青岛版初二上学期知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上学期知识点总结
三角形
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一 基本概念:
三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:
1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.
2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.
3.如图,三角形中,有一个重要的面积等式,即:若C D⊥A B,BE ⊥C A,则CD ·AB=BE·C A.
4.三角形能否成立的条件是:最长边<另两边之和.
5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.
6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如图,双垂图形中,有两个重要的性质,即:
(1) A C·C B=CD ·AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.
9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所
A B
C
E D
A B
C D 1
2
对的边是对应边.
10.等边三角形是特殊的等腰三角形.
11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.
12.符合“AAA”“SSA”条件的三角形不能判定全等.
13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.
14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.
15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.
16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.
17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.
※18.几何重要图形和辅助线:
(1)选取和作辅助线的原则:
①构造特殊图形,使可用的定理增加;
②一举多得;
③聚合题目中的分散条件,转移线段,转移角;
④作辅助线必须符合几何基本作图.
(2)已知角平分线.(若BD是角平分线)
(3)已知三角形中线(若AD是BC的中线)
(4) 已知等腰三角形ABC中,AB=AC
(5)其它
分式
1. 分式的定义:如果A、B 表示两个整式,并且B 中含有字母,那么式子
B
A 叫做分式。
2. 分式有意义、无意义的条件:
分式有意义的条件:分式的分母不等于0; 分式无意义的条件:分式的分母等于0。
3. 分式值为零的条件:
当分式的分子等于0且分母不等于0时,分式的值为0。
(分式的值是在分式有意义的前提下才可以考虑的,所以使分式错误!为0的条件是A=0,且B ≠0.)
(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。首先求出使分子为0的字母的值,再检
验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。)
4. 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (0≠C ),其中A 、B 、C是整式
注意:(1)“C 是一个不等于0的整式”是分式基本性质的一个制约条件; (2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误; (3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一 整式C;
(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:
和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成
C B C A B A ⋅⋅=C
B C A B A ÷÷=
相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分
母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点: (1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;
(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;
(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:
和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫
做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母
分解因式,然后再约分; (2)找公因式的方法:
① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就
是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
易错点:(1)当分子或分母是一个式子时,要看做一个整体,易出现漏乘(或漏除以);
(2)在式子变形中要注意分子与分母的符号变化,一般情况下要把分子或分母前的“—” 放在分数线前;
(3)确定几个分式的最简公分母时,要防止遗漏只在一个分母中出现的字母;
7.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示是:
提示:(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别
相乘,然后约去公因式,化为最简
分式;若分子、分母是多项式,先把分子、分母分解公因式,看能
否约分,然后再相乘;
(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分
子,分母不变
bc ad c d b a d c b a bd ac d c b a =
⋅=÷=⋅;