数学建模第二章非线性规划
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
非线性规划和多目标规划模型数学建模

进一步考虑到角度的周期性,不碰撞的约束条件可写成:
ij i'jij 2ij
第5讲 非线性规划和多目标模型
最终,原非线性规划问题转化为
6
min i
iji'j 1 2 ( i ij) i2 6 1 , i ij,1i, 2,j,i,j , 61 ,2 , ,6
,
vsinyi0i'
,if
i'
3
2
,tani'
yi0 xi0
or 3
2
i'
2, tani'
yi0 Dxi0
(2)计算任意飞机在t时刻两者的距离:
d ij(i i,j j,t)2 (x i0 v tc o s (i i) x 0 j v tc o s (j j))2 (y i0 v ts in (i i) y 0 j v ts in (j j))2
s . t .
6
m in i i 1
d i j(i i,j j,t ) 8i j
i
6
目标函数也可以定义为
minmax 1i6
i
第5讲 非线性规划和多目标模型
我们来简单看一下其复杂程度
(1)区域内飞行时间:假设飞行角度为θi ’= θi + Δ θi
vDcosxi0i'
,if
0 i'
2
,
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。
非线性规划ppt课件

g3(x) x1 x2 x3 0
;
20
一维搜索方法
目标函数为单变量的非线性
规划问题称为一维搜索问题
min t0 (0ttmax )
其中 t R 。
(t)
➢精确一维搜索方法 0.618法 Newton法
➢非精确一维搜索方法 Goldstein法 Armijo法
;
21
0.618法(近似黄金分割法)
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个
领域 N ( x* ) x Rn x x* ( 0, R) ,使
f (x* ) f (x), x N (x* ) X ,
则称 x* 是(MP)的局部最优解或局部极小点,称 f ( x* ) 是(MP)的局部
函数(t) 称为在[a,b]上是单谷的,如果存在一个 t * [a, b] ,使得(t) 在[a, t * ]上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为(t) 的单 谷区间。
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ;
第 2 步 计算最初两个探索点
t1 a 0.382(b a) b 0.618(b a)
;
22
0.618法例题
• 例4.3.1 用0.618法求解
min(t) t3 2t 1 t0
(t) 的单谷区间为[0,3], 0.5
解答
例4.3.1解答 • 迭换换代tbtb 过程0311..62..∧✓18可0036145436481由-00下101.2.∧...0✓871110650431表48611 给0-0100.2.∨...0✓1470出2064308168821 --000100...∨...00✓4178376340791868681 01..7140486 a2112a
数学建摸优秀讲座之非线性规划

D X | gi X 0,hj X 0,X En
问题(1)可简记为 min f X . X D
定义2 对于问题(1),设 X * D,若存在 0 ,使得对一切
X D,且 X X * ,都有 f X * f X ,则称X*是f(X)在D上的
局部极小值点(局部最优解).特别地当 X X*时,若 f X * f X ,
函数,简记:
f : E n E l ,gi : E n E l ,hj : E n E l
其它情况: 求目标函数的最大值或约束条件为小于等于零 的情况,都可通过取其相反数化为上述一般形式.
定义1 把满足问题(1)中条件的解 X ( En )称为可行解(或可行
点),所有可行点的集合称为可行集(或可行域).记为D.即
则称X*是f(X)在D上的严格局部极小值点(严格局部最优解).
定义3 对于问题(1),设 X * D ,对任意的X D ,都有 f X * f X
则称X*是f(X)在D上的全局极小值点(全局最优解).特别地当
X X* 时,若f X * f X ,则称X*是f(X)在D上的严格全局极小值点
(1) x=fmincon(@fun,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,lb,ub)
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,lb,ub,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
.hgji((XX
) )
0 0
i j
1,2,...,m; 1,2,...,l.
数学建模非线性规划

其一为SUMT外点法,其二为SUMT内点
法.
5
SUTM外点法
对一般的非线性规划: min f X
s.t.hgji
X X
0 0
i 1,2,..., m; j 1,2,..., l.
(1)
m
l
可设:TX , M f X M min0, gi X 2 M hj X 2 (2)
z
(
x1,
x2
)
1 1
-21
x1 x2
2 6
T
x1 x2
2、 输入命令:
s.t.
1 1
21
x1 x2
2 2
0 0
x1 x2
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
性约束条件.因为线性近似通常只在展开点附近近似程度较
高,故需要对变量的取值范围加以限制,所增加的约束条件是:
xj
x
k j
k j
j 1,, n
求解该线性规划问题,得到最优解X k1 ;
(4) 检验X k1 点对原约束是否可行。若X k1 对原约束可行,
则转步骤(5);否则,缩小步长限制,令
k j
k j
7. [x,fval,exitflag]=quaprog(...);
8. [x,fval,exitflag,output]=quaprog(...);
17
例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22
非线性规划模型

进行分配,因而存在部分 DVD 的两次被租赁,但因为是处理 同一份订单,因而不存在会员的第二次租赁.
基于这个假设,为了最小化购买量,我们在允许当 前某些会员无法被满足租赁要求,让其等待,利用部分 会员还回的 DVD 对其进行租赁.
根据问题一,我们认为,一个月中每张 DVD 有 0.6 的概率被租赁两次,0.4 的概率被租赁一次。即在二次 租赁的情况下,每张 DVD 相当于发挥了0.6 2 0.4 1.6张 DVD 的作用.
hi
第i种油的每单位的存储费用
ti
第i种油的每单位的存储空间
T
总存储公式
由历史数据得到的经验公式为 :
min
f
(x1, x2 )
a1b1 x1
h1x1 2
a2b2 x2
h2 x2 2
s.t. g(x1, x2 ) t1x1 t2x2 T
且提供数据如表5所示:
表5 数据表
石油的
例 8.(生产计划问题)某厂生产三种布料 A1, A2, A3, 该厂两班生产,每周生产时间为 80h,能耗不得超过 160t 标准煤,其它数据如下表:
布料 生产数量( m/ h ) 利润( 元 / m)
A1
400
0.15
A2
510
0.13
A3
360
0.20
最大销售量( m / 周) 40000 51000 30000
种类
ai
bi
hi
ti
1
9
3
0.50
2
2
4
5
0.20
4
已知总存储空间 T 24
代入数据后得到的模型为:
min
f
(x1, x2 )
非线性规划和多目标规划模型数学建模

30
1200
690 720
170
520
88
70
S6
110 62
A15
500
1100
202
S1
42
20
12
420
462 S5 10
70
A13
10
220
210
A12
A14
195
31
306
480
A9
A10 300
A11
S1~S7 钢管厂
680
1150
5
10
201 A8
铁路
450
3 104
A1
600 80
2 750
第5讲 非线性规划和多目标模型 飞行管理视频1.wmv
第5讲 非线性规划和多目标模型
模型建立与求解
模型一:设第 i 架飞机在调整时的 方向角为θi ,调
整角度为Δ θi ( i =1,2,…,6)。任意两架飞机在区 域内的t时刻最短距离为dij(θi , θj , t),那么问题的非线性 规划模型为
第5讲 非线性规划和多目标规划模型
第5讲 非线性规划和多目标模型
【主要内容】 介绍非线性规划模型和多目标规划模型的 主要特点和求解。
【主要目的】 了解非线性规划问题和多目标规划问题的 建模与求解,重点在模型的建立与结果的分析
` 第5讲 非线性规划和多目标模型
非线性规划模型 (Nonlinear Programming)
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。
非线性规划数学建模

投资组合X=(x1,x2,…,xn)的风险为:
Q(X )
1 T
T
[Rk ( X )
k 1
R( X )]2
1 T
T
[
k 1
8 j 1
x j rjk
1 TT k 1源自8 j 1x j rjk ]2
1 T 8
2
T
k 1
xj
j 1
rjk rj
组合投资
引例
双目标: 最大化利润,最小化风险
2.函数fmincon的具体用法
约束非线性规划情形 调用格式: [x,fval]=fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@con) 标准模型:
Min f(X) s.t. G1(X) ≤0, G2(X)=0 (非线性约束)
AX ≤b, Aeq.X=beq, (线性约束) lb ≤X ≤ub
G=(x(1)-1)^2 - x(2); 问题的分析:设投资的期限是一年,不妨设投资总数为1个单位,用于第i项投资的资金比例为xi , X=(x1,x2,…,xn)称为投资组合向量.
(9x919–71; )f投2va-l x=资21.≤0总额为ai万元,收益总额为ci万元。
每个投资项目的收益率可以看成一个随机变量,其均值可以用样本均值(历史均值)来近似. A=[ones(1,6),zeros(1,6);zeros(1,6),ones(1,6)]; b=[20;20];
半无限极小化
linprog
线性规划
quadprog
二次规划
MATLAB软件求解
1.函数fminunc、 fminsearch的具体用法
无约束非线性规划情形 标准形式 : Min F(X) MATLAB求解步骤 ① 首先建立一个函数M文件,如fun.m ② 调用格式: ③ [X, fval] = fminunc(‘fun’, X0, options) 或 [X, fval] = fminsearch(‘fun’, X0, options)
数学建模:模型---非线性模型求解

点(严格全局最优 罚函数法
SUTM外点法 SUTM内点法(障碍罚函数法)
2. 近似规划法
返回
罚函数法
罚函数法基本思想是通过构造罚函数把 约束问题转化为一系列无约束最优化问题, 进而用无约束最优化方法去求解.这类方法 称为序列无约束最小化方法.简称为SUMT 法.
数,简记: f : Rn R1, gi : Rn R1, h j : Rn R1
其它情况: 求目标函数的最大值,或约束条件小于等于零 两种情况,都可通过取其相反数化为上述一般形式.
定义1 把满足问题(1)中条件的解 X ( Rn )称为可行解(或可行
点),所有可行点的集合称为可行集(或可行域).记为D.即
返回(3).
近似规划法
近似规划法的基本思想:将问题(3)中的目标函数 f X 和约束条件 gi X 0 (i =1,...,m); hj X = 0 (j =1, ,l)
近似为线性函数,并对变量的取值范围加以限制,从 而得到一个近似线性规划问题,再用单纯形法求解之, 把其符合原始条件的最优解作为(3)的解的近似.
SUTM外点法(罚函数法)的迭代步骤
1.任意给定初始点 X0,取M1>1,给定允许误差 0,令k=1;
2.求无约束极值问题 min
minT
X R n
X,M
=
T
(
X
k
,
X Rn
Mk )
T
;
X
,
M
的最优解,设Xk=X(Mk),即
3.若存在 i 1 i m ,使 gi X k ,则取Mk>M(Mk1 = M, = 10),
2
s.t. AX≤b
Aeq X = beq
VLB≤X≤VUB
非线性规划课件

②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。
非线性规划的基本概念和基本原理优秀课件

解: a1150
5 2 260
2 6
5 2 2
A 2 6 0 800 A负定
2 0 4
17
❖ 例:判定正定性
5 2 2
A
2
6
0
2 0 4
0 1 1 B 1 0 3
1 3 0
解: b11 0
01 1 0
B不 定
10
18
❖ 作业: ❖ P200 4.4(1)
19
7.2 无约束问题的极值条件
gj(X) 0 (j=1,2….l) X En f(X) hi(X) gj(X) 为En上的实函数。 或
mifn(x) 1)( 目标函数 gj(x)0 ,j1,2,,l 2) (约束条件
6
二、基本概念
1、全局极值和局部极值来自f ( X )为目标函数,S 为可行域。若存在 X* S ,XS,都 有 f(X) f(X*),则称 X * 为该问题的全局极小点,
则称X En 为(P)的一个可行解。 记(P)的所有可行解的集合为D, D称为(P)可行域。
9
定义 X*称为(P)的一个(整体)最优解,如 果X* D,满足
f(X) f(X*), X D。
定义 X*称为(P)的一个(局部)最优解,如 果X* D,且存在一个X*的邻域 N(X* ,)= X En X- X* < , >0 满足
负定:特征值<0; Ai <0(i为奇), Ai >0(i为偶)
半负定:特征值≤0; detA=0,Ai ≤0(i为奇), Ai ≥0(i为偶)
不定:特征值有> 0及< 0;除了上述情况外即为不 定。
16
❖ 例:判定正定性
5 2 2
非线性规划问题的求解方法

运行输出:
最优解 1.00012815099165 -0.00000145071779
k= 33
练习题:
1、用外点法求解下列模型
min( x12 2x22 ) s.t. x1 x2 1
2、将例子程序改写为一个较为通用的罚函数 法程序。(考虑要提供哪些参数)
2. 内点法(障碍函数法)
min f (x) s.t. gi (x) 0,i 1,2,, m
第二步:求 (k) 最优的目标函数
function r=fungetlamada(lamada) %关于lamada的一元函数,求最优步长 global x0 d=fun1gra(x0); r=2*(x0(1)-lamada*d(1))^2+(x0(2)lamada*d(2))^2; %注意负号表示是负梯度
a 1, b 1 ,a,b 为常数,通常取 a=b=2。
算法步骤
(1)给定初始点 x(0),初始罚因子 (1) , 放大系数 c>1;允许误差 e>0,设置 k=1;
(2)以 x(k-1)作为搜索初始点,求解无约束规划问题 min f (x) P(x) ,令 x(k)为所求极小点。
lamada=fminsearch(‘fungetlamada’,la mada);%求最优步长lamada
x0=x0-lamada*fun1gra(x0);%计算x0 d=fun1gra(x0);%计算梯度 k=k+1;%迭代次数
end
disp('x='),disp(x0),disp('k='),disp (k),disp('funobj='),disp(2*x0(1)^2+ x0(2)^2)
《非线性规划模型》课件

一般形式的非线性规划
一般形式的非线性规划同时包含等式约束和不等式约束,目标函数和约束条 件均为非线性。
非线性规划的求解方法
1
牛顿法
通过使用二阶导数信息ቤተ መጻሕፍቲ ባይዱ迭代逼近最优解。
2
梯度下降法
利用目标函数梯度方向确定下降方向,逐步逼近最优解。
3
共轭梯度法
结合梯度信息,迭代快速逼近最优解。
粒子群算法及其应用
多解性
非线性规划模型可能存在多 个最优解,需要综合考虑问 题的不同方面。
计算复杂度
非线性规划求解过程通常需 要使用迭代算法,计算时间 较长。
不等式约束的非线性规划
当目标函数和约束条件都包含不等式关系时,我们称之为不等式约束的非线 性规划。
等式约束的非线性规划
当约束条件中包含等式关系,但目标函数仍为非线性函数时,我们称之为等 式约束的非线性规划。
《非线性规划模型》PPT 课件
非线性规划是一种优化问题求解方法,本课件将介绍非线性规划的定义、特 点以及不同约束形式下的求解方法,展示非线性规划在各个领域中的应用案 例。
什么是非线性规划
非线性规划是一种优化问题的求解方法,它考虑目标函数和约束条件为非线 性的情况。
非线性规划的特点
复杂性
非线性规划模型通常比线性 规划更加复杂,涉及更多变 量和限制条件。
粒子群算法模拟群体行为,通过协作和随机搜索找到最优解,广泛应用于非 线性规划问题。
遗传算法及其应用
遗传算法模拟生物进化过程,通过选择、交叉和变异等操作找到最优解,在非线性规划中有着广泛的应用。
数学建模第二章 非线性规划

数学建模
线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行 域的边界上达到(特别是可行域的顶点上达到);而非线 性规划的最优解(如果最优解存在)则可能在其可行域的 任意一点达到。 3.1.2 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式
数学建模
数学建模
解 设投资决策变量为
则投资总额为
,投资总收益为
因为该公司至少要对一个项目投资,并且总的投资金 额不能超过总资金A ,故有限制条件
由于) xi (i = 1,…. , n 只取值0 或1,所以还有
数学建模
最佳投资方案应是投资额最小而总收益最大的方案, 所以这个最佳投资决策问题归结为总资金以及决策变量 (取0 或1)的限制条件下,极大化总收益和总投资之比。 因此,其数学模型为:
就可以求得当x1=0.5522, x2=1.2033, x3=0.9478 时,最小 值 y = 10.6511 。
3.2 Matlab 求无约束极值问题 3.2.2 无约束极值问题的数值解 在Matlab 工具箱中,用于求解无约束极值问题的函数有 fminunc 和fminsearch,用法介绍如下。
数学建模
例2 求下列非线性规划
数学建模
解 (i)%编写M 文件fun1.m 定义目标函数
function f=fun1(x); f=sum(x.^2)+8;
(ii)编写M文件fun2.m定义非线性约束条件 function [g,h]=fun2(x); G=-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20; %非线性不等式约束
h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3; %非线性等式约束
数学建模第四版习题答案

数学建模第四版习题答案数学建模是一门应用数学的学科,通过数学方法解决实际问题。
《数学建模(第四版)》是一本经典的教材,其中的习题是学生巩固知识和提高能力的重要练习。
本文将对《数学建模(第四版)》部分习题进行解答和讨论。
第一章是数学建模的基础知识。
习题1.1要求解释什么是数学建模,以及它在现实生活中的应用。
数学建模是将实际问题转化为数学问题,通过数学方法进行求解和分析。
它在工程、经济、环境等领域都有广泛的应用,如物流优化、金融风险评估等。
第二章是线性规划问题。
习题2.3要求利用线性规划方法解决一个生产计划问题。
假设某工厂有两种产品A和B,每种产品的生产需要不同的资源和时间。
通过建立数学模型,可以确定最佳的生产计划,以最大化利润或最小化成本。
第三章是整数规划问题。
习题3.2要求解决一个装载问题。
假设有一辆货车和若干货物,每个货物有不同的重量和体积。
货车的载重和容积有限,需要确定如何装载货物,使得装载量最大化。
通过整数规划方法,可以得到最优的装载方案。
第四章是非线性规划问题。
习题4.1要求求解一个最优化问题。
假设有一家公司要选择最佳的投资组合,以最大化收益。
通过建立数学模型,并应用非线性规划方法,可以确定最佳的投资策略。
第五章是动态规划问题。
习题5.3要求解决一个路径规划问题。
假设有一个迷宫,求从起点到终点的最短路径。
通过动态规划方法,可以逐步确定最优的路径,以及到达每个位置所需的最小代价。
第六章是图论问题。
习题6.2要求解决一个旅行商问题。
假设有若干个城市,旅行商需要依次访问每个城市,并返回起点城市。
通过建立图模型,并应用图论算法,可以确定最短的旅行路线,以及访问每个城市的顺序。
第七章是随机过程问题。
习题7.1要求求解一个排队论问题。
假设有若干个顾客到达某个服务点,服务点只能同时为一个顾客提供服务。
通过建立排队模型,并应用随机过程理论,可以确定顾客等待时间的分布,以及服务点的利用率。
总之,《数学建模(第四版)》的习题涵盖了数学建模的各个方面,从基础知识到高级应用,从线性规划到随机过程。
数学建模线性和非线性规划

George B. Dantzig
• George B. Dantzig(19142005),美国人,线性规划单 纯形法的创始人,被誉为” 线性规划之父”.美国科学 院三院院士,美国军方数学 顾问,教授.并以其名字设立 Dantzig奖.数学规划的三大 创始人之一.
• 目的是什么? • 有哪些重要的因素? • 这些因素和你的目标之间有什么样的关系?
二,优化问题的表述
• 目标函数 对应决策者而言,对其有利的程度必须定量的测度, 在
商业应用中,有效性的测度经常是利润或者成本, 但对于 政府,更经常的使用投入产出率来测度.
表示有效性测度的经常称为目标函数.目标函数要表出 测度的有效性, 必须说明测度和导致测度改变的变量之间 的关系. 系统变量分为决策变量和参数.决策变量是指能由 决策者直接控制的变量. 而参数是指不能由决策者决定的 量.实际上,数学模型很少有能表达变量和有效性测度之 间的精确关系的. 实际上,运筹学分析者的任务就是找出 对测度有最重要影响的变量 然后找出这些变量和测度之间 的数学关系.这个数学关系也就是目标函数.
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5
6.5 7.75
d
3
5
4
7
6
11
二,优化问题建模的基本步骤介绍
在我们的生活中,始终有这样的问题:为 了一定的目的做一些事情,我们可能要考虑 有哪些重要的因素,这些因素和要完成的目 标之间有什么样的关系.也就是说,我们在做 一个决定时,
建立数学模型
① 决策变量:在混合饲料中,每天所需第j种饲料的 磅数xj,j = 1,2,3,4,5;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 非线性规划
数学建模
3.1 非线性规划 3.1.1 非线性规划的实例与定义
如果目标函数或约束条件中包含非线性函数,就称这种规 划问题为非线性规划问题。,非线性规划目前还没有适于各 种问题的一般算法,各个方法都有自己特定的适用范围。
下面通过实例归纳出非线性规划数学模型的一般形式
例1 (投资决策问题)某企业有n 个项目可供选择投资, 并且至少要对其中一个项目投资。已知该企业拥有总资金 A 元,投资于第i ( i = 1,….,n) 个项目需花资金 ai元,并预 计可收益 bi元。试选择最佳投资方案。
LB≤ x≤UB 其中 f (x ) 是标量函数, Beq , Aeq, B, A 是相应维数的矩 阵和向量, C (x), Ceq ( x )是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OP TIONS)
数学建模
就可以求得当x1=0.5522, x2=1.2033, x3=0.9478 时,最小 值 y = 10.6511 。
3.2 Matlab 求无约束极值问题 3.2.2 无约束极值问题的数值解
在Matlab 工具箱中,用于求解无约束极值问题的函数有 fminunc 和fminsearch,用法介绍如下。
数学建模
上面例题是在一组等式或不等式的约束下,求一个函数 的最大值(或最小值)问题,其中至少有一个非线性函数, 这类问题称之为非线性规划问题。
可概括为一般形式
其中x =[x1….. xn ] T 称为模型的决策变量,f 称为目标函数, g i ( i =1,….P ) 和) hj (j =1,…..q ) 称为约束函数。另外, 0 ) g i(x )=0 ( i =1,….P )称为等式约束, hj(x) ≤0 (j =1,…..q )称 为不等式的约束。
数学建模
线性规划与非线性规划的区别
如果线性规划的最优解存在,其最优解只能在其可行 域的边界上达到(特别是可行域的顶点上达到);而非线 性规划的最优解(如果最优解存在)则可能在其可行域的 任意一点达到。
3.1.2 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式
数学建模
数学建模
当FUN 有两个返回值时,它的第二个返回值是f (x)的梯
度向量;当FUN 有三个返回值时,它的第三个返回值是 f (x) 的二阶导数阵(Hessian 阵)。X0 是向量x 的初始值, OPTIONS 是优化参数,可以使用缺省参数。P1,P2 是可 以传递给FUN 的一些参数。
例3.5
解:编写M 文件fun2.m 如下: function [f,g]=fun2(x); f=100*(x(2)-x(1)^2)^2+(1-x(1))^2; g=[-400*x(1)*(x(2)-x(1)^2)-2*(1-x(1));200*(x(2)-x(1)^2)];
它的返回值是向量x ,其中FUN 是用M 文件定义的函数 f (x ) ;X0 是x 的初始值;A,B,Aeq,Beq 定义了线性约束 A * X ≤ B , Aeq * X = Beq ,如果没有线性约束,则 A=[], B=[], Aeq=[], Beq=[];LB 和UB 是变量x 的下界和 上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB 的各分量都为-inf,如果x 无上界,则UB的 各分量都为inf;NONLCON 是用M 文件定义的非线性向量函 数 C(x), C eq ( x ) ;OPTIONS定义了优化参数,可以使 用Matlab 缺省的参数设置。
例2 求下列非线性规划
数学建模
数学建模
解 (i)%编写M 文件fun1.m 定义目标函数
function f=fun1(x); f=sum(x.^2)+8;
(ii)编写M文件fun2.m定义非线性约束条件
function [g,h]=fun2(x); G=-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20; %非线性不等式约束
编写主函数文件example6.m如下: options = optimset('GradObj','on'); [x,y]=fminunc('fun2',rand(1,2),options) 即可求得函数的极小值。
数学建模
方法2: 在求极值时,也可以利用二阶导数,编写M 文件 fun3.m 如下: function [f,df,d2f]=fun3(x); f=100*(x(2)-x(1)^2)^2+(1-x(1))^2; df=[-400*x(1)*(x(2)-x(1)^2)-2*(1-x(1));200*(x(2)-x(1)^2)]; d2f=[-400*x(2)+1200*x(1)^2+2,-400*x(1) -400*x(1),200];
h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3; %非线性等式约束
数学建模
(iii)编写主程序文件example2.m 如下: options=optimset('largescale','off'); [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options)
求函数的极小值
数学建模
其中x 可以为标量或向量。
Matlab 中fminunc 的基本命令是
[X,FVAL]=FMINUNC(FUN,X0,OPTIONS,P1,P2, ...) 其中的返回值X 是所求得的极小点,FVAL 是函数的极小值, 其它返回值的含义参见相关的帮助。FUN 是一个M 文件, 当FUN 只有一个返回值时,它的返回值是函数 f (x ) ;
解 设投资决策变量为
数学建模
则投资总额为
,投资总收益为
因为该公司至少要对一个项目投资,并且总的投资金 额不能超过总资金A ,故有限制条件
由于) xi (i = 1,…. , n 只取值0 或1,所以还有
数学建模
最佳投资方案应是投资额最小而总收益最大的方案, 所以这个最佳投资决策问题归结为总资金以及决策变量 (取0 或1)的限制条件下,极大化总收益和总投资之比。 因此,其数学模型为: