流动阻力和能量损失资料
《流体力学》第四章 流动阻力和能量损失4.8-4.9
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0
流体力学第四章:流体阻力及能量损失
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
层流与湍流
流动阻力:粘性流体在运动时,阻止剪切变形的力。 一、沿程阻力及沿程水头损失 1、沿程阻力:流体在过流断面沿程不变的 均匀流道中所受的流动阻力。 2、沿程水头损失:克服沿程阻力而消耗的能量。 即: hf=λ×l/d×v2/2g λ-沿程阻力系数 当流态为层流时,对于水: λ=64/Re 对于油: λ=(75~80)/Re 当流态为湍流时, λ=0.021/d0.3
2、流速与损失的实验 (1)临界速度“vk” :两种流动状态 转换时的流速。 (2)上临界速度 :把层流完全转变 为湍流时的临界速度。 (3)下临界速度“vk” :把湍流完全转变 为层流时的临界速度。 由以上实验知:流速与损失有关
即:流动状态与损失有关
二、流态的判别准则数——雷诺数
雷诺数Re=ρvd/μ=vd/υ 临界雷诺数Rek =vk d/υ =2000 判别准则: 当Re≤Rek=2000时, 流动状态为层流。 当Re>Rek=2000时, 流动状态为湍流。
§4-2 层流与湍流、雷诺数 一、雷诺实验
1、流态与流速的实验 (1)、层流:当管内流速较小时,有色水是 一条界限分明的纤流,与周围清水不相混 合,流体质点作平行于管的流动。
(2)、湍流:当管内流速大到一定程度时, 有色水线破裂,向四周扩散,与周围清水 相互混合。
总之,同一流体,同一管道, 但因流速不同,而形成两种性质完 全不同的流态,层流和湍流。速v=12cm/s ,水温t= 10℃。 试求在管长l=20m上的沿程水 头损失。
4、如图所示,有一直径不同的管路,其中流量 Q=15l/s,若管径d1=100mm, d2=75mm, d3=50mm;管 长L1=25m, L2=10m;沿程阻力系数λ1=0.037, λ2=0.039;局部阻力系数;ξ1=0.5,渐缩管ξ2=0.15,阀 门ξ阀门=2.0,管嘴ξ3=0.1(以上ξ值均按局部管件以后的 流速考虑)。试求整个管路的总水头损失及水流需要 的总水头H。
流体力学流动阻力及能量损失
d
4 144 1.( 27 m/s) 2 3600 3.14 0.2
由式
l V 2 64 l V 2 64 1000 1.27 2 hf 16.57 (m 油柱) d 2 g Re d 2 g 1587 .5 0.2 2 9.806
d ,管长 l 【例 】 输送润滑油的管子直径 8mm 15m ,如图所示。 2/s,流量 3/s,求油箱的水头 油的运动黏度 12cmQ m 15 106 (不计局部损失)。 h
第四节 圆管中的层流运动
一、恒定 1.恒定均匀流的沿程水头损失 列1-1和2-2截面的 B Bernoulli 方程: 均匀流, v1=v2
第四节 圆管中的层流运动
一.流动特性 层流(laminar flow),亦称片流:是指流 体质点不相互混杂,流体作有序的成层流动。 特点: (1)有序性。水流呈层状流动,各层的质点互 不混掺,质点作有序的直线运动。 (2)粘性占主要作用,遵循牛顿内摩擦定律。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且雷诺数Re较小时发生。
4Q 4 12104 (m/s) V 2 0 . 239 d 3.14 0.0082
雷诺数
Re Vd 0.239 0.008 127.5 2000 6 1510
为层流列截面1-1和2-2的伯努利方程
图6-12 润滑油管路
pa pa V12 V 22 h 1 0 2 hf g 2g g 2g
第一节
流动阻力及水头损失 的 分类与计算
一.流体阻力和水头损失的分类 沿层阻力: 几何边界不变的管段上产生的 阻力hf 沿层损失: 由沿层阻力引起的能量损失 局部阻力: 几何边界发生急剧变化的管 段上产生的阻力hm 局部损失: 由沿层阻力引起的能量损失 ∑ hl= ∑ hf+ ∑ hm
流体力学第六章 流动阻力及能量损失
第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
流体阻力和能量损失
f
第二节 流动阻力和能量损失
一、 能量损失的两种形式:
2.局部水头损失:
hj
V 2 2g
写成压力损失的形式,则为:
Hj
V
2
2g
式中: L—管长 [米]; d—管径 [米]; V—断面平均流速[米/秒]; λ—沿程阻力系数(无因次参数); ζ—局部阻力系数(无因次参数)。
雷诺数之所以能判别流态,正是因为它反映了惯性力和粘性力 的对比关系。因此,当管中流体流动的雷诺数小于2320时,其粘性 起主导作用,层流稳定。当雷诺数大于2320时,在流动核心部分的 惯性力克服了粘性力的阻滞而产生涡流,掺混现象出现,层流向紊流 转化。
第二节 流动阻力和能量损失
三、单位摩阻R及沿程阻力的计算
第二节 流动阻力和能量损失
二、 层流、紊流和雷诺实验
实际流体运动存在着两种不同的状态,即层流和紊流。这两种流 动状态的沿程损失规律大不相同。 ㈠ 雷诺实验
第二节 流动阻力和能量损失
二、 层流、紊流和雷诺实验
液体沿管轴方向流动时,流束之间或流体层与层之间彼此不相 混杂,质点没有径向的运动,都保持各自的流线运动。这种流动状 态,称为层流运动。 管中流速再稍增加,或有其它外部干扰振动,则有色液体将破 裂、混杂成为一种紊乱状态。这种运动状态,称为紊流运动
第一章 流体力学基础
第二节 流动阻力和能量损失
第二节 流动阻力和能量损失
能量损失一般有两种表示方法: 通常用单位重量流体的能量损失(或称水头损失)h1来表示,用 液柱高度来量度; 用液柱高度来量度;对于气体,则常用单位体积流体的能量损失 (或称压力损失)H损来表示,用压力来量度。 它们之间的关系为: H损=γh1 流体阻力是造成能量损失的原因。 产生阻力的内因是流体的粘性和惯性,外因是固体壁面对流体 的阻滞作用和扰动作用。
空气流动的流体力学原理—流动阻力和能量损失
-1.12
-0.68
-0.27
-0.08
0.11
1.4
-2.55
-1.20
-0.75
-0.30
-0.10
0.10
1.5
-2.62
-1.25
-0.78
-0.32
-0.12
0.09
支
例题1:如下图所示,某三通支管道直径D=100mm,主管道D=150mm,夹角角度为
30°,主管道与支管道风速均为12m/s,求主管道局部阻力和支管道局部阻力。
1.弯头的曲率半径R;
2.转角α;
3.弯头管道参数:如圆形弯头
的直径D方形弯头的宽和高。
附表一、圆形截面弯头阻力系数(部分)
曲率半径
阻力系数
D
1.5D
2D
2.5D
3D
7.5
0.028
0.021
0.018
0.016
0.014
10
0.058
0.044
0.037
0.033
0.029
30
0.110
0.081
. × . × ×
=
= . ×
= . ()
× .
例题2:如下图所示,某矩形弯头参数如下:a=200mm,b=100mm,弯
曲半径R=400mm,弯曲角度为90°,风管内风速v=12m/s,求空气流过此弯
头的局部阻力。
解:1.先计算矩形风管的当量直径D当
L----管道的长度(m)
ρ---空气的密度(kg/m³)
v---空气的平均流速(m/s)
λ---沿程阻力系数,和雷诺数Re有关。
沿程阻力计算公式还可以表示为:Hm=RL
两种液体阻力及能量损失形式
两种液体阻力及能量损失形式一、引言在日常生活中,我们经常会遇到液体阻力和能量损失的现象,特别是在涉及流体力学的领域。
液体阻力是指液体流动过程中对物体运动的阻碍,而能量损失则是指由于液体阻力所引起的能量消耗。
这两种现象在工程、物理学和运动学等领域都具有重要的意义。
本文将介绍两种主要的液体阻力形式和能量损失形式,并探讨它们对物体运动和系统效率的影响。
二、两种液体阻力形式1. 粘滞阻力粘滞阻力是液体流动中最常见的一种形式。
液体的粘滞阻力是由于其内部的分子之间相互作用而产生的,当物体在液体中运动时,粘滞阻力将阻碍其运动,并使其速度减慢。
粘滞阻力的大小与液体的粘度有关,粘度越大,粘滞阻力也越大。
2. 惯性阻力惯性阻力是液体流动中的另一种重要形式。
惯性阻力是由于液体内部的流动速度不均匀而产生的,当物体在液体中高速运动时,惯性阻力会由于液体的流动速度产生较大的压力差,从而产生一个相对于流动方向的反作用力。
惯性阻力的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性阻力也越大。
三、两种能量损失形式1. 粘性耗散粘性耗散是由于液体粘滞阻力引起的能量消耗。
当物体在液体中运动时,液体分子会因为相互摩擦而产生能量损失。
这种能量损失是由液体分子间摩擦产生的,因此与液体粘度和物体的运动速度有关。
粘性耗散会使得物体的动能转化为热能,从而引起能量的损失。
2. 惯性耗散惯性耗散是由于液体惯性阻力引起的能量消耗。
当物体在液体中高速运动时,液体的流动速度不均匀,从而产生了惯性阻力。
这种惯性阻力会导致能量的损失,使得物体的动能转化为其他形式的能量,比如声能等。
惯性耗散的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性耗散也越大。
四、阻力和能量损失对物体运动的影响液体的阻力和能量损失对物体运动具有很大影响。
液体的阻力会对物体的速度和加速度产生影响。
粘滞阻力和惯性阻力都会使物体的速度减小,并且粘滞阻力对速度的减小影响更为显著。
4流体力学第三章流动阻力与能量损失
二、能量损失的计算公式—长期工程经验总结
液体:沿程水头损失(达西公式):
L v hf d 2g
均流速
2
(3-1)
λ—沿程阻力系数;L—管道长度;d—管道直径;v—平
v2 局部水头损失: hj 2g
气体:沿程压强损失: 局部压强损失: 核心问题: 和 的计算。
(3-2)
L v pf d 2
第一节 流动阻力与能量损失的两种 形式
一、流动阻力和能量损失的分类 根据流动的边界条件,能量损失分:沿程能量损失 和局部能量损失 ㈠沿程阻力及沿程能量损失 ◆沿程阻力—当束缚流体流动的固体边壁沿程不变, 流动为均匀流时,流层与流层之间或质点之间只存 在沿程不变的切应力,称为沿程阻力。 ◆沿程能量损失—沿程阻力作功引起的能量损失称 之这沿程能量损失。特点:沿管路长度均匀分布, 即沿程水头损失hf ∝ l。
层流区 不稳定区
紊流区
二、沿程水头损失与流态的关系
层流区:
紊流区:
hf v
hf v
1.75: 2.0
不稳定区:关系不稳定。
三、流动型态的判断标准
●雷诺数: 雷诺等人进一步实验表明:流态不仅和流速v有关, 还和管径d、流体的动力粘度μ和密度ρ有关。 以上四个参数组合成一个无因次数,叫雷诺数,用 Re表示。
㈡时均化
紊流运动要素围绕它上下波动的平均值称为时均值。 时均速度的定义:
u x AT u x Adt
0
T
1 T u x u x dt T 0
瞬时速度
(3-20)
' x
ux ux u
二、紊流阻力
由两部分组成: ①流体各层因时均流速不同而存在相对运动,故 流层间产生因粘滞性所引起的摩擦阻力。 粘性切应力τ1按牛顿内摩擦定律计算。 ②由于脉动现象,流层间质点的动量交换形成的 紊流附加切应力τ2。 其大小由普朗特的混合长度理论计算。见式 (3-21)。 Re较小时,τ1为主要; Re足够大时,τ2为主要。
第四章流动阻力和能量损失
8sin
1
A2 A1
2
2
(5)管道出口(流入大容器)
由管径突然扩大的计算公式知: 当A2>> A1时,1
(6)管道进口
的计算
管道进口的局部阻力系数与进口边缘的情况有关。
(7)各种管件
见附表13
如弯头、三 通、阀门等
三、减少流动阻力的措施
1.减小沿程阻力
(1)减小管长L。 (2)适当增加管径d。 (3)减小管壁的绝对粗糙度K。
① 采用渐变的、平顺的 管道进口。
减小局部阻力
② 采用扩散角较小的渐扩管。
(a)较之(b)局部 阻力小得多
③ 对于截面较大的弯道,加大曲率半径或内装导流叶片。 ④ 三通。
可减阻70%
本章小结
一、沿程损失和局部损失 二、层流与湍流 三、流体在圆管内的速度分布 四、流体在管内流动阻力损失的计算
练习题
当流体在圆形管内流动时,无论是层流还是湍流, 管壁上的流速为零,其它部位的流体质点速度沿径向发生 变化。离开管壁越远,其速度越大,直至管中心处速度最 大。
1.圆形管内层流速度分布
层流一般发生在低流速、小管径的管路中或黏性较大 的机械润滑系统和输油管路中。
实验测得层流速度分布呈抛物线状分布,管中心处的 流体质点速度最大。管内流体的平均流速v等于管中心处最 大流速vmax的二分之一,即:
1. 能量损失由几种形式,如何计算? 2. 流体两种流态,主要区别是什么?如何判断流体的流动状态? 3. 当输水管径一定时,流量增大,雷诺数如何变化?当流量一
定时,管径增大,雷诺数如何变化? 4. 试比较管内层流运动和湍流运动的特征和速度分布。 5. 是否在任何管路中,流量增大则阻力损失增大,流量减小则
风力机空气动力学3.2 流动阻力与损失
能量损失的量纲为长度,工程中也称其为水头损失
第二节 流动阻力与损失
1. 沿程损失:
定义: 发生在缓变流整个流程中的能量损失,是由流体的 粘滞力造成的损失。
计算公式:
pf
l d
V2 2
达西—— 威斯巴赫公式
式中 : ——沿程阻力系数(无量纲)
L ——管子的长度 d ——管子的直径
——管子有效截面上的平均流速
特征: 管道越长,沿程损失越大。
第二节 流动阻力与损失
2. 局部损失:
定义:发生在流动状态急剧变化的急变流中。 流体质点间产生剧烈的能量交换而产生损失。
如阀门、弯管、变形截面等
计算公式:hj
2g
——局部损失系数(无量纲)
一般由实验测定
p f
V2
2
3.总能量损失: hw hf hj
pw ghw p f p j
水力学教学课件 第七章 流动阻力和能量损失
--(2) --(2)
-------(7-------(7-5) (7
上式即为沿程损失与切应力的关系式, 有压圆管(恒定)均匀流基本方程。 上式即为沿程损失与切应力的关系式,称有压圆管(恒定)均匀流基本方程。
的流束: 对于半径为 r 的流束: 得
τ τ0
=
r r0
或
τ = r τ0
r0
r τ =γ J 2
-------(7-------(7-8) (7
-------(7-------(7-9) (7
上式表明在有压圆管均匀流的过流断面上,切应力呈直线分布。 上式表明在有压圆管均匀流的过流断面上,切应力呈直线分布。管壁处切应力为最大 管轴处切应力为零。 值,管轴处切应力为零。 对于明渠恒定均匀流: 对于明渠恒定均匀流:
7-1 流体的两种流动形态——层流和湍流
二、雷诺实验
hf
颜色细流 实验曲线分为三部分: 实验曲线分为三部分: 流动为稳定的层流, (1)AE段 :当 v <vcr 时,流动为稳定的层流, ) 段 m1=1.0, hf =k1υ 。 流动只能是湍流, (2)CD段:当 v> vcr ″ 时,流动只能是湍流, ) 段 m2=1.75~2.0 ,hf =k2 υ 1.75~2.0 。 (3)EBC段:当 vc <v< v″时,流动可能是层 ) 段 ″ 也可能是湍流( 段),取决于水 流(EB段),也可能是湍流(BC段),取决于水 段),也可能是湍流 流的原来状态。 流的原来状态。
一、两种流态(flow regime)的运动特征 两种流态(flow regime)的运动特征 1、层流(Laminar Flow),亦称片流: 层流( Flow) 亦称片流: 片流
流动阻力和能量损失
4
• 我们把水头损失区分为沿程损失与局部损 失,对液流本身来说,仅仅在于造成水头 损失的外在原因有所不同
• 这两种水头损失在液流内部的物理作用方 面没有任何本质上的区别,都是由于液体
的粘滞性作用而引起的。
4-2 液体运动的两种流动型态— 层流、紊流
1.雷诺实验--粘性流体的两种流态 1883年雷诺通过试验揭示了
2、雷诺数的应用 例题 P-75 作业 P-99 7、9
3.雷诺数
vc d
vc Rec d
Re c
vc d
vc d
流动状态不仅和流速有关, 还和管径、动力粘度和密度有关
Rec——临界雷诺数(2000左右) Re=vd/υ——雷诺数(无量纲)
圆管
Re<Rec 层流 Re>Rec 紊流(包括层流向紊流的临界区2000~4000)
• 在后一种流动里,液体质点在沿管轴方向运动过程中互相 混掺,这种流动型态叫做紊流。
• 上面的实验并不只限于圆管,流动的液体也并不只限于水,
因此可以得出下述结论:任何实际流体的流动都 具有两种流动型态,即层流和紊流。
• 按液体质点运动的秩序,分为层流和紊流 1、层流:液体质点井然有序,互相平行的向
z2
p2
g
p1A p2A Al cos 0l2r0 0
hf
2 0l r0
J
hf l
单位长度的沿程损失
0
r0
2
J
18
r
2
J
沿程损失和管 壁切应力之间 的关系
流动阻力与能量损失(粘性流动)
局部能量损失计算
01
02
03
局部阻力系数法
通过查找局部阻力系数表 或经验公式,计算各种管 件和阀门等局部构件的能 量损失。
动量方程
应用动量方程分析流体在 局部构件前后的动量变化, 从而计算局部能量损失。
CFD模拟
利用计算流体动力学 (CFD)方法进行数值模 拟,可以得到详细的流场 信息和局部能量损失分布。
沿程能量损失Hale Waihona Puke 算达西公式经验公式
利用达西公式计算沿程能量损失,该 公式考虑了管道直径、长度、粗糙度 以及流体流速等因素。
根据实验数据拟合得到的经验公式, 可用于特定管道和流体条件下的沿程 能量损失计算。
莫迪图
通过莫迪图查找沿程阻力系数,进而计 算沿程能量损失。这种方法适用于已知 管道相对粗糙度和雷诺数的情况。
06
实验研究与应用前景展望
实验研究方法介绍
流动可视化技术
通过高速摄像、粒子图像测速等手段,直观展示流体在管 道或复杂结构中的流动状态,揭示流动阻力和能量损失的 机理。
流动测量技术
运用压力传感器、流量计等测量设备,精确测量流体在流 动过程中的压力、速度、流量等参数,为分析流动阻力和 能量损失提供数据支持。
04
粘性流动中影响因素探讨
流速对能量损失影响
01
流速增大,流体与管壁之间的摩擦阻力增大,导致能量损失增 加。
02
流速变化会引起流体内部剪切应力的变化,从而影响能量损失。
在层流状态下,流速分布均匀,能量损失相对较小;而在湍流
03
状态下,流速分布不均,能量损失显著增加。
管径对能量损失影响
01
02
03
优化管道截面形状
管内流动阻力与能量损失
第四节 管内流动阻力与能量损失一、流体的两种流动形态1. 雷诺实验流体具有两种不同的流动形态,一种称为滞流或层流,一种称为湍流或紊流。
为了了解流体在管内流动状况及其影响因素,雷诺设计了一个实验可直接观察到两种不同的流动形态。
演示动画v ↑层流(滞流) v ↑↑过渡流 v ↑↑↑湍流(紊流)采用不同的管径d 、流速v 、粘度μ、密度ρ,分别作实验,最后归纳为雷诺数:μρdv =Re 0003.Re s m kg s m kg s m kg sm kg m kgs m m ⋅⋅=⋅⋅⋅⋅==不论采用什么单位制,Re 均无因次,凡是由几个有内在联系的物理量按无因次这个条件组合起来的数群,称为准数。
在化工生产中,不但有圆管,还有非圆形的,对于非圆形管内的流体流动,找一个与直径相当的量,Re 才能算出,为此引入当量直径这个概念。
2、流动类型雷诺准数这个数群,既反映了所包含的各个物理量的内在联系,又说明了流动流型的本质。
所以,流体的流动类型就可以由Re 来判断。
实验证明:Re <2000 为层流 Re >4000湍流 2000<Re<4000 过渡流 3、滞流和湍流的流动特征演示动画润湿周边流通截面积⨯=4e d ()()dD d D d D d e -=+-⨯=ππ4422滞流(或层流)流动特点:●流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;●定态流动时,管内各点的速度沿直径存在一定分布,管壁处流速为零,管中心处流速最大,平均流速为最大流速的1/2。
演示动画湍流流动特点:●流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。
●定态流动时,流体在管中心相当大范围内的流速接近最大流速,管壁处流速为零,平均流速为最大流速的0.8倍。
4、流体流动的边界层流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流速的99%以内的区域边界层流型:层流边界层和湍流边界层边界层厚度:边界层外缘与壁面间的垂直距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章
沿程阻力(Frictional Drag):当限制流动的固体边界 使流体作均匀流动时,流动阻力只有沿程不变的切应力, 该阻力称为沿程阻力。
沿程水头损失(Frictional Head Loss):由沿程阻力 作功而引起的水头损失称为沿程水头损失。
二、局部阻力和局部水头损失
局部阻力(Local Resistance):液流因固体边界急剧改 变而引起速度分布的变化,从而产生的阻力称为局部阻力。
k2
hf
1
2 k1
水
1
2
玻璃管
实验装置
二、雷诺实验
实验曲线分为三部分:
第四章
(1)ab段:当v<vk时,流动为稳定的层流,hf v ;
v (2)ef段:当v> vk,时,流动只能是紊流, hf 1.75~2.0。
(3)bc段:当vk <v< vk, 时,流动可能是层流(bc段),
也可能是紊流(bde段),取决于水流的原来状态。
特点: (1)有序性 水流呈层状流动,各层的质点互不 混掺,质点作有序的直线运动。 (2)粘性占主要作用,遵循牛顿内摩擦定律。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且雷诺数Re 较小时发生。
2、紊流
第四章
紊流(Turbulent),亦称湍流:是指局部速度、压力等 力学量在时间和空间中发生不规则脉动的流体运动。
第四章 流动阻力和能量损失
§4—1 沿程损失和局部损失 §4—2 层流与紊流、雷诺数 §4—3 圆管中的层流运动 §4—4 紊流运动的特征和紊流阻力 §4—5 尼古拉兹实验 §4—6 非圆管的沿程损失 §4—7 局部水头损失
本章重点
1、流体流动阻力和能量损失, 2、雷诺实验及雷诺数; 3、层流与紊流的判别 ; 4、圆管沿程水头损失和局部水头损失的计算 。
流速的1.75~2.0次方成正比 。
既然层流与紊流有各自不同的沿程水头损失的 规律,则计算沿程水头损失时,首先要判别流态。
第四章
判别流态的标准是什么?实验表明流态不仅和流
速有关,还和管径、动力粘滞系数和密度有关,这
lghf
f
de
bc a
层流 过渡区 紊流
o
lgvklgvlkgvk, lgv
实验结果的数学表达式
第四章
lg hf lg k m lg
hf k m
层流: m1=1.0, hf =k1 , 即沿程水头损失与流速一次方成正比。 紊流: m2=1.75~2.0,hf =k2 1.75~2.0 ,即沿程水头损失hf 与
局部水头损失(Local Head Loss):由局部阻力作功 而引起的水头损失称为局部水头损失。
第四章
三、特点
第四章
沿程阻力:主要显示为“摩擦阻力”的性质。
局部阻力:主要是因为固体边界形状突然改变,从 而引起水流内部结构遭受破坏,产生漩涡,以及在局 部阻力之后,水流还要重新调整结构以适应新的均匀 流条件所造成的。
(a)
(b)
(c)
再将 k1逐渐开大,玻璃管中流速逐渐增大,可发现红色 液体开始摇摆,呈波状起伏,如图(b)。
最后在流速达到某一定值时,红色流束便完全破裂,充满 全管,这是液体质点作杂乱无章的运动,见图(c)。
实验表明:
第四章
同一液体在同一管道中流动,当流速不同时,液体 可有两种型态的运动,当流速较小时,各流层的液体 质点是有条不紊的运动,互不混杂,即液体质点的流 向仅有纵向流动而无横向的混杂,这种型态的流动叫 层流。
四、水头损失的计算公式 P92
第四章
水头损失叠加原理:流段两截面间的水头损失为两截 面间的所有沿程损失和所有局部损失的总和。或整个管 路的水头损失等于各管段的沿程损失和局部损失的总和。
hl hf hm
沿程水头损失:
hf
l d
v2 2g
(4-1-1)
局部水头损失:
hm
v2 2g
(4-1-2)
本章难点
1、雷诺实验及雷诺数; 2、层流与紊流的运动特征; 3、层流与紊流的沿程水头损失系数的确定; 4、圆管沿程水头损失和局部水头损失的计算 。
§4—1 沿程损失和局部损失 p91
第四章
• 产生流动阻力和能量损失的根源:
流体的粘性和紊动。 • 水头损失的两种形式
沿程水头损失 局部水头损失
一、沿程阻力和沿程水头损失
特点:
(1)无序性、随机性、有旋性、混合性。
流体质点不再成层流动,而是呈现不规则紊动,
流层间质点相互混掺,为无序的随机运动。
(2)水头损失与流速的1.75~2次方成正比。
(3)在流速较大且雷诺数较大时发生。
(4)紊流受粘性和紊动的共同作用。
二、雷诺压管,由能量方程, 测压管的液面差就是1、2断面的沿程水头损失。通过 调节流量就可以得到沿程水头损失与平均流速的关系 曲线,如图4-3. P93
速变为紊流时称为上临界流速 vk ;紊流减速变层流时
称为下临界流速 vk 。
实验表明,上临界流速 vk 不固定;下临界流速 vk 却不变,以后所指的临界流速 是下临界流速 vk
1、层流
第四章
层流(Laminar Flow),亦称片流:是指流体质点不 相互混杂,流线作有条不紊的有序的、有规则的流动。
英国学者雷诺在1883年用雷诺实验揭示了液体运动存 在着两种不同的的型态,层流和紊流。
k2
hf
1
2 k1
水
1
2
玻璃管
实验装置
如图所示实验装置,先将容器装满液体,使液面保持 稳定,将阀k1徐徐开启,液体自玻璃管中流出,再将红 色液体的阀门k2打开,可以看到在玻璃管中有一条细直 而鲜明的带色流速,它不与透明液体混杂,如图(a)。
p 用压强损失表示: f
l v2 d 2 λ—沿程阻力系数;
pm
v2
2
ζ—局部阻力系数;
请问
1、水头损失有哪些类型? 产生的原因和影响因素是否相同?
否;粘性,固体边界形状
第四章
2、你是否知道水头损失的计算公式?
3、何谓沿程阻力?何谓局部阻力?
§4—2 层流与紊流、雷诺数 p92
第四章
一、两种流态的运动特征
当流速较大时,各流层的液体质点作杂乱无章,相 互混渗的无规律的流动,即液体质点不仅有纵向运动, 而且也有横向的运动。这种型态的运动叫紊流。
第四章
当实验以相反的程序进行时,则观察到的现象就以相 反的程序而重演,但在紊流变为层流时的流速数值要比 层流变紊流时小。
液体运动状态改变点的流速称为临界流速。层流加