【教学⽬标】通过本章的教学,使学⽣了解晶格结构的实例、⾮晶态和准晶态的特征;理解和掌握晶体结构的周期性特征及其描述⽅法;理解和掌握晶体结构的对称性特征及其描述⽅法;理解和掌握倒格⼦的定义及其与正格⼦的关系;熟悉有关晶体结构的基本分析与计算。

借助于多媒体展⽰,使学⽣建⽴起晶体结构特征的直观图像。

第⼆章晶体的结合【教学⽬标】通过本章的教学,使学⽣了解晶体结合⼒的⼀般性质;掌握晶体的结合类型与特征;理解元素和化合物晶体结合的规律性;掌握离⼦晶体的结合能、体积弹性模量的计算;掌握范德⽡⽿斯晶体的结合能、体积弹性模量的计算。

在教学中,能够使学⽣认识到吸引与排斥的⽭盾的差别和对⽴统⼀是认识与理解固体的结合规律与性质的关键,培养学⽣的辩证思维能⼒。

第三章晶格振动与晶体的热学性质【教学⽬标】通过本章的教学,能够使学⽣理解简谐近似、格波概念、声⼦概念;理解玻恩-卡曼边界条件;了解三维格波的⼀般规律、晶格振动的⾮简谐效应;了解确定晶格振动谱的实验⽅法;掌握⼀维单原⼦、双原⼦晶格振动的格波解与⾊散关系;掌握晶格振动模式密度的计算⽅法;理解晶格热容量的量⼦理论、掌握爱因斯坦模型与德拜模型;理解格林爱森近似、掌握晶格状态⽅程。

结合例题分析和习题训练,提⾼学⽣分析问题和解决问题的能⼒。

第四章能带理论【教学⽬标】通过本章的教学,使学⽣能够了解晶体能带理论的基本假设和处理问题的基本思路;理解布洛赫定理及其推论的证明,掌握晶体能带的基本特征;熟悉克龙尼克—潘纳模型的求解与结论;熟悉布⾥渊区、费⽶⾯等基本概念;了解平⾯波⽅法、赝势⽅法;掌握近⾃由电⼦近似⽅法及其结论;掌握紧束缚近似⽅法的运⽤;掌握能态密度的计算⽅法。

黄昆版《固体物理》课件第二章

黄昆版《固体物理》课件第二章

§2.5 共价结合
一、共价键的形成
2 2 H A A VA A A A 2m
2 2 H B B VB B B B 2m
VA、VB: 作用在电子上的库仑势
A和 B: A、B两原子的能级
A、B:归一化原子波函数
黄昆版固体物理课件第二章
第二章 晶体的结合
§2.1 晶体结合的基本类型
§2.2 晶体中粒子相互作用的一般讨论 §2.3 离子晶体的结合能 §2.4 分子晶体的结合能 §2.5 共价结合
§2.1 晶体结合的基本类型
电负性:原子束缚电子的能力(得失电子的难易程度)
离子结合 共价结合 晶体结合的基本类型 (粒子的电负性) 金属结合 分子结合
(平衡时)
0
晶体体积:V = Nv = Nr3 N:晶体中粒子的总数 v:平均每个粒子所占的体积
:体积因子,与晶体结构有关
r:最近邻两粒子间距离 若已知粒子相互作用的具体形式,还可确定几个待 定系数,这样即可将晶体相互作用能的表达式完全确定 下来。
§2.3 离子晶体的结合能
一、AB型离子晶体的结合能
2 2 H i i i VAi VBi i i i 2m
i=1, 2
分子轨道:=c(A+B) , 设 B > A c: 归一化因子, : B原子波函数对分子轨道贡献的权重 因子。若A、B为同种原子,则=±1。
2 2 VA VB c A B c A B 2m
分子晶体是稳定结构的原子或分子之间靠瞬时电偶极矩结合。
典型晶体:惰气 结合力:Van der Waals键

高二物理课《固体》优秀教案

高二物理课《固体》优秀教案

高二物理课《固体》优秀教案一、教学内容本节课选自高二物理教材《固体》章节,主要详细内容包括:固体的基本概念、晶体结构和特性、非晶体特性及其与晶体区别、固体的力学性质和热学性质等。

二、教学目标1. 理解并掌握固体的基本概念、晶体和非晶体的特性及其区别。

2. 学会分析固体的力学性质和热学性质,并能运用相关概念解释实际问题。

3. 培养学生的观察能力、逻辑思维能力和合作学习能力。

三、教学难点与重点教学难点:晶体结构、固体性质的理解与应用。

教学重点:固体基本概念、晶体和非晶体的区别、固体性质的应用。

四、教具与学具准备1. 教具:固体模型、多媒体课件、实验器材等。

2. 学具:笔记本、教材、练习本等。

五、教学过程1. 导入:通过展示日常生活中的固体实例,引发学生对固体性质的思考。

2. 新课导入:讲解固体的基本概念、晶体和非晶体的区别,引导学生学习晶体结构。

3. 实践情景引入:进行固体实验,观察晶体和非晶体的特点,让学生亲身体验。

4. 例题讲解:分析典型例题,讲解固体性质的运用。

5. 随堂练习:布置相关习题,巩固所学知识,并及时解答学生疑问。

6. 小组讨论:分组讨论固体性质在实际生活中的应用,培养学生的合作学习能力。

六、板书设计1. 固体的基本概念2. 晶体结构及特性晶体的定义晶体结构晶体特性3. 非晶体特性及与晶体的区别4. 固体的力学性质和热学性质5. 例题解析6. 课后作业七、作业设计1. 作业题目:(1)简述固体的基本概念及其分类。

(2)分析晶体和非晶体的区别,举例说明。

(3)根据固体性质,解释下列现象:A. 冬天玻璃窗上的冰花是如何形成的?B. 为什么金属丝在拉伸过程中容易断裂?2. 答案:(1)固体:具有一定形状和体积,不易压缩的物质。

分类:晶体、非晶体。

(2)晶体和非晶体的区别:A. 晶体:具有有序的、周期性的原子或分子排列。

B. 非晶体:没有有序的、周期性的原子或分子排列。

举例:水晶(晶体)、玻璃(非晶体)。

3-2(黄昆-固体物理)-教案

3-2(黄昆-固体物理)-教案

§3.2 一维单原子链1. 教学目的: 通过讲解一维单原子链波动方程的求解,使学生理解并掌握格波的概念。

2.教学重点:格波的概念。

3.教学难点:一维单原子链波动方程的建立及求解。

4.讲授时间:90分钟。

5.讲授方式:PPT 文档。

6.作业:3.1。

一. 一维单原子链波动方程的建立绝热近似条件:电子对离子运动的影响,可以通过引入一个均匀分布的负电荷所产生的常量势场近似处理。

这样就将电子的运动和离子的运动分开。

晶格具有周期性,晶格的振动具有波的形式 —— 格波。

格波的研究:先计算原子之间的相互作用力,再根据牛顿第二定律列出原子的微分运动方程,最后求解方程。

一维原子链,每个原子都具有相同的质量m ,平衡时原子间距 —— 晶格常数a 。

如图XCH003_001_01所示。

原子之间的作用力 由于热运动各原子离开了它的平衡位置,n μ代表 第n 个原子离开平衡位置的位移,第n 个原子和 第n +1个原子间的相对位移:n n μμ-+1。

设在平衡位置时,两个原子间的互作用势能是)(a v 产生相对位移n n μμδ-=+1后相互作用势能变成)(δ+a v将)(δ+a v 在平衡位置附近展开,得到:items High drvd dr dv a v a v a a +++=+222)(21)()()(δδδ第一项)(a v 为常数第二项0)(=a drdv为零,在平衡时势能取极小值 当a 很小,即振动很微弱时,势能展式中可只保留到二阶项。

相邻原子间的作用力:βδδ-≈-=d dvf —— 简谐近似 a drvd )(22=β, 恢复力常数原子的运动方程如果只考虑相邻原子的互作用,则第n 个原子所受到的总作用力:)2()()(1111n n n n n n n μμμβμμβμμβ-+=----+-+第n 个原子的运动方程:2112(2)nn n n d m dtμβμμμ+-=+-,(1,2,3,,)n N = 对于每一个原子,都有一个类似上式的运动方程,因此方程的数目和原子数相同。

固体物理教学大纲

固体物理教学大纲

《固体物理》课程教学大纲课程代码:090632008课程英文名称:Solid State Physics课程总学时:40 讲课:40 实验:0 上机:0适用专业:光电信息科学与工程专业大纲编写(修订)时间:2017.10一、大纲使用说明(一)课程的地位及教学目标固体物理学是物理学中内容极丰富、应用极广泛的分支学科。

它可作为高等理工学校光电信息科学与工程专业的专业基础课、选修课。

固体物理学是研究固体的结构及组成粒子之间的相互作用与运动规律的学科,阐明固体的性能和用途,尤其以固态电子论和固体的能带理论为主要内容。

通过固体物理学的整个教学过程,使学生理解晶体结构的基本描述,固体电子论和能带理论,以及实际晶体中的缺陷、杂质、表面和界面对材料性质的影响等,掌握周期性结构的固体材料的常规性质和研究方法,了解固体物理领域的一些新进展。

要求学生深入理解其基本概念,有清楚的物理图象,能够熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。

(二)知识、能力及技能方面的基本要求1.基本知识:掌握晶格结构、晶体的结合、晶格振动与热性质、固体电子理论、半导体、费密面和金属和固体磁性质等部分揭示丰富多彩的固体形态(如金属、绝缘体、半导体等)形成的基本物理规律,并介绍一些重要的实验方法,如X-光衍射,中子散射实验等。

2.基本理论和方法:掌握晶体结构、声子、自由电子和能带理论等固体物理的基本理论,作为凝聚态物理学、现代材料科学和微电子技术的理论基础。

3.基本技能:能够利用所学习的知识对材料研究中的一些现象进行解释,并建立用模型去理解固体性质的思维方式等。

(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;注意培养学生提高利用标准、规范及手册等技术资料的能力。

固体物理学课程教学大纲

固体物理学课程教学大纲

《固体物理学》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;《固体物理学》是物理学院的主干基础课之一,是针对微电子专业的本科生开设于二年级的第二学期的专业基础课,4个学分,课堂讲授72学时。

(二)课程简介、目标与任务;固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。

它是物理学中内容极丰富、应用极广泛的分支学科,同时也是微电子专业本科生学习《半导体物理学》、《半导体材料》和《固体电子器件》等后续课程的基础。

本课程以点阵及晶体对称性为主线,以周期结构中的波动问题贯穿固体物理的整个教学内容。

掌握包括对点阵及晶体对称性的定义、表征和检测,以及在晶体中物质的运动规律。

在掌握知识架构的同时,对固体物理中处理多体问题的方法及其局限性有所了解,并了解一些重要概念的实验探测。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:《力学》《量子物理》《热学》《热力学统计物理》先修课与后续相关课程之间的逻辑关系和内容衔接:《力学》中的处理物体运动的基本规律,尤其是振动与波动内容,是本课程第四章结合周期性晶体结构推演格波性质的基础。

《量子力学》或《量子物理》中的升降算符与谐振子的能量量子化,是提出声子(晶格振动的能量量子)的理论基础。

《量子力学》或《量子物理》中关于散射态的处理,如直角势垒和直角势阱的散射态,是学习电子声子散射和电子杂质散射的理论基础,也是学习电子在周期性势场下行为的基础。

《量子力学》或《量子物理》中关于束缚态的处理,是本课程第八章学习非本征半导体的理论基础。

《原子物理学》或《量子物理》中类氢原子的量子理论基础,原子的壳层结构,电子的自旋,是本课程第三章学习晶体结合的理论基础。

《热力学统计物理》和《热学》的基本原理,气体分子动理论,能量均分定理,内能和热容,平衡态的统计规律,是学习本课程第五章声子热学性质的基础。

固体物理电子教案黄昆

固体物理电子教案黄昆

固体物理电子教案黄昆一、教案概述本教案以黄昆所著《固体物理》为基础,共分为十五个章节。

本教案将按照教材的结构和内容,为学生提供全面、系统的固体物理知识,帮助学生掌握固体物理的基本概念、理论和方法,培养学生的科学思维能力和实践能力。

二、教学目标1. 理解固体物理的基本概念,如晶体、非晶体、电子气等。

2. 掌握固体物理的基本理论,如能带理论、声子理论等。

3. 学会运用固体物理的方法,如计算、实验等,解决实际问题。

4. 提高科学思维能力,培养实践能力和创新精神。

三、教学内容第一章固体物理引论1.1 固体的分类与结构1.2 晶体的基本性质1.3 晶体的生长与制备1.4 晶体学基础第二章晶体的电子结构2.1 电子的基本性质2.2 电子在晶体中的排布2.3 能带理论2.4 半导体与绝缘体的电子结构第三章晶体的力学性质3.1 弹性与塑性3.2 硬度与韧性3.3 晶体塑性变形的基本原理3.4 晶体缺陷与力学性能的关系第四章晶体的高温超导性质4.1 超导现象的发现4.2 超导体的基本性质4.3 高温超导体的发现与发展4.4 高温超导体的微观机制第五章半导体物理5.1 半导体的基本性质5.2 能带结构与掺杂5.3 载流子与迁移率5.4 半导体器件与应用四、教学方法1. 讲授:讲解基本概念、理论和方法,引导学生理解固体物理的基本知识。

2. 讨论:组织学生针对实际问题进行讨论,培养学生的科学思维能力。

3. 实验:安排相应的实验,让学生动手操作,培养实践能力。

4. 作业:布置适量作业,巩固所学知识,提高解题能力。

五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。

2. 期中考试:测试学生对固体物理基本知识的掌握程度。

3. 课程设计:要求学生完成一项固体物理相关的课程设计,培养实践能力。

4. 期末考试:全面测试学生对本课程的掌握程度。

六、晶体生长与制备技术6.1 概述晶体的生长方法6.2 熔融法晶体生长6.3 溶液法晶体生长6.4 化学气相沉积法晶体生长6.5 晶体生长的控制因素与技术挑战七、晶体学基础与应用7.1 晶体学基本概念7.2 晶体的点群与空间群7.3 晶体对称性分析7.4 X射线晶体学基本原理7.5 晶体学的应用与发展八、电子的能带理论8.1 电子的基本性质8.2 电子在晶体中的排布与能带结构8.3 能带理论的基本原理8.4 能带工程与半导体设计8.5 高温超导体的能带理论解释九、晶体的光学性质9.1 光的传播与折射9.2 晶体光学的基本原理9.3 晶体的吸收、发射与散射9.4 晶体光学性质的应用9.5 先进光学材料的研究与发展十、晶体的电性质10.1 晶体中的电荷载流子10.2 载流子的迁移与电导10.3 半导体与绝缘体的电性质10.4 晶体器件的制备与性能10.5 新型电性质材料的研究方向十一、声子与晶体热性质11.1 声子的基本概念11.2 晶体中的声子传播11.3 晶体热容与热导率11.4 晶体热泵与热交换技术11.5 低维晶体材料的热性质研究十二、晶体的磁性质12.1 磁性的基本概念12.2 晶体磁性的微观机制12.3 磁性材料的分类与性能12.4 磁性材料的应用与发展12.5 自旋电子学与新型磁性器件十三、半导体物理与器件13.1 半导体的基本性质13.2 能带结构与掺杂效应13.3 载流子迁移率与扩散13.4 半导体器件的制备与性能13.5 新型半导体器件的研究方向十四、纳米晶体与材料14.1 纳米晶体的基本概念14.2 纳米晶体的制备方法14.3 纳米晶体材料的性能与应用14.4 纳米晶体材料的制备与性能调控14.5 纳米晶体在未来科技中的挑战与机遇十五、固体物理在现代科技中的应用15.1 固体物理在信息技术中的应用15.2 固体物理在能源领域的应用15.3 固体物理在环境科学与技术中的应用15.4 固体物理在生物医学领域的应用15.5 固体物理在先进制造与工业领域的应用十一、声子与晶体热性质11.1 声子的基本概念11.2 晶体中的声子传播11.3 晶体热容与热导率11.4 晶体热泵与热交换技术11.5 低维晶体材料的热性质研究十二、晶体的磁性质12.1 磁性的基本概念12.2 晶体磁性的微观机制12.3 磁性材料的分类与性能12.4 磁性材料的应用与发展12.5 自旋电子学与新型磁性器件十三、半导体物理与器件13.1 半导体的基本性质13.2 能带结构与掺杂效应13.3 载流子迁移率与扩散13.4 半导体器件的制备与性能13.5 新型半导体器件的研究方向十四、纳米晶体与材料14.1 纳米晶体的基本概念14.2 纳米晶体的制备方法14.3 纳米晶体材料的性能与应用14.4 纳米晶体材料的制备与性能调控14.5 纳米晶体在未来科技中的挑战与机遇十五、固体物理在现代科技中的应用15.1 固体物理在信息技术中的应用15.2 固体物理在能源领域的应用15.3 固体物理在环境科学与技术中的应用15.4 固体物理在生物医学领域的应用15.5 固体物理在先进制造与工业领域的应用重点和难点解析教案的重点在于让学生掌握固体物理的基本概念、理论和方法,以及了解固体物理在现代科技领域的应用。

《固体物理学》教学大纲

《固体物理学》教学大纲

《固体物理学》教学大纲课程代码:NANA3012课程名称:固体物理学英文名称:Solid State Physics课程性质:专业核心课学分/学时:4/72考核方式:闭卷考试开课学期:5适用专业:纳米器件技术先修课程:量子力学,大学物理后续课程:光电器件技术开课单位:纳米学院选用教材:《固体物理学》;作者:黄昆原著;韩汝琦改编;出版社:高等教育出版社一、课程目标通过本课程的理论教学和实验训练,使学生具备下列能力:1.掌握固体物理学中的基本概念,能够在科学论文阅读和科学实验中辨识出其应用的固体物理学基本概念。

(支撑毕业要求指标点1-1)2.能根据固体物理学中的基本概念和定理,对固体中常见的物理现象进行分析和定量化求解。

(支撑毕业要求指标点1-2)3. 能根据固体物理学中的基本概念和定理,对固体状态的纳米材料的关键物理性能指标进行评价,进而对纳米科技领域的复杂物理问题进行预测与模拟。

(支撑毕业要求指标点2-1)二、教学内容主要包含四部分:固体的晶体结构及晶体结合;固体的晶格振动;固体的电子结构。

1. 固体的晶体结构的主要内容包括:布拉伐格子,晶体系统分类,晶面及晶向,倒格矢,布里渊区,X光衍射,晶体的结合类型,不同类型的晶体结合中的力及势能特征等。

要求学生:(1)能理解并熟练掌握晶体结构及晶体结合的基本概念;(2)掌握晶面及晶向的相关计算,掌握晶体结合能的相关定理及公式的应用及计算;(3)掌握X光衍射的实验原理,会解释纳米结构的X光衍射图谱。

2. 固体的晶格振动的主要内容包括:一维单原子链的简谐振动,一维双原子链的简谐振动,声子,声子振动的色散关系,声学声子与光学声子,表面声子激元等要求学生:(1)能理解并熟练掌握晶格振动的基本概念,特别是声子;(2)掌握一维单原子链及一维双原子链简谐振动的色散关系的推导;(3)掌握表面声子激元的实验原理,会解释纳米结构的表面声子激元光谱。

3. 固体的电子结构的主要内容包括:布洛赫定理,费米能级,费米面,能带及能带结构,自由电子模型,表面等离激元等要求学生:(1)能理解并熟练掌握固体电子结构的基本概念,特别是费米能级和能带结构;(2)掌握布洛赫定理的推导,费米能级的相关计算;(3)掌握表面等离激元的实验原理,会解释纳米结构的表面等离激元光谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 2.3 金属性结合;§ 2.4 范德瓦耳斯结合;
§2.5 元素和化合物晶体结合的规律性
1. 教学目的和要求: 通过讲解使学生理解并掌握金属性结合和范德
瓦耳斯结合;理解元素和化合物晶体结合的规律性
2.教学重点:金属性结合和范德瓦耳斯结合。

3.教学难点:范德瓦耳斯结合。

4.讲授时间:45分钟。

5.讲授方式:PPT文档。

6.作业:学生课后复习。

一.金属性结合
(1)金属性结合的概念
第I族、第II族元素及过渡
元素都是典型的金属晶体,它们
的最外层电子一般为1~2个。


成晶体时每个原子的最外层电
子为所有原子所共有,因此在结
合成金属晶体时,失去了最外层
(价)电子的原子实“沉浸”在
由价电子组成的“电子云”中。

如图XCH002_004所示。

这种情况下,电子云和原子实之
间存在库仑作用,体积
越小电子云密度越高,库仑相互
作用的能愈低,表现为
原子聚合起来的作用。

(2)金属晶体结合力
金属晶体结合力:主要是原子实和电子云之间的静电库仑力,对晶体结构没有特殊的要求,只要求排列最紧密,这样势能最低,结合最稳定。

因此大多数金属具有面心立方结构,即立方密积或六角密积,配位数均为12。

立方密积(Cu、Ag、Au、Al)(面心立方结构)(配位数12)
六角密积(Be、Mg、Zn、Cd)
体心立方结构(Li、Na、K、Rb、Cs、Mo、W)(配位数8)
良好的导电本领,结合能比前面两种晶体要低一些,过渡金属的结合能较大。

晶体的平衡是依靠库仑作用力和一定的排斥力而维持的。

排斥来自两个方面
(a) 但体积减小,电子云的密度增大,电子的动能将增加
(b) 当原子实相互接近到一定的距离时,它们的电子云发生显著的重叠,将产生强烈的排斥
作用。

金属性结合对原子的排列没有特殊的要求,这使得容易造成原子排列的不规范性,使其具有很大的范性。

二.范德瓦耳斯结合
(1)范德瓦耳斯结合的概念
元素周期表中第VIII 族(惰性)元素在低温下所结合成的晶体,是典型的非极性分子晶体。

为明确起见,我们只介绍这种分子晶体。

惰性元素最外层的电子为8个,具
有球对称的稳定封闭结构。

但在某
一瞬时由于正、负电中心不重合
而使原子呈现出瞬时偶极矩,这就
会使其它原子产生感应极矩。

非极
性分子晶体就是依靠这瞬时偶极
矩的互作用而结合的,这种结合力
是很微弱的。

1873年范德瓦耳斯
(Van der Waals )提出在实际气体
分子中,两个中性分子间存在着
“分子力”。

当时他并没有指出这
力的物理本质,现在知道瞬时偶极
矩引起的力是分子力的一种。

如图
XCH002_005所示。

(2)范德瓦耳斯结合的特征
惰性元素因具有球对称,结合时排列最紧密以使势能最低,所以Ne 、Ar 、Kr 、Xe 的晶体都是面心立方结构。

它们是透明的绝缘体,熔点特低,分别为24K 、84K 、117K 和161K 。

(3)范德瓦耳斯结合的能量
两个惰性原子之间的相互作用势能
两个相距为r 的原子,虽然电子是对称分布,但在某个瞬时具有电偶极矩。

设原子1的瞬时电偶极矩:,在r 处产生的电场31~r p E ,原子2在这个电场的作用下将感应形成偶极矩:E p α=2,α为原子的极化率。

两个电偶极子之间的相互作用能:321r
p p E =∆216p r α= 相互作用能与的平方成正比,对时间的平均值不为零。

这种力随距离增加下降很快,两个原子之间的相互作用很弱。

靠范德瓦耳斯力相互作用结合的两个原子的相互作用势能可以表示为:12
6)(r B r A r u +-=
其中12
r B 为重叠排斥作用势能,A 和B 为经验参数,都是正数。

引入新的参量:σεand
并且有 B A ==1264,4εσεσ
])()[(4)(612r
r r u σ
σε-=,勒纳-琼斯(Lennard-Jones )势 晶体的(N 个原子)总的势能:])()()[4(21)(661212r
A r A N r U σσε-=( 根据势能函数的最小值可以确定晶格常数、结合能和体变模量。

三.元素和化合物晶体结合的规律性
一种晶体采取何种基本结合方式取决于原子束缚电子能力的强弱。

原子的负电性是用来标志原子得失电子能力的物理量。

Mulliken 原子负电性定义:负电性=0.18 (电离能+亲和能)(eV )
电离能:使原子失去一个电子所需要的能量;
亲和能:中性原子吸收一个电子成为负离子所放出的能量。

相关文档
最新文档