数控车床主轴箱设计
数控车床主轴箱设计--.doc
数控车床主轴箱设计一、设计题目Φ400 毫米数控车床主轴箱设计。
主轴最高转速4000r/min ,最低转速30r/min ,计算转速 150r/min ,最大切削功率 5.5kw。
采用交流调频主轴电机,其额定转速 1500r/min ,最高转速 4500r/min 。
二、主轴箱的结构及作用主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。
主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。
主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
三、主传动系设计机床主传动系因机床的类型,性能,规格尺寸等基本因素的不同,应满足的要求也不一样。
再设计时结合具体机床进行具体分析,一般应满足下属基本要求:1)满足机床使用性能要求。
首先应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。
传动系设计合理,操纵方便灵活、迅速、安全可靠等。
2)满足机床传递动力要求。
主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。
3)满足机床工作性能要求。
主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。
4)满足产品设计经济性的要求。
传动链尽可能简短,零件数目要少,以节省材料,降低成本。
5)调整维修方便,结构简单、合理、便于加工和装配。
防护性能好,使用寿命长。
四、主传动系传动方式由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。
再者,本题目中对精度要求一般,因此选用集中传动方式。
另外主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。
五、电动机的选择按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。
数控车床主轴箱设计
第一章概述1.1设计目的 (2)1.2主轴箱的概述 (2)第2章主传动的设计 (2)2.1驱动源的选择 (2)2.2转速图的拟定 (2)2.3传动轴的估算 (4)2.4齿轮模数的估算 (3)2.5V带的选择 (4)第3章主轴箱展开图的设计 (7)3.1各零件结构尺寸的设计 (7)3.1.1 设计内容和步骤 (7)3.1.2有关零件结构和尺寸的设计 (7)3.1.3各轴结构的设计 (9)3.1.4主轴组件的刚度和刚度损失的计算 (10)3.1.5轴承的校核 (13)3.2装配图的设计的概述 (13)总结 (19)参考文献 (20)第一章概述1-1设计目的数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。
其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。
1-2 主轴箱的概述主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来手比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
第二章2主传动设计2-1驱动源的选择机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。
由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。
根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
数控车床主轴箱设计论文.txt1
the machine have been confirmed and optimized also.
Have discussed two kinds interpolation numerical control lathes with thematic
part, and design the interpolation forms for the numerical control lathe.
本文在叙述了数控技术的历史、现状和发展的基础上,通过对旧机床的分
析,结合机床改造的总体思想,提出了数控化改造的技术方案和新数控系统的
选型配置方案;针对旧机床的要求,进行了传动系统的重新设计,提高了传动的
精度,还进行了电气系统的设计和调试,主要包括硬件设计和电气控制软件设
计:简单介绍
设计机床的控制逻辑,通过对伺服系统的分析,完成了机床各主要参数的优化
和匹配。
专题部分讨论了数控车床两种插补方式的原理,并设计了数控车床的插补
程序。
本机床改造后将会展示出强大的功能、稳定的性能,将完全符合机床的技
术规格和精度标准,加工出合格的零件,大大提高了车床的性能,是一次有益
的尝试。
机床是机械制造行业中最基本的设备,随着制造业高效率、高精度、高柔性发展的需要,人们对机床提出了越来越高的要求,主轴箱又是机床很重要的一个部件,因此,很有必要对他的动态特性进行研究。主轴箱结构的动态特性主要包括震动固有频率、阻尼比和振型。
随着社会的进步,制造业的发展越来越迅速,数控技术和数控装备是制造工业现代化的重要基础。这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。数控机床发展很快,作为数控机床的重要部分,主轴箱的设计更新也越来越快。
数控机床主轴箱设计
数控机床主轴箱设计毕业设计(论文)任务书摘要主轴箱为数控机床的主要传动系统,它包括电动机、传动系统和主轴部件,它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
本设计采用北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
通过给定的技术参数来初步设定部分轴、齿轮等单元的结构尺寸,对传动系统进行理论力学分析,精确计算选定尺寸及材料,由电机转速传动至进给系统的参数反馈,校核所选定主轴和转动轴尺寸的合理性完成整体结构设计,最后对齿轮进行了验算以及V型带的、离合器的选择与计算。
通过本次设计,使数控机床结构更加紧凑,性能更加优越,生产加工更加精密,有利于改善数控机床的性能,使得产品的加工更加高效。
关键词:数控机床;主轴箱;交流调速电动机;BESK-8AbstractFor the spindle box of NC machine tool main transmission system which comprises a motor, the transmission system and the spindle, it with ordinary lathe spindle box is relatively simple, only two or three stage gear transmission system, it is mainly used to expand the range of stepless speed regulation of motor, to meet a certain constant power, and speed problems.This design uses the Beijing CNC equipment factory of type BESK-8 AC spindle motor, maximum speed is 4500r / min. Through the given technical parameter to set an initial portion of the shaft, gear unit size, the transmission system of theoretical mechanics analysis, accurate calculation of the selected size and material, the motor speed drive to the feed system parameters feedback, check the selected spindle and rotary shaft size is reasonable to complete the overall structure design, assembly drawing and parts graph.Through the design of the NC machine tool, compact structure, superior performance, production and processing of more sophisticated, is helpful for improving the performance of CNC machine tools, making the product processing more efficient.Key words: NC machine tool; spindle box; AC motor; BESK-8东北大学继续教育学院毕业设计(论文)用纸目录摘要 (Ⅰ)Abstract (Ⅱ)1.绪论 (1)1.1研究的目的和意义 (1)2.主轴驱动源的选择 (2)2.1直流主轴驱动系统的特点 (2)2.2 交流主轴驱动系统的特点 (3)2.3主轴驱动电机的确定 (4)3.主传动设计 (5)3.1转速图的拟定 (5)3.2主轴转速的确定 (6)3.3传动级数的确定 (7)3.3.1主传动系数的参数 (7)3.3.2主传动级数的确定 (8)3.3.3分级变速箱的设计计算 (11)4.传动系统零件的设计 (17)4.1齿轮的验算 (17)4.2 V型带的选择 (19)4.3离合器的选择与计算 (21)总结 (24)参考文献 (25)1.绪论1.1研究的目的和意义数控机床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担,剩去了复杂的齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机无级调速的范围。
(完整版)数控车床主轴设计
绪论随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。
数控机床由于众多的优点已成为现代机床发展的主流方向。
它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。
现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。
实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。
可以说,机械制造竞争的实质就是数控技术的竞争。
本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。
通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。
通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。
通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。
一、设计题目及参数1.1 题目本设计的题目是数控车床的主轴组件的设计。
它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。
我主要设计的是主轴部分。
主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。
主轴前后的受力不同,故要选用不同的轴承。
1.2参数床身回转空间400mm尾架顶尖与主轴端面距离1000mm主轴卡盘外径Φ200mm最大加工直径Φ600mm棒料作业能力50~63mm主轴前轴承内和110~130mm最大扭矩480N·m二、主轴的要求及结构2.1主轴的要求2.1.1旋转精度主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。
主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。
机械制造装备课程设计--数控车床主轴箱部件设计
机械制造装备课程设计--数控车床主轴箱
部件设计
1. 简介
本文档旨在介绍机械制造装备课程设计中的数控车床主轴箱部件设计的基本要点和步骤。
2. 设计目标
- 优化主轴箱结构,提高数控车床的工作效率和精度;
- 减少主轴箱部件的重量,提高车床的运动性能;
- 确保主轴箱部件的可靠性和耐久性。
3. 设计步骤
1. 确定设计需求和限制条件;
2. 进行主轴箱结构的初步设计,包括布局和尺寸的确定;
3. 选择合适的材料,并进行强度和刚度计算;
4. 进一步优化主轴箱的结构,包括减少重量和提高刚度;
5. 进行主轴箱部件的详细设计,包括加工工艺和装配要求;
6. 制定主轴箱部件的制造工艺和工艺路线;
7. 进行主轴箱部件的制造和装配;
8. 对主轴箱进行性能测试和调试;
9. 检查和维护主轴箱部件的可靠性和耐久性。
4. 设计要点
- 主轴箱的结构应合理布局,避免部件之间的干涉;
- 主轴箱的材料应选择高强度和刚度的合金材料;
- 在设计过程中要考虑加工和装配的可行性;
- 主轴箱部件的表面处理应满足使用和保护要求;
- 相关设计要素应符合机械制造装备的相关标准和规范。
5. 结论
通过本文档的介绍,我们了解到,在机械制造装备课程设计中,数控车床主轴箱部件设计的步骤和要点。
合理的主轴箱设计可以提
高车床的工作效率和精度,减少重量,优化运动性能,并确保可靠
性和耐久性。
设计过程中需考虑布局、材料选择、加工装配等因素,并符合相关标准和规范。
机械专业毕业设计CJK1630型数控车床主轴箱结构设计
8=24x41
8=42x21
8=21 x 42
根据传动副前多后少原则和 传动顺序与扩大顺序相一致原则(前密后疏) 选择8=41x24
绘制转速图
确定齿数
变速组a:查《机械制造装备设计》表2-8,设最小齿 数为18,选齿数和为72,查得各齿轮副齿 数为18:54、30:42、37:35、43:29。 变速组b:19:75、54:40(方法与变速组a相同)。
1张 1张 1张 1份 1份 1份
基本要求
工件最大回传半径320mm
最高转速2000r/min
最低转速80r/min
电机功率7.5KW
公比1、功率
选择电机
设计 结构式
设计主轴箱 具体结构
设计变速传 动系统图
设计转速图
z 1000 R v min
d max
n
变速范围:Rn=nmax/nmin=2000/80=25
根据转速级数为8可求出公比 = ( Z 1) Rn =1. 58 取标准值1.6。 由以上结果查《机械制造装备设计》表2-5 可得8级转速分别为80、125、200、315、 500、800、1250、2000。
选取电机
查机《械加工工艺手册》可计算主切削力
Fz=2594N,切削功率Pc=Fzx
vc=5.2Kw
机床效率为0.85,Pz=5.2/0.85=6.1。 选取YVP160-4型交流变频电动机。
拟定结构式 因为转速级数为8,所以有4个方案: 8=21 x 42 ; 8=24x41 ; 8=41x24 ; 8=42x21 对应的结构网图如下
8=41x24
CJK1630型数控车床主轴 箱结构设计
研究内容
数控车床主传动机构设计方案
数控车床主传动机构设计方案数控车床的主传动机构是数控车床最基本的组成部分之一,它的设计方案的合理与否直接影响着数控车床的性能和加工精度。
主传动机构一般由主轴、主轴箱、主动轮、变速箱等组成,下面将详细介绍数控车床主传动机构设计方案。
数控车床主轴是主传动机构中最重要的部分之一,它的设计关系到车床的加工能力和可靠性。
主轴的设计应考虑以下几个方面:首先是选用合适的轴材料,一般情况下,主轴选用优质合金钢,以保证其高强度和刚性;其次是确定主轴的强度和刚度,主轴的强度应能满足车削加工的要求,同时要保证主轴的刚度,使得车床在高速运转时不产生振动;再次是确定主轴箱的布置形式和主轴箱的结构形式,主轴箱的布置形式应符合数控车床的空间布局要求,主轴箱的结构形式应具有较好的刚度和阻尼特性;最后是确定主轴的传动方式,一般情况下,数控车床采用直接驱动主轴的方式,以提高传动效率和传动精度。
主动轮是数控车床主传动机构中的重要部分之一,它的设计方案应考虑主动轮的直径、厚度和材料等因素。
主动轮的直径和厚度决定了主轴的传动比和转矩传递能力,一般情况下,主动轮的直径应根据车床的加工要求确定,直径较小时适用于高速车削,直径较大时适用于低速车削;主动轮的厚度应适当选取,以保证传动的可靠性和稳定性;主动轮的材料一般选用强度高、刚度好的合金钢,以满足高速转动和大转矩传递的要求。
变速箱是数控车床主传动机构中的重要部分之一,它的设计方案应考虑变速箱的传动形式和传动比等因素。
变速箱的传动形式一般分为齿轮传动和皮带传动两种,齿轮传动具有传动效率高、灵活性好的特点,适用于大功率和高精度的车床;皮带传动具有结构简单、噪音低的特点,适用于小功率和低精度的车床;变速箱的传动比应根据车床的车削范围和精度要求确定,一般情况下,变速箱应具有大的传动比范围和细微的传动调整。
总之,数控车床主传动机构的设计方案应综合考虑主轴、主动轮、变速箱等部分的结构设计和传动形式,以保证数控车床的加工能力和加工精度。
车床主轴箱设计范文
车床主轴箱设计范文首先,车床主轴箱的结构刚性是设计的重点之一、结构刚性的好坏关系到车床的稳定性和加工精度。
为了提高刚性,设计中可以采用箱体结构,增加钢材厚度和数量,加大箱体壁厚等。
此外,还可以在主轴箱中增加支承轴承,加强对主轴的支撑和固定。
传动方式也是主轴箱设计的一个重要因素。
常见的传动方式有皮带传动、齿轮传动和直接联轴传动等。
皮带传动简单易实现,但传动效率相对较低。
齿轮传动传动效率高,但由于噪音和振动问题,需要进行合理设计和降噪处理。
直接联轴传动简单可靠,效率较高,但要求主轴和电机的轴心一致。
主轴精度是衡量车床主轴箱性能的重要指标之一、主轴精度包括径向偏差、轴向偏差和重心偏差等。
为了提高主轴精度,设计中可以采用双列角接触球轴承或双列圆柱滚子轴承等高精度轴承,同时增加支撑点和加大轴承尺寸。
冷却系统是车床主轴箱设计中不可忽视的一个方面。
加工过程中,主轴箱会产生大量热量,如果不及时散热,会影响主轴和轴承的使用寿命。
因此,在设计中需要考虑添加冷却液循环系统,通过冷却液对主轴和轴承进行冷却。
此外,还需考虑主轴箱的润滑方式。
常见的润滑方式有油润滑和脂润滑等。
油润滑一般应用于高速主轴箱,脂润滑则适用于低速主轴箱。
在设计中需要根据实际情况确定润滑方式,并设置相应的润滑装置。
综上所述,车床主轴箱设计需要考虑结构刚性、传动方式、主轴精度、冷却系统和润滑方式等方面。
通过合理的设计和选用合适的材料和零部件,可以提高车床主轴箱的性能和加工效率,满足不同加工需求。
JCK6136数控车床主轴箱和床身部件设计
JCK6136数控车床主轴箱和床身部件设计数控车床是一种精密加工设备,主要用于加工各种复杂形状的零件。
数控车床主轴箱和床身部件的设计是数控车床整体性能和精度的重要组成部分。
在进行主轴箱和床身部件设计时,需考虑工作负荷、材料选择、结构布局等因素。
本文将对主轴箱和床身部件设计进行探讨,以达到提高数控车床加工精度和效率的目的。
首先,主轴箱的设计是数控车床关键部件之一、主轴箱的主要功能是提供主轴旋转和传动动力。
在进行主轴箱设计时,需要考虑的主要因素包括承载能力、刚性和传动精度。
主轴箱的承载能力直接影响到数控车床可加工的工件大小和重量。
通过合理布局和优化设计,可以提高主轴箱的刚性,降低振动和噪音,提高加工精度。
此外,传动装置的选择也是主轴箱设计的关键,可以选择齿轮传动、带传动或直接驱动等形式,根据具体需求选择合适的传动方式。
其次,床身部件的设计是数控车床整体结构的基础。
床身部件主要负责支撑和稳定主轴箱、刀架和工件,承载工作负荷和副轴的运动。
床身部件的设计需要考虑床身材料的选择、结构布局的合理性和刚性优化。
通常情况下,数控车床床身采用铸铁或整体钢板焊接结构。
铸铁具有良好的刚性和稳定性,能够有效降低振动和噪音;整体钢板焊接结构则具有较高的强度和刚性,适用于大型数控车床。
在床身部件设计中,还需要考虑导轨的选择和布局,以保证刀架和工件的平稳运动和高精度加工。
此外,数控车床主轴箱和床身部件设计中还需考虑工作环境和加工要求。
在特殊工作环境下,如高温、潮湿或腐蚀性气体环境,需要选用耐热、防腐性能良好的材料,并进行相应的密封和防护措施。
同时,根据不同的加工要求,还需考虑加工刚度、吸振性能和刀具更换方便性等方面的设计。
此外,还需要结合数控系统要求,进行安装和布线的设计,以保证数控车床的正常工作和数据传输。
综上所述,数控车床主轴箱和床身部件设计是数控车床整体性能和精度的关键因素。
在进行设计时,需考虑工作负荷、材料选择、结构布局等因素,并兼顾工作环境和加工要求。
ck6150数控车床主轴箱设计(含全套cad图纸) .
毕业设计(论文)任务书系部:专业:学生姓名:学号:设计(论文)题目:CK6150数控车床主轴箱设计起迄日期: 20**年3月9日~ 6月14日设计(论文)地点:指导教师:专业负责人:发任务书日期:20** 年2月26日毕业设计(论文)任务书1.本毕业设计(论文)课题应达到的目的:通过这次毕业设计使学生初步掌握机床设计和机械零件设计的一般方法,学会查阅技术文献。
掌握技术文件编写的格式。
2.本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1、课题任务的内容:进行CK6150数控车床主轴箱设计。
2、课题任务的要求:该主轴箱设计完成以后能够实现主轴12档转速,最低转速70 rpm、最高转速1400rpm,半自动换档变速。
机床主轴中心高为250mm。
5.本毕业设计(论文)课题工作进度计划:起迄日期工作内容20**年3月9日~ 3月15日3月16日~ 3月22日3月23日~ 4月5日4月6日~ 4月19日4月20日~ 4月30日5月1日~5月17日5月17日~ 5月30日6月1日~ 6月7日6月8日~ 6月14日熟悉课题,调研,确定设计方案,完成开题报告。
完成外文翻译。
总体设计,方案论证。
完成部件设计初稿。
部件设计定稿。
完成零件设计初稿。
零件设计定稿。
完成说明书初稿毕业设计定稿,论文答辩所在专业审查意见:负责人:20**年月日系部意见:系部主任:20**年月日毕业设计(论文)开题报告学生姓名:学号:专业:设计(论文)题目:CK6150数控车床主轴箱设计指导教师:毕业设计(论文)开题报告1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:文献综述摘要本文主要介绍了数控机床的特点、组成、分类、应用范围及其对ck6150数控车床主轴箱进行的研究分析,论述了我国数控机床发展的过去、现状,对数控机床的发展趋势进行了探讨, 提出了我国数控机床发展的对策。
数控车床主轴设计
数控车床主轴系统分析报告学院:机械工程学院班级:09创新一班姓名:学号:*******xxxMJ-50数控车床主轴结构下图为MJ-50数控车床主轴结构。
交流主轴电动机通过带轮15把运动传给主轴7 。
主轴前支承由一个双列圆柱滚子轴承1 1和一对角接触球轴承1 0组成,轴承11用来承受径向载荷,两个角接触球轴承分别承受两个方向的轴向载荷,另外还承受径向载荷。
松开螺母8的锁紧螺钉,就可用螺母来调整前支承轴承的间隙。
主轴的后支承为双列圆柱滚子轴承14,轴承间隙由螺母1和螺母6来调整。
主轴的支承形式为前端定位,主轴受热膨胀向后伸长,前后支承所用双列圆柱滚子轴承的支承刚性好,允许的极限转速高。
前支承中的角接触轴承能承受较大的轴向载荷,且允许的极限转速高。
主轴所采用的支承结构适宜高速大载荷的需要。
主轴的运动经过同步带轮16、同步带轮3以及同步带2带动脉冲编码器4,使其与主轴同速运转。
脉冲编码器用螺钉5固定在主轴箱体9上。
1、主传动系统的传动方式:机床主传动系统可分为无极变速传动和有级变速变速传动。
与普通机床相比,数控车床的主传动采用交、直流主轴调速电动机,电动机调速范围大,并可无级调速,使主轴箱结构大为简化。
为了适应不同的加工需要,数控车床的主传动系统有一下三种传动方式:1.1由电机直接驱动:主轴电机与主轴通过联轴器直接连接,或采用内装式主轴电动机直接驱动,如下图a所示。
采用直接驱动大大简化了主轴箱结构,能有效提高主轴刚度。
这种传动的特点是主轴转速的变化、出去转矩与电机的特性完全一致。
但由于主轴的输出功率和转矩特性直接决定于主轴电动机的性能,因而使这种变速传动的应用受到了一定的限制。
1.2采用定比传动:主轴电动机经定比传动传递给主轴,如下图b所示。
定比传动可采用带传动或齿轮传动,带传动具有传动噪声小、振动小的有点,一般应用在中小型数控车床上。
采用定比传动扩大了直接驱动的应用范围,即在一定程度上能满足主轴功率与转矩的要求,但其变速范围仍与电动机的调速范围相同。
数控车床主轴箱设计
数控车床主轴箱设计数控车床主轴箱设计数控车床是现代机械加工的重要工具之一,其主要工作原理是利用控制器控制各轴运动,实现零件的加工。
而数控车床主轴箱则是数控车床的关键部件之一,其设计的优劣直接影响着数控车床的精度和稳定性。
本文将详细介绍数控车床主轴箱的设计要点。
1.主轴箱结构设计数控车床主轴箱是由主轴、轴承、气动元件、传动系统、冷却系统等组成。
主轴箱的设计最重要的是结构设计,其结构应该具有高强度、低振动、高刚度和较好的密封性,以确保数控车床的高精度加工。
主轴的轴承应使用高精度的进口轴承,以保证数控车床的高速、高精度运行。
传动系统应采用齿轮蜗杆传动或齿轮传动,并配以足够的冷却系统,以保证传动系统的稳定性和寿命。
气动元件选择优质的气缸、气动阀等,以确保气动系统的可靠性和精度。
同时,主轴箱中的气路设计要合理,以实现气路的快速响应和准确控制。
2.润滑系统设计数控车床主轴箱中的润滑系统是关键的部件之一。
优秀的润滑系统应具有高效的冷却和润滑功能,以确保主轴和轴承的寿命和稳定性。
在润滑系统中,应选用高精度噴雾量的润滑泵,以确保油膜的均匀分布。
同时,润滑泵的位置和管路的设计要合理,以实现润滑油的流速和压力的稳定性。
对于数控车床主轴箱的高速加工,应使用高速润滑油,以防止润滑油的泡沫化和变质。
3.冷却系统设计数控车床主轴箱中的冷却系统同样是关键的部件之一。
冷却系统既可起到冷却主轴箱并维持其温度均衡的作用,也可以起到冷却砂轮并保持其工作性能的作用。
在冷却系统中,应选用高效的冷却器和过滤器,以保证冷却液的干净和清新。
管路设计应合理,管径大小要适当,以确保冷却液的畅通和流量的稳定性。
在使用过程中,应根据冷却液的性质和使用情况进行定期更换和清洗,以保证冷却液的质量和使用寿命。
4.加工精度设计对于数控车床主轴箱的加工精度设计,应考虑数控系统的实际需求和主轴箱结构的特点,以达到最优的精度、效率和稳定性。
在加工精度设计中,应严格控制主轴箱的几何尺寸和位置精度,以保证主轴箱与刀具的精确定位。
CJK6132数控车床主轴箱箱体的结构设计的开题报告
CJK6132数控车床主轴箱箱体的结构设计的开题报
告
一、研究问题和目标
数控车床是现代机械加工领域中非常重要、不可或缺的设备。
而数
控车床中的主轴箱则是车床工作时最重要的部分之一。
本文将以蕴湖CNC数控车床中的主轴箱为例,研究其箱体的结构设计,分析其优缺点,并在此基础上提出改进方案,以提高主轴箱的性能和精度。
二、研究方法和步骤
本文将采用文献资料法、实验法和数值模拟法相结合的方法进行研究,具体步骤如下:
1. 收集相关文献资料,包括国内外有关数控车床主轴箱的设计和应
用方面的研究成果。
对相关文献进行系统和全面的分析。
2. 对蕴湖CNC数控车床中的主轴箱进行实地观察,详细了解其结构和性能特点,并进行实际加工试验,以验证主轴箱的精度和可靠性。
3. 建立数学模型,利用软件模拟工具对主轴箱的力学性能和热力学
性能进行数值模拟,进一步验证实验结果,提出改进方案。
4. 综合实验和数值模拟的结果,分析主轴箱的结构与性能之间的关系,并提出改进方案。
三、预期成果和影响
通过本研究,预期能够:
1. 对数控车床主轴箱的结构设计做出系统性的评估,分析其优缺点,为今后的主轴箱设计提供参考。
2. 提出一系列改进方案,以改善主轴箱的结构和性能,提高主轴箱
的加工精度和可靠性。
3. 探索数学模型和数值模拟工具的应用,提高设计和试验效率。
4. 为车床制造企业提供一定的参考和借鉴,提高中国制造业的品质和竞争力。
QKA1219数控管螺纹车床主轴箱传动毕业设计
第一章绪论1.1课题背景及意义1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。
6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。
我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3%。
近10年来,我国数控机床年产量约为0.6~0.8万台,年产值约为18亿元。
机床的年产量数控化率为6%。
我国机床役龄10年以上的占60%以上;10年以下的机床中,自动/半自动机床不到20%,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60%以上)。
可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。
用这种装备加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,从而在国际、国内市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展。
所以必须大力提高机床的数控化率。
在美国、日本和德国等发达国家,它们的机床改造作为新的经济增长行业,生意盎然,正处在黄金时代。
由于机床以及技术的不断进步,机床改造是个"永恒"的课题。
我国的机床改造业,也从老的行业进入到以数控技术为主的新的行业。
在美国、日本、德国,用数控技术改造机床和生产线具有广阔的市场,已形成了机床和生产线数控改造的新的行业。
在美国,机床改造业称为机床再生(Remanufacturing)业。
从事再生业的著名公司有:Bertsche工程公司、ayton机床公司、Devlieg-Bullavd(得宝)服务集团、US设备公司等。
美国得宝公司已在中国开办公司。
在日本,机床改造业称为机床改装(Retrofitting)业。
从事改装业的著名公司有:大隈工程集团、岗三机械公司、千代田工机公司、野崎工程公司、滨田工程公司、山本工程公司等。
数控车床主轴组件设计
数控车床主轴组件设计数控车床主轴组件是数控机床中最基本、最重要的部件之一。
其主要作用是将旋转电机的动力转化为刀具的相对运动。
主轴组件的设计质量直接影响到机床的加工精度、切削效率和使用寿命。
因此,在数控车床的设计中,主轴组件的设计显得尤为重要。
本文将从设计要求、主要结构、材料选用、加工工艺等方面详细阐述数控车床主轴组件的设计。
一、设计要求在数控车床主轴组件设计过程中,需要考虑以下一些因素:1. 总体尺寸:根据数控车床的使用场景,确定主轴组件的长度、直径等尺寸,并保证其能够安装到机床上并协调运动。
2. 刚性要求:数控车床需要进行高精度的加工,因此主轴组件的刚性需要足够高,能够承受切削力和切削热等负载,保证刀具的精度和寿命。
3. 精度要求:主轴组件的精度取决于各个部件的加工质量和装配精度。
不同的加工要求对主轴组件精度的要求不尽相同,因此在设计过程中需要根据实际需求设定相应的精度标准。
4. 特殊要求:根据数控车床的特殊加工要求,主轴组件可能还需要具备高温抗性、低噪音、低振动、耐腐蚀等特殊性能,因此需要针对实际需求进行定制化设计。
二、主要结构数控车床主轴组件主要由主轴箱、主轴、轴承、传动装置、调速装置和夹具等组成。
1. 主轴箱:主要承载整个主轴组件,并连接到车床上。
主轴箱需要具备足够的刚性和稳定性,防止在高速运转时产生振动和因热膨胀引起的变形。
2. 主轴:作为主轴组件的核心部件,需要具备高强度、高精度和高刚性。
通常采用高强度钢材或工程塑料材料制造,以确保其能承受高速运转和不同方向向心力的作用。
3. 轴承:轴承承受主轴的径向和轴向力,并保证主轴组件的转动平稳和精度稳定。
常用的轴承有滚动轴承和滑动轴承两种,选择时需要根据应用场景和对精度的要求进行综合考虑。
4. 传动装置:传动装置将电动机的旋转动力传递到主轴上,通常采用皮带传动、齿轮传动和磁力传动三种方式。
5. 调速装置:调速装置是保证数控车床能够满足不同加工需要的关键部分。
车床主轴箱课程设计综述
燕山大学课程设计说明书题目:CK6140数控车床主传动系统设计学院(系):机械工程学院机制系年级专业: 08级机制2学号: 080101010127学生姓名:吕伟彪指导教师:王敏婷李宇鹏目录第1章概述.................................................... (1)1.1 设计要求 (1)第2章主传动的设计 (2)2.1计算转速的确定 (2)2.2变频调速电机的选择 (2)2.3转速图的拟定 (2)2.3.1传动比的计算.......................................... (2)2.3.2参数确定…………………………………………. ..22.3.3 主轴箱传动机构简图 (3)2.3.4 转速图拟定 (3)2.4传动轴的估算 (3)2.5主轴轴颈的确定 (5)2.6主轴最佳跨距的选择 (5)2.7齿轮模数的估算 (6)2.8 同步带传动的设计 (8)2.9 滚动轴承的选择 (10)2.10 主要传动件的验算.............................. .. (10)2.10.1齿轮模数的验算 (10)2.10.2传动轴刚度的验算 (14)2.10.3 滚动轴承的验算 (15)总结 (16)参考文献 (17)第一章概述1.1 设计要求机床类型:数控车床主传动设计要求:满载功率7.5KW,最高转速4000rpm,最低转速41.5rpm 变速要求:无级变速进给传动系统设计要求:伺服控制,行程1200mm,最低速度0.001mm/r,最高速度0.5mm/r,最大载荷4500N,精度±3μm第二章主传动的设计2.1 计算转速的确定机床主轴的变速范围:=,且:=4000rpm,=41.5rpm所以:=400041.5=96.38根据机床的主轴计算转速计算公式:=得:=41.5х0.396.38=163.4rpm2.2变频调速电机的选择为了简化变速箱及其自动操纵机构,希望用双速变速箱,现取Z=2。
MJ50 数控车床
MJ50 数控车床第二节数控车床的传动与结构一、主传动系统及主轴箱结构(一)主运动传动系统MJ—50 数控车床的传动系统图如图3—12所示。
其中主运动传动系统由功率为11kw 的主轴调速电动机驱动,经一级 1 : 1 的带传动带动主轴旋转,使主轴在35~3500 r/min的转速范围内实现无级调速,主轴箱内部省去了齿轮传动变速机构,因此减少了齿轮传动对主轴精度的影响,并且维修方便。
主轴传递的功率或转矩与转速之间的关系如图3—13 所示。
当机床处在连续运转状态下,主轴的转速在437~3500r/min范围内,主轴应能传递电动机的全部功率11kw,为主轴的恒功率区域II(实线)。
在这个区域内,主轴的最大输出转矩(245 N. m)应随着主轴转速的增高而变小。
主轴转速在35~437r/min范围内的各级转速并不需要传递全部功率,但主轴的输出转矩不变,称为主轴的恒转矩区域I(实线)。
在这个区域内,主轴所能传递的功率随着主轴转速的降低而降低。
图中虚线所示为主轴电动机超载(允许超载30mim)时,对应的恒功率区域和恒转矩区域。
电动机超载时的功率为15kw ,超载的最大输出转矩为334N. m 。
(二)主轴箱结构1.主轴箱结构MJ—50 数控车床主轴箱结构如图3—14 所示。
主轴电动机通过带轮将运动传给主轴7。
主轴有前后两个支承,前支承由一个圆锥孔双列圆柱滚子轴承11和一对角接触球轴承10组成,轴承11 用来承受径向载荷,两个角接触球轴承,用来承受双向的轴向载荷和径向载荷。
前支承轴承的间隙用螺母8 来调整,螺钉12 用来防止螺母8回松。
主轴的后支承为圆锥孔双列圆柱滚子轴承14 ,轴承间隙由螺母1和6来调整。
螺钉17和13防止螺母1和6回松的。
主轴的支承形式为前端定位,主轴受热膨胀向后伸长。
前后支承所用圆锥孔双列圆柱滚子轴承的支承刚性好,允许的极限转速高。
前支承中的角接触球轴承能承受较大的轴向载荷,且允许的极限转速高。
CK6136数控车床主轴部分机械设计
CK6136数控车床主轴部分机械设计1.主轴箱设计:主轴箱是支撑主轴的机床基础部件,它需要具备足够的刚性和稳定性。
主轴箱通常采用铸铁材料,采用箱形结构设计,以确保足够的强度和刚性。
主轴箱内部需要进行润滑油的循环,以降低摩擦和热量,提高主轴的使用寿命和稳定性。
2.主轴轴承设计:主轴轴承是支撑和固定主轴的关键部件,它需要满足高速旋转的要求,并具备足够的刚性和稳定性。
根据车床的使用要求和主轴的转速范围,可以选择不同类型的主轴轴承,如滚动轴承、滑动轴承或德国Schneeberger线性导轨轴承。
为了提高主轴的刚性和稳定性,还可以在主轴轴承上采用预拉力调节装置,以减少轴承的磨损和提高主轴的精度。
3.主轴驱动系统设计:主轴驱动系统是将动力传递给主轴的部件,常见的主轴驱动方式有皮带传动和直接驱动。
皮带传动方式可以通过调整皮带紧张度来调节主轴转速,适用于一些变速主轴车床。
直接驱动方式更加简单可靠,能够提供更高的主轴转速和更精确的加工效果。
直接驱动方式常见的有电机和主轴同轴分装,以及电机和主轴同轴集成在一起的设计。
为了确保主轴驱动的稳定性和准确性,需要采用高精度的联轴器和齿轮传动装置,以减少传动误差和振动。
此外,为了保证主轴的使用寿命和精度,还需要对主轴进行冷却和清洁。
冷却包括内部冷却和外部冷却,可以采用冷却液进行内部冷却,通过风扇或冷却器对外部进行冷却。
清洁方面可以采用集尘装置和冷却液过滤器,以确保主轴的清洁和润滑。
总之,CK6136数控车床的主轴部分机械设计是一个综合性工作,需要考虑刚性、稳定性、精度、耐用性等多方面因素。
只有通过精心的设计和优化选择,才能实现主轴的高效工作和长期可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车床主轴箱设计
一、设计题目
Φ400 毫米数控车床主轴箱设计。
主轴最高转速4000r/min,最低转速30r/min,计算转速150r/min,最大切削功率5.5kw。
采用交流调频主轴电机,其额定转速1500r/min,最高转速4500r/min。
二、主轴箱的结构及作用
主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。
主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。
主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
三、主传动系设计
机床主传动系因机床的类型,性能,规格尺寸等基本因素的不同,应满足的要求也不一样。
再设计时结合具体机床进行具体分析,一般应满足下属基本要求:
1)满足机床使用性能要求。
首先应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。
传动系设计合理,操纵方便灵活、迅速、安全可靠等。
2)满足机床传递动力要求。
主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。
3)满足机床工作性能要求。
主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。
4)满足产品设计经济性的要求。
传动链尽可能简短,零件数目要少,以节省材料,降低成本。
5)调整维修方便,结构简单、合理、便于加工和装配。
防护性能好,使
用寿命长。
四、主传动系传动方式
由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。
再者,本题目中对精度要求一般,因此选用集中传动方式。
另外主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。
五、电动机的选择
按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。
交流电动机驱动中又可分单速交流电动机或调速交流电动机驱动。
调速交流电动机又有多速交流电动机和无级调速交流电动机驱动。
无级调速交流电动机通常采用变频调速的原理。
根据设计要求采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。
选用FANUC-S 系列8s 型交流主轴电动机。
六、 计算过程
主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw ;
交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min ; 主轴要求的恒功率调速范围max 4000
26.7150
nN i n R n === 电动机的调速范围450031500dN R =
=
在设计数控机床主传动时,必须要考虑电动机与机床主轴功率特性匹配问题。
由于主轴要求的恒功率变速范围远大于电动机恒功率变速范围,所以在电动机与主轴之间串联一个分级变速箱,以扩大其功率变速范围,满足低速大功率切削时对电动机的输出功率的要求。
根据以上分析,选择交流电动机的型号为: 若取3
f dN R ϕ==,
则可得到变速箱的变速级数99
.2lg /lg ==f nN R Z ψ
所以,Z 可近似取为3,此处我们分别对Z=2、3、4三种情况进行研究,比较。
1) Z=3
根据f nN R Z ψlg /lg =可以得出99.2=f ψ,查表2-5取f ψ的标准值为3.0,dN f R =ψ,即主传动系功率特性图上有小段重合。
由于一般限制降速最小传动比大于等于1/4,最大升速比小于等于2,所以上述情况不符合 2)Z=2 根据dN z f nN R R 1
-=ψ,得公比9.8=f ψ太大,易知不符合要求。
3)Z=4
根据f nN R Z ψlg /lg =可以得出273.2=f ψ,查表2-5取f ψ的标准值为2.24,
dN f R <ψ,即主传动系功率特性图上有小段重合。
但是考虑到Z=3情况下,主轴箱级数较低,变速箱的公比和电机恒功率调速范围相等,可知其功率图连续无缺口无重合。
该情况下,机床结构复杂程度适中,运转相对于低级数平稳。
而Z=4尽管平稳,但级数较多,结构较复杂,
在无太多精度要求的情况下。
我们取Z=3进行讨论。
转速图和功率特性图
主传动系图
七、传动轴的估算:
传动轴除应满足强度要求外,还应满足刚度要求。
强度要求保证轴在反复载荷和扭转载荷作用下不发生疲劳破坏。
机床主传动系统精度要求较高,不允许有较大的变形。
因此疲劳强度一般不是主要矛盾。
除了载荷较大的情况外,可以不必验算轴的强度。
刚度要求轴在载荷下不至于产生过大的变形。
如果刚度不够,轴上的零件由于轴的变形过大而不能正常工作,或者产生振动和噪音,发热,过早磨损而失效,因此,必须保证传动轴有足够的刚度。
计算转速是传动件传递全部功率时的最低转速,各个传动轴上的计算转速从转速图是直接得出,如表
轴 I II III
计算转速 1500 530 150
根据P80:
所以=(5.5/0.7)/1.2=6.55kw
知一级齿轮传动效率为0.97(包括轴承),同步带传动效率为0.98,则: I轴:P1=Pd x 0.98=6.55 x 0.98=6.42KW
II 轴 p2=p1 x 0.97=6.42x 0.97=6.22KW
III轴 P3=P2 x 0.97=6.22 x 0.97=6.04KW
10
II轴扭矩:T2=9550P2/n2=9550 x6.22/530=1.12x5
10
III轴扭矩:T3=9550 P3/N3=9550 x 6.04/150=3.85 x5
Φ是每米长度上允许的扭转角(deg/m),可根据传动轴的要求选取,查表得:最后所确定各轴所允许的扭转角如下表所示:
轴 I轴 II轴 III轴
Φ(deg/m) 0.5 1 0.5
根据上述所得各轴输入功率、计算转速、允许的扭转角带入扭转刚度估算公式:
以计算为例,求解过程如下:
=30
轴 I II III
估算直径(mm)28 30 49
主轴轴径尺寸的确定:
已知车床最大加工直径为Dmax=400mm,则
主轴前轴颈直径 D1=0.25Dmax+15=85-115mm
后颈直径 D2=(0.7-0.85)D1=67-81mm
内孔直径 d=0.1Dmax+10=35-55mm
八、齿轮模数的估算
按接触疲劳强度和弯曲疲劳强度计算齿轮模数比较复杂,而且有些系数只有在齿轮的各参数都已知方可确定,故只有在装配草图画完后校验用。
在画草图时用经验公式估算,根据估算的结果然后选用标准齿轮的模数。
齿轮模数的估算方法有两种,一是按齿轮的弯曲疲劳进行估算,二是按齿轮的齿面点蚀进行估算。
这两种方法的前提条件是各个齿轮的齿数必须已知。
根据齿轮不产生跟切的基本条件:齿轮数不小于17。
由于Z2,Z2’这对齿轮
有较大的传动比,各个齿轮中最小齿数的齿轮必然是Z2. 取Z3=22,S=105,则Z3’=83
从转速图上直接看出Z2的计算转速是530r/min.根据齿轮弯曲疲劳估算公式:
=2.73
根据齿轮接触疲劳强度估算公式计算得m=2.7
同理可得电机轴模数为2
由于受传动轴轴径尺寸大小限制,选取齿轮模数为m=3 mm,对比上面的结果,可知这样设计的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,故取同一变速组中的所以齿轮的模数都为m=3mm.可得两轴中心距为a=157.5mm.圆整为a=158mm..
则各齿轮齿数和模数列表如下:
齿轮Z0 Z0, Z1 Z1, Z2 Z2, Z3 Z3, 齿数36 102 75 30 48 57 22 83
电机轴到轴1模数为2,其他模数为3
九、主轴箱展开图的设计
主轴箱展开图是反应各个零件的相互关系,结构形状以及尺寸的图纸,并以此为依据绘制零件工作图。
各零件结构和尺寸设计:通过绘图设计轴的结构尺寸以及选出轴承的型号,确
定轴的支点距离和轴上零件力的作用点,计算轴的强度和轴承的寿命。
传动零件,轴,轴承是主轴部件的主要零件,其他零件的结构尺寸是根据主要零件的位置和结构而定。
十、总结。