2020北京高三数学高考考试大纲说明及解析素材
2020年高考数学北京卷附答案解析版
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 10.2020 年 3 月 14 日是全球首个国际圆周率日( π Day).历史上,求圆周率 π 的方法有
多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切
2 /8
无法判断正检验电荷在 P 点和在Q 点的电势能的大小,故 D 错误。故选B。 8.【答案】B 【解析】AB.小磁针发生偏转是因为带负电荷的橡胶圆盘高速旋转形成电流,而电流周围有磁场,磁场会对 放入其中的小磁针有力的作用,故 A 错误,B 正确; C.仅改变圆盘的转动方向,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,故 C 错误; D.仅改变圆盘所带电荷的电性,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,故 D 错 误。故选B。
(Ⅲ)将该校学生支持方案的概率估计值记为 p0 ,假设该校一年级有 500 名男生和
300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为 p1 ,试比
答
较 p0 与 p1 的大小.(结论不要求证明)
题
19.已知函数 f x 12 x2 .
(Ⅰ)求曲线 y f x 的斜率等于2 的切线方程;
为了能研究摩擦力随时间的变化曲线故物块一直要处于静止状态则向左的摩擦力一直与向右轻绳的拉力平衡图乙是向右轻绳的拉力随时间变化曲线故图乙也可以反映摩擦力随时间变化的曲线由图可乙知向右轻绳的拉力先增大后减小最后趋于不变故物块先受静摩擦力作用后受滑动摩擦力作用所以不需要让木板保持匀速运动故ab错误
毕业学校
④甲企业在0,t1 ,t1,t2 ,t2 ,t3 这三段时间中,在0,t1 的污水治理能力最强.
2020年普通高等学校招生全国统一考试数学试题 理(北京卷,含解析)
绝密★本科目考试启用前2020年普通高等学校招生全国统一考试数学(理)(北京卷)【试卷点评】2020年北京高考数学试卷,试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查。
我先说一说2020年总体试卷的难度,2020年文科也好、理科也好,整个试卷难度较2020、2020年比较平稳,北京高考应该是从2020年以前和2020年以后,2020、2020年卷子难度都比较低,今年延续了前两年,整体难度比较低。
今天我说卷子简单在于第8题和第14题,难度下降了,相比2020、2020、2020,整体都下降了。
1.体现新课标理念,实现平稳过渡。
试卷紧扣北京考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新,符合北京一贯的风格。
2.关注通性通法,试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,题目没有偏怪题,以能力考查为目的的命题要求。
3.体现数学应用,联系实际,例如理科第17 题考查了样本型的概率问题,第三问要求不必证明、直接给出结论(已经连续6年),需注重理解概念的本质原理,第8 题本着创新题的风格,结合生活中的实际模型进行考查,像14 年的成绩评定、15 年的汽车燃油问题,都是由生活中的实际模型转化来的,对推动数学教学中关注身边的数学起到良好的导向。
【试卷解析】本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A I B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】试题分析:利用数轴可知{}21A B x x =-<<-I ,故选A. 【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是 (A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量u u u rOZ . (3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.【考点】线性规划【名师点睛】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z ax by =+.求这类目标函数的最值常将函数z ax by =+转化为直线的斜截式:a z y x b b =-+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+- ;(3)斜率型:形如y b z x a-=-,而本题属于截距形式.(5)已知函数1()3()3xx f x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A 【解析】试题分析:()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A. 【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q 的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2 【答案】B 【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B. 【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073(D )1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2020学年普通高等学校招生全国统一考试(北京卷)数学文及答案解析
2020年普通高等学校招生全国统一考试(北京卷)数学文一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}解析:∵集合A={x||x|<2}={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.答案:A2.在复平面内,复数11i-的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析:复数()()1111 11122iii i i+==+--+,共轭复数对应点的坐标(1122-,)在第四象限.答案:D3.执行如图所示的程序框图,输出的s值为( )A.1 2B.5 6C.7 6D.7 12解析:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1-1122=.由于k=2≤3,所以执行下一次循环.S=115236+=,k=3,直接输出S=56.答案:B4.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:若a,b,c,d成等比数列,则ad=bc,反之数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.答案:B5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为( )A.32fB.32 2fC.125 2fD.127 2f解析:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为:()7127 122?2f f=.答案:D6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,,,PC=3,PD=22,可得三角形PCD不是直角三角形.==AC CD55所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.答案:C,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,7.在平面直角坐标系中,AB CD EF GH角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是( )A.ABB.CDC.EFD.GH解析:A、在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B、在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C、在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D、在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.答案:C8.设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A解析:当a=-1时,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,-x+y>4,x+y≤2},显然(2,1)不满足,-x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,4x+y>4,x-4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确.答案:D二、填空题共6小题,每小题5分,共30分。
2020年高考北京版高考数学 4.4 解三角形
4.4 解三角形挖命题【考情探究】分析解读 1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关的量的问题时,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.高考中常以解答题的形式出现,有时也会出现在选择题和填空题中.破考点【考点集训】考点一正弦、余弦定理的应用1.在△ABC中,a=1,∠A=,∠B=,则c=( )A. B.- C. D.答案A2.在△ABC中,∠A=,BC=3,AB=,则∠C= .答案3.在△ABC中,a=2,c=4,且3sin A=2sin B,则cos C= .答案-考点二解三角形的综合应用4.在△ABC中,a=1,b=,且△ABC的面积为,则c= .答案2或25.在△ABC中,a=5,c=7,cos C=,则b= ,△ABC的面积为.答案6;66.在△ABC中,a=3,∠C=,△ABC的面积为,则b= ;c= .答案1;炼技法【方法集训】方法1 三角形形状的判断1.在△ABC中,角A,B,C的对边分别是a,b,c,若c-acos B=(2a-b)cos A,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D2.在△ABC中,若=,则△ABC的形状是( )A.直角三角形B.等腰或直角三角形C.等腰三角形D.不能确定答案B方法2 解三角形的常见题型及求解方法3.在△ABC中,角A,B,C的对边分别是a,b,c.若A=,a=,b=1,则c= .答案 24.(2014课标Ⅰ,16,5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为.答案5.在△ABC中,内角A,B,C的对边分别为a,b,c,且cos 2B+cos B=0.(1)求角B的值;(2)若b=,a+c=5,求△ABC的面积.解析(1)由已知得2cos2B-1+cos B=0,即(2cos B-1)(cos B+1)=0.解得cos B=或cos B=-1.因为0<B<π,所以cos B=.所以B=.(2)由余弦定理得b2=a2+c2-2accos B.将B=,b=代入上式,整理得(a+c)2-3ac=7.因为a+c=5,所以ac=6.所以△ABC的面积S=acsin B=.过专题【五年高考】A组自主命题·北京卷题组考点一正弦、余弦定理的应用1.(2013北京,5,5分)在△ABC中,a=3,b=5,sin A=,则sin B= ( )A. B. C. D.1答案B2.(2012北京,11,5分)在△ABC中,若a=2,b+c=7,cos B=-,则b= .答案 43.(2011北京,9,5分)在△ABC中,若b=5,∠B=,tan A=2,则sin A= ;a= .答案;2考点二解三角形的综合应用1.(2018北京文,14,5分)若△ABC的面积为(a2+c2-b2),且∠C为钝角,则∠B= ;的取值范围是.答案;(2,+∞)2.(2016北京文,13,5分)在△ABC中,∠A=,a=c,则= .答案 13.(2015北京文,11,5分)在△ABC中,a=3,b=,∠A=,则∠B= .答案4.(2014北京文,12,5分)在△ABC中,a=1,b=2,cos C=,则c= ;sin A= .答案2;5.(2017北京,15,13分)在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.解析(1)在△ABC中,因为∠A=60°,c=a,所以由正弦定理得sin C==×=.(2)因为a=7,所以c=×7=3.由a2=b2+c2-2bccos A得72=b2+32-2b×3×,解得b=8或b=-5(舍).所以△ABC的面积S=bcsin A=×8×3×=6.6.(2016北京,15,13分)在△ABC中,a2+c2=b2+ac.(1)求∠B的大小;(2)求cos A+cos C的最大值.解析(1)由余弦定理及题设得cos B=-==. 又因为0<∠B<π,所以∠B=.(2)由(1)知∠A+∠C=.cos A+cos C=cos A+cos-=cos A-cos A+sin A=cos A+sin A=cos-.因为0<∠A<,所以当∠A=时,cos A+cos C取得最大值1.思路分析第(1)问条件中有边的平方和边的乘积,显然应选用余弦定理求解.第(2)问用三角形内角和定理以及三角恒等变换将原三角函数式化为只含一个角的三角函数式,再注意角的取值范围,即可得出答案.评析本题考查余弦定理、三角恒等变换及三角函数的性质.属中档题.7.(2014北京,15,13分)如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.解析(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC·cos B-cos∠ADC·sin B=×-×=.(2)易知sin∠ADB=sin(π-∠ADC)=sin∠ADC=,在△ABD中,由正弦定理得==3.BD=·∠∠在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×=49.所以AC=7.思路分析(1)先得到sin∠ADC的值和∠BAD=∠ADC-∠B,再用两角差的正弦公式求值.(2)在△ABD中利用正弦定理求BD,然后在△ABC中利用余弦定理求AC.B组统一命题、省(区、市)卷题组考点一正弦、余弦定理的应用1.(2018课标Ⅱ,6,5分)在△ABC中,cos=,BC=1,AC=5,则AB=( )A.4B.C.D.2答案A2.(2016课标Ⅲ,8,5分)在△ABC中,B=,BC边上的高等于BC,则cos A=( )A. B. C.- D.-答案C3.(2018浙江,13,6分)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= .答案;34.(2016课标Ⅱ,13,5分)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= . 答案5.(2018课标Ⅰ,17,12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.解析(1)在△ABD中,由正弦定理知∠=∠.故°=∠,所以sin∠ADB=.由题设知,∠ADB<90°,所以cos∠ADB=-=.(2)由题设及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2×=25.所以BC=5. 方法总结正、余弦定理的应用原则:(1)正弦定理是一个连比等式,在运用此定理时,只要知道其中一对的比值或等量关系就可以通过该定理解决问题,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的应用.(3)在利用正、余弦定理判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.(4)在利用正弦定理求三角形解的个数问题时,可能会出现一解、两解或无解的情况,所以解答此类问题时需要进行分类讨论,以免漏解或增解.考点二解三角形的综合应用1.(2018课标Ⅲ,9,5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为-,则C=( )A. B. C. D.答案C2.(2017浙江,14,6分)已知△ABC中,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是,cos∠BDC= .答案;3.(2015湖北,13,5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一垂直于路面的山峰CD在西偏北30°的方向上,行驶600 m后到达B处,测得此山在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.答案1004.(2018天津,15,13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos-.(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.解析(1)在△ABC中,由正弦定理可得bsin A=asin B,又由bsin A=acos-,得asin B=acos-,即sin B=cos-,可得tan B=.因为B∈(0,π),所以B=.(2)在△ABC中,由余弦定理及a=2,c=3,B=,有b2=a2+c2-2accos B=7,故b=.由bsin A=acos-,可得sin A=.因为a<c,故cos A=.因此sin 2A=2sin Acos A=,cos 2A=2cos2A-1=.所以,sin(2A-B)=sin 2Acos B-cos 2Asin B=×-×=.5.(2017课标Ⅰ,17,12分)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为.(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC的周长.解析(1)由题意得acsin B=,即csin B=.由正弦定理得sin Csin B=.故sin Bsin C=.(2)由题意及(1)得cos Bcos C-sin Bsin C=-,即cos(B+C)=-.又B、C为三角形内角,所以B+C=,故A=.由题意得bcsin A=,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=.故△ABC的周长为3+.思路分析(1)首先利用三角形的面积公式可得acsin B=,然后利用正弦定理,把边转化成角的形式,即可得出sin Bsin C的值;(2)首先利用sin Bsin C的值以及题目中给出的6cos Bcos C=1,结合两角和的余弦公式求出B+C,进而得出A,然后利用三角形的面积公式和a的值求出bc的值,最后利用余弦定理求出b+c 的值,进而得出△ABC的周长.方法总结(1)应用正弦定理、余弦定理主要是将条件转化为仅有边或仅有角的形式,以便进一步化简计算,例如:将csin B=变形为sin Csin B=.(2)三角形面积公式:S=absin C=acsin B=bcsin A.(3)三角形的内角和为π.这一性质经常在三角化简中起到消元的作用,例如:在△ABC中,sin(B+C)=sin A. 6.(2016课标Ⅰ,17,12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.解析(1)由已知及正弦定理得,2cos C(sin Acos B+sin Bcos A)=sin C,2cos Csin(A+B)=sin C.故2sin Ccos C=sin C.可得cos C=,又C为三角形内角,所以C=.(2)由已知,得absin C=.又C=,所以ab=6.由已知及余弦定理得,a2+b2-2abcos C=7.故a2+b2=13,从而(a+b)2=25.所以a+b=5.所以△ABC的周长为5+.7.(2015课标Ⅱ,17,12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求∠;∠(2)若AD=1,DC=,求BD和AC的长.解析(1)S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得∠==.∠(2)因为S△ABD∶S△ADC=BD∶DC=2,所以BD=.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.C组教师专用题组考点一正弦、余弦定理的应用1.(2017山东,9,5分)在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cosC)=2sin Acos C+cos Asin C,则下列等式成立的是( )A.a=2bB.b=2aC.A=2BD.B=2A答案A2.(2016天津,3,5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=( )A.1B.2C.3D.4答案A3.(2013辽宁,6,5分)在△ABC中,内角A,B,C的对边分别为a,b,c.若asin Bcos C+csin Bcos A=b,且a>b,则∠B=( )A. B. C. D.答案A4.(2015广东,11,5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b= . 答案 15.(2015天津,13,5分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b-c=2,cos A=-,则a的值为.答案86.(2011北京文,9,5分)在△ABC中,若b=5,∠B=,sin A=,则a= .答案7.(2015安徽,16,12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解析设△ABC的内角A,B,C所对的边分别是a,b,c,由余弦定理得a2=b2+c2-2bccos∠BAC=(3)2+62-2×3×6×cos=18+36-(-36)=90,所以a=3.又由正弦定理得sin B=∠==,由题设知0<B<,所以cos B=-=-=.=在△ABD中,由正弦定理得AD=·-==.考点二解三角形的综合应用1.(2014江西,4,5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则△ABC的面积是( )A.3B.C.D.3答案C2.(2014山东,12,5分)在△ABC中,已知·=tan A,当A=时,△ABC的面积为.答案3.(2014四川,13,5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.73)答案604.(2012北京文,11,5分)在△ABC中,若a=3,b=,∠A=,则∠C的大小为.答案5.(2016浙江,16,14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;(2)若△ABC的面积S=,求角A的大小.解析(1)证明:由题意及正弦定理得sin B+sin C=2sin A·cos B,故2sin Acos B=sin B+sin(A+B)=sin B+sin Acos B+cos Asin B,于是sin B=sin(A-B).又A,B∈(0,π),故0<A-B<π,所以B=π-(A-B)或B=A-B,因此A=π(舍去)或A=2B,所以,A=2B.(2)由S=得absin C=,故有sin Bsin C=sin 2B=sin Bcos B.又sin B≠0,所以sin C=cos B.因为B,C∈(0,π),所以C=±B.当B+C=时,A=;当C-B=时,A=.综上,A=或.6.(2014湖南,18,12分)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的长.解析(1)在△ADC中,由余弦定理得cos∠CAD=-==.·(2)设∠BAC=α,则α=∠BAD-∠CAD.因为cos∠CAD=,cos∠BAD=-,所以sin∠CAD=-∠=-=,sin∠BAD=-∠=--=.于是sin α=sin(∠BAD-∠CAD)=sin∠BAD·cos∠CAD-cos∠BAD·sin∠CAD=×--×=.,在△ABC中,由正弦定理,得=∠故BC=·==3.∠7.(2013湖北,18,12分)在△ABC中,角A,B,C所对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.解析(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=.(2)由S=bcsin A=bc·=bc=5,得bc=20.又b=5,所以c=4.由余弦定理得a2=b2+c2-2bccos A=25+16-20=21,故a=.由正弦定理得sin Bsin C=sin A·sin A=sin2A=×=.8.(2013天津,16,13分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B=.(1)求b的值;(2)求sin-的值.解析(1)在△ABC中,由=,可得bsin A=asin B,又由bsin A=3csin B,可得a=3c,又a=3,故c=1.由b2=a2+c2-2accos B,cos B=,可得b=.(2)由cos B=,得sin B=,进而得cos 2B=2cos2B-1=-,sin 2B=2sin Bcos B=.所以sin-=sin 2Bcos-cos 2Bsin=.评析本题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角差的正弦公式以及三角形的正弦定理、余弦定理等基础知识.考查学生对所学知识的应用能力和基本运算求解能力.9.(2017江苏,18,16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.解析(1)由正棱柱的定义,CC1⊥平面ABCD,所以平面A1ACC1⊥平面ABCD,CC1⊥AC.记玻璃棒的另一端落在CC1上点M处.因为AC=10,AM=40,所以MC=-=30,从而sin∠MAC=.记AM与水面的交点为P1,过P1作P1Q1⊥AC,Q1为垂足,则P1Q1⊥平面ABCD,故P1Q1=12,=16.从而AP1=∠答:玻璃棒l没入水中部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图,O,O1是正棱台的两底面中心.由正棱台的定义,OO1⊥平面EFGH,所以平面E1EGG1⊥平面EFGH,O1O⊥EG.同理,平面E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.记玻璃棒的另一端落在GG1上点N处.过G作GK⊥E1G1,K为垂足,则GK=OO1=32.因为EG=14,E1G1=62,所以KG1=-=24,从而GG1===40.设∠EGG1=α,∠ENG=β,则sin α=sin∠=cos∠KGG1=.因为<α<π,所以cos α=-.在△ENG中,由正弦定理可得=,解得sin β=.因为0<β<,所以cos β=.于是sin∠NEG=sin(π-α-β)=sin(α+β)=sin αcosβ +cos αsinβ=×+-×=.记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,则P2Q2⊥平面EFGH,故P2Q2=12,从而=20.EP2=∠答:玻璃棒l没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)评析本小题主要考查正棱柱、正棱台的概念,考查正弦定理、余弦定理等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.【三年模拟】一、选择题(每小题5分,共25分)1.(2018北京朝阳二模,2)在△ABC中,AB=1,AC=,∠C=,则∠B=( )A. B.或 C. D.或答案D2.(2018北京石景山一模,4)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积为( )A.4B.4C.2D.2答案C3.(2019届北京通州期中,5)在△ABC中,b=30,c=15,C=25°,则△ABC解的情况是( )A.一解B.两解C.无解D.无法确定答案B4.(2019届北京潞河中学10月月考,8)已知a,b,c分别为△ABC三个内角A,B,C的对边,且(sin A+sinB)(a-b)=(sin B+sin C)c,则A=( )A. B. C. D.答案B5.(2019届北京四中期中文,4)在△ABC中,a=3,b=3,A=,则C为( )A. B. C. D.答案C二、填空题(每小题5分,共25分)6.(2018北京东城一模,9)在△ABC中,角A,B,C所对的边分别为a,b,c.若a2+c2=b2+ac,则B= . 答案7.(2018北京海淀二模,12)在△ABC中,a∶b∶c=4∶5∶6,则tan A= .答案8.(2019届北京一零一中学10月月考,11)△ABC中,若sin2A-sin2B+sin2C=sin Asin C,那么B= . 答案9.(2019届北京潞河中学10月月考文,11)在锐角△ABC中,AB=2,AC=2,△ABC的面积是4,则sinA= ,BC= .答案;410.(2019届北京十四中10月月考,11)在△ABC中,A=60°,b=3,面积S=3,则a= .答案三、解答题(共60分)11.(2019届北京四中期中,16)已知△ABC的三个内角分别为A,B,C,且2sin2(B+C)=sin 2A.(1)求A的大小;(2)若BC=7,AC=5,求△ABC的面积S.解析(1)∵2sin2(B+C)=sin 2A,∴2sin2A=2sin Acos A,∵sin A≠0,∴sin A=cos A,∴tan A=,∵0<A<π,∴A=60°.(2)在△ABC中,∵BC2=AB2+AC2-2AB·AC·cos A,BC=7,AC=5,∴49=AB2+25-5AB,∴AB2-5AB-24=0,∴AB=8或AB=-3(舍),∴△ABC的面积S=AB·AC·sin 60°=×8×5×=10.12.(2019届北京牛栏山一中期中,17)如图,已知△ABC中,点D在BC边上,AB=4,cos∠ADC=,AD=.(1)求∠B的大小;(2)若S△ABC=7,求线段DC的长.解析(1)因为cos∠ADC=,所以sin∠ADC=,又∠ADC+∠ADB=π,所以sin∠ADB=sin(π-∠ADC)=,在△ABD中,因为∠=∠,所以sin∠B=,又∠ADB为钝角,所以∠B=.(2)在△ABC中,因为S△ABC=7=AB·BC·sin∠B,所以BC=7,在△ABD中,cos∠ADB=-·,化简得4BD2+4BD-143=0,所以BD=,所以DC=.13.(2019届北京海淀期中,18)在△ABC中,c=7,sin C=.(1)若cos B=,求b的值;(2)若a+b=11,求△ABC的面积.解析(1)在△ABC中,由正弦定理得b=.因为B∈(0,π),且cos B=,所以sin B=-=.因为c=7,sin C=.所以b=×7×=5.(2)因为sin C=,所以cos C=±-=±.在△ABC中,由余弦定理得c2=a2+b2-2abcos C=(a+b)2-2ab(1+cos C),又因为c=7,a+b=11,所以①当cos C=时,72=112-2ab,解得ab=30.此时S△ABC=absin C=×30×=6;②当cos C=-时,72=112-2ab-,解得ab=45.而方程组无解,故舍去.综上,S△ABC=6.14.(2019届北京朝阳期中,17)在△ABC中,角A,B,C的对边分别为a,b,c,A=,tan B=-4,b=8.(1)求a;(2)求△ABC的面积.解析(1)因为tan B=-4,所以=-4,B为钝角,又sin2B+cos2B=1,所以sin B=,cos B=-,由=,得=,解得a=7.(2)由(1)知cos B=-,又因为sin C=sin(A+B)=sin Acos B+cos Asin B,所以sin C=-×+×=.所以S△ABC=absin C=×7×8×=6.15.(2017北京东城一模,15)在△ABC中,∠C=.(1)若c2=5a2+ab,求;(2)求sin A·sin B的最大值.解析(1)由余弦定理及已知得c2=a2+b2-2ab·cos=a2+b2+ab=5a2+ab,所以b2=4a2,所以b=2a.由正弦定理得=,所以=2.(2)由已知得A+B=,所以sin A·sin B=sin A·sin-=sin A·-=sin 2A+cos 2A-=sin-.因为0<A<,所以<2A+<,所以当2A+=,即A=时,sin A·sin B取得最大值,最大值为.思路分析(1)先利用余弦定理和已知条件得出a、b间的关系,再利用正弦定理求;(2)由已知得A+B=,将sin A·sin B化为关于A的正弦型函数,进而求最大值.16.(2017北京朝阳二模,15)在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c,c-2bsin C=0.(1)求角B的大小;(2)若b=,c=1,求a和△ABC的面积.解析(1)因为c-2bsin C=0,所以sin C-2sin Bsin C=0.因为0<C<π,所以sin C≠0,所以sin B=.因为0<B<π,且a>b>c,所以B=.(2)因为b=,c=1,B=,所以由余弦定理得()2=a2+1-2a·1×,则a2-a-2=0.解得a=2或a=-1(舍去).所以a=2.S△ABC=acsin B=×2×1×=.思路分析(1)由正弦定理可将c-2bsin C=0化为sin C-2sin Bsin C=0,即sin B=,可求角B的大小.(2)由余弦定理求出a,即可求S△ABC.。
2020年北京市高考数学试卷(精品解析版)
绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ).A. {1,0,1}-B. {0,1}C. {1,1,2}-D. {1,2}【答案】D 【解析】 【分析】根据交集定义直接得结果. 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题. 2. 在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A. 12i + B. 2i -+C. 12i -D. 2i --【答案】B 【解析】 【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果. 【详解】由题意得12z i =+,2iz i ∴=-. 故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.3. 在52)的展开式中,2x 的系数为( ).A. 5-B. 5C. 10-D. 10【答案】C 【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可. 【详解】()52x -展开式的通项公式为:()()()55215522r rrrr r r T Cx C x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A. 63B. 623+C. 123+D. 123+【答案】D 【解析】 【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭. 故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5. 已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A. 4 B. 5 C. 6 D. 7【答案】A 【解析】 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y ,则()()22341x y -+-=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345+=,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号, 故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6. 已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D 【解析】 【分析】作出函数2xy =和1y x =+的图象,观察图象可得结果.【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2xy =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7. 设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A. 经过点O B. 经过点P C. 平行于直线OP D. 垂直于直线OP【答案】B 【解析】 【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8. 在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A. 有最大项,有最小项 B. 有最大项,无最小项 C. 无最大项,有最小项 D. 无最大项,无最小项【答案】B 【解析】 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=, 故数列{}n T 中正项只有有限项:263T =,46315945T =⨯=.故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9. 已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)kk απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦; (2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)kk απβ=+-.所以,“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10. 2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A. 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B. 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C. 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D. 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A 【解析】 【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似值可得出结果.【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 函数1()ln 1f x x x =++的定义域是____________. 【答案】(0,)+∞ 【解析】 【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】 【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c =,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x ±=,所以,双曲线C=.故答案为:()3,0.【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 (1). (2). 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值.【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-, 因此,()22215PD =-+=()021(1)1PB PD ⋅=⨯-+⨯-=-.5;1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 【答案】2π(2,2k k Z ππ+∈均可)【解析】 【分析】根据两角和的正弦公式以及辅助角公式即可求得()()()22cos sin 1f x x ϕϕθ=+++,可得()22cos sin 12ϕϕ++=,即可解出.【详解】因为()()()()22cos sin sin 1cos cos sin 1f x x x x ϕϕϕϕθ=++=+++,()22cos sin 12ϕϕ++=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】 【分析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16. 如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】 【分析】(Ⅰ)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,然后利用线面平行的判定定理可证得结论;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可计算出直线1AA 与平面1AD E 所成角的正弦值. 【详解】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17. 在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值: (Ⅱ)sin C 和ABC 面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =. 【解析】 【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin ,sin A B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果. 【详解】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 168C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明) 【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34; (Ⅱ)1336,(Ⅲ)01p p < 【解析】 【分析】(Ⅰ)根据频率估计概率,即得结果;(Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果; (Ⅲ)先求0p ,再根据频率估计概率1p ,即得大小. 【详解】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1)()(1)3433436C -+-=; (Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题. 19. 已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】 【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+. 很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2kn la a a =.(Ⅰ)若(1,2,)n a n n ==,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -==,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列. 【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析. 【解析】 【分析】(Ⅰ)根据定义验证,即可判断; (Ⅱ)根据定义逐一验证,即可判断;(Ⅲ)解法一:首先,证明数列中的项数同号,然后证明2231a a a =,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得123,,a a a 成等比数列,之后证得1234,,,a a a a 成等比数列,同理即可证得数列为等比数列,从而命题得证. 【详解】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴不具有性质①;(Ⅱ){}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴具有性质①;{}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴具有性质②;(Ⅲ)解法一首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<<,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k km k k a a a q a a -==>,且11k m k a a q a +=≥ (*) 由②得:存在s t >,满足:21s s k s s t ta aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+, 由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>= (**)由(**)和(*)式可得:211111ks t k a q a qa q ---≥>,结合数列的单调性有:211k s t k ≥-->-, 注意到,,s t k 均为整数,故21k s t =--, 代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列. 解法二:假设数列中的项数均为正数:首先利用性质②:取3n =,此时23()kla a k l a =>, 由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设22131,(1)a a q a a q q ==>,然后利用性质①:取3,2i j ==,则224331121m a a q a a q a a q ===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l l a aa a a a a ==>,从而4k <, 与前面类似的可知则存在{,}{1,2,3}()k l k l ⊆>,满足24kl a a a =,若3,2k l ==,则:2341kla a a q a ==,与假设矛盾; 若3,1k l ==,则:243411kla a a q a q a ==>,与假设矛盾; 若2,1k l ==,则:22413kla a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =,然后利用性质①:取4,3i j ==,则数列中存在一项2264411231m a a q a a q a a q===,下面我们用反证法来证明451a a q ,否则,由数列的单调性可知34151a q a a q <<,在性质②中,取5n =,则25k k k k l la a a a a a a ==>,从而5k <, 与前面类似的可知则存在{}{}(),1,2,3,4k l k l ⊆>,满足25k la a a =, 即由②可知:22222115111k k l k l l a a q a a q a a q----===, 若214k l --=,则451a a q ,与假设矛盾;若214k l -->,则451a a q >,与假设矛盾;若214k l --<,由于,k l 为正整数,故213k l --≤,则351a a q ≤,与315a q a <矛盾;综上可知,假设不成立,则451a a q . 同理可得:566171,,a a q a a q ==,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.衡石量书整理。
2020年高考数学(北京卷)总体解析
2020年高考数学(北京卷)总体解析2015年的高考(课程)数学试卷(北京卷),以《普通高中数学课程标准(实验)》和《北京市普通高中新课程数学学科教学指导意见和模块学习要求(试行)》以及《2015年普通高等学校招生全国统一考试北京卷考试说明》为依据,在命题思路、考查方式、试题呈现方式等方面,遵循稳定与发展相结合,继承与创新相结合的原则.试卷设计坚持以学生为本的基本理念,既体现出了高考作为选拔性考试的要求,又在引导中学数学教学方面进行了不断的探索.试卷在总结和吸收高考数学北京卷十三年自主命题经验的基础上,尝试创新.试题整体难度、考查内容、呈现方式等方面突显北京特色,注重对学生未来发展所需要的基本数学素养的考查.在考查学生基础知识、基本技能的同时,注重对学生运用基本数学知识和数学思想方法,分析与解决问题综合能力的考查.合理控制试题难度与区分度,注意调动学生的学习积极性,正确引导中学数学教学.在促进有利于高校合理选才、科学评价上作出有益的探索.1、保持特色,注重基础知识的理解多年来,高考数学北京卷一直坚持“简洁、清晰、亲切、严谨”的风格,难度保持稳定,注重对数学基础知识、基本技能的全面考查.例如,理科第1、2、3、4、5、9、10、11、12、13、15、16、17等试题,注重考查数学基础知识和基本技能.这些知识和技能,既是数学课程标准和考试说明中所要求的,也是作为一名理科生进一步学习和未来发展所必需的.在试题表述上,力求准确简洁,贴近中学生的阅读习惯,避免在阅读和理解上设置障碍和陷阱.数学学习重在理解,而不是生搬硬套.对基础知识的考查,并不要求学生死记硬背概念、公式和法则,而是注重考查学生对基础知识的理解和把握.例如,理科卷第6题主要考查数列、基本不等式性质等基本数学知识的理解和简单运用.第16题的前两问主要考查概率的基本概念和简单计算,较为基础;第三问考查学生对方差概念的本质理解,充分反映了北京试题“多想少算”特点.理科卷第17、18、19、20题也从基本的问题开始.这样做法的一个优点在于不会让学生对数学敬而远之,无从下手.例如,18题的第一问求曲线在点处的切线方程;即使是第20题的第一问,要求写出集合的所有元素,主要考查的是学生能否对集合概念理解和运用.2、基于教材,重视主干知识的掌握教材是学校教学最基本、最主要的依据,也是落实课程标准内容和能力目标要求的载体.有些问题源于教材,试图通过这一导向,引导中学数学教学,改变教学中过分依赖复习资料、脱离教材、题海战术的弊端.选择和填空题中的基本题大多数是源于教材中的例题或习题.例如,理科卷第9题,写出的展开式中的系数;第11题,在极坐标系中,求点到直线的距离.这些都是常见的基本问题.第15题,已知三角函数表达式,先运用公式化简,然后求出最小正周期和在给定区间上的最小值.这基本上是教材上例(习)题的变形.虽然试题对考试说明中的各个部分的内容均有不同程度的涉及,但在考查要求上还是有主次之分,做到重点知识重点考查.重点考查的知识主要有函数与导数,平面向量与立体几何,三角函数,解析几何,统计与概率理科卷.`当然,这部分内容在基础性、层次性和综合性等方面还是有一个总体设计,并从一定程度上保持试卷整体结构的稳定性.3、着眼未来,强调数学的基本素养现代社会的发展,数学越来越成为每一个公民所必备的基本素养.因此数学学科的高考既关注学科本身的基础知识和基本技能,更需要关注于有利于促进学生终身发展的数学空间想象能力、推理论证能力、数据分析与处理能力以及问题解决能力等基本素养的考查.注重通性、通法的考查.例如,理科卷第5题,根据三棱锥的三视图来求三棱锥的表面积,这需要学生具有一定的空间想象能力.第17题,立体几何题,既考查了学生的空间想象能力,又考查了学生的推理论证能力.而16题则是对学生数据分析与处理能力以及问题解决能力的综合考查.4、关注实践,考察学生的应用意识加强数学与现实的联系是数学课程改革的一个重要导向,也是数学学习的一个重要目标.因此,试卷设计了适当的问题来考查学生阅读、理解,综合运用数学知识、思想方法解决实际问题的能力.问题背景的选择做到以下几个方面:(1)问题情景贴近学生的现实生活实际,不给学生因对现实问题的不了解而造成阅读、理解方面的困难.(2)问题设计基于真实资料和相关数据.(3)所解决的问题的结论有现实意义.今年北京高考文科试卷的第14题是考试成绩的一种统计分析方法.考试是检查学生学习状况的重要手段,但许多时候往往只用分数进行简单排队,加重了分数的竞争性和学生的心理负担.学会运用科学方法对考试结果进行分析,可以为教师个性化指导学生提供重要依据,也能够帮助学生分析自己的学习状况,发现自己的优势与不足.这道高考试题以此问题为背景.高三年级位学生参加期末考试,某班位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.此题考查学生阅读图表,提取信息、分析信息的能力,这些都是今后工作生活中需要具备的能力.在第一问里,关注的不是甲、乙两位同学名次之间的关系,而是他们各自的语文成绩与总成绩的相关程度,关注的是如何利用成绩分布信息分析一名学生在不同课程中的学习状况,找到他的优势科目.这对学生后续阶段的学习以及选择专业方向方面都有积极意义.在第二问里,同样是学生自己的数学成绩与自己的语文成绩比较,解此题的关键是要搞清楚丙在第一个图里对应的点是哪个.数学应用问题的考查,在一定程度上反映了学生对数学概念和规律的本质理解,更反映出学生运用数学方法定量客观理性分析问题的思维习惯,而这些正是一个现代公民应该必备的基本数学素养.5、适度综合,体现一定的层次性为高等学校选拔人才是高考的主要任务.试卷在保证基础性、难度适中的前提下,还需要考查学生的综合能力,以满足人才选拔的要求.因此在试题的整体设计上,注意到层次性,让不同能力水平的学生能够得到充分的展示.主要体现在以下两个方面:通过问题的灵活性来甄别学生的能力水平.解决问题的灵活性是一个学生数学素养的一个重要指标,试题设计了较为灵活的问题,或从不同的解法中反映出不同能力水平的问题,来考查学生这方面的素养.例如,第8题可以用多种不同方法得出结论,读图能力、理解能力、观察能力强的学生可以直接看出结论,而在这方面能力比较弱的学生则需要花较多的时间和精力.对综合性问题的解决能力则是一个学生综合素养的集中体现.试卷中设计了一定的综合性问题,主要是用以考查理科学生数学基础扎实,具备综合运用数学知识解决问题方面能力.例如理科卷18题第3问,求使得不等式恒成立的参数的最大值;19题第2问,判断是否存在满足特定条件的点,若存在,求点的坐标,若不存在,说明理由;20题的后两问.这些问题,都有一定的挑战性.综上,2015年的数学试卷继续保持了科学严谨、平实大气的特色,注重对学生数学基础知识、基本技能、数学素养考查;注重继承与创新相结合,稳定中求发展;试卷整体结构合理、难度适中、区分度合理;在开放性、探索性、应用性方面考查作出进一步的尝试.(人民网-教育频道)正文已结束,您可以按alt+4进行评论。
2020年高考北京版高考数学 6.3 等比数列
a3 a4
5, 2 5, 4
∴
a1
a1q2
5 2
,
a1q
a1q3
5 4
① ,②
由①÷②可得
1 q2 q q3
=2,∴q= 12 ,代入①解得a1=2,
∴an=2×
1 2
n1= 24n ,Sn=
2
1
1 2
1 1
2.等比中项法:若数列{an}中,an≠0且 an21 =an·an+2(n∈N*),则数列{an}是等
比数列.
3.通项公式法:若数列的通项公式可写成an=c·qn(c,q均是不为0的常数,n ∈N*),则数列{an}是等比数列. 4.前n项和公式法:若数列{an}的前n项和Sn=k-k·qn(k为常数且k≠0,q≠0, 1),则数列{an}是等比数列. 其中前两种方法常用于证明等比数列,后两种方法常用于选择题和填空题中.
方法技巧
方法1 等比数列的基本运算技巧
1.方程的思想:等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”, 通过列方程(组)求出关键量a1和q,问题可迎刃而解. 2.分类讨论的思想:等比数列的前n项和公式涉及对公比q的分类讨论,当
q=1时,数列{an}的前n项和Sn=na1;当q≠1时,数列{an}的前n项和Sn=
解析 ∵Sn<0,∴a1<0,
又数列{an}为递增等比数列,∴an+1>an,且|an|>|an+1|,
则-an>-an+1>0,则q=
an1 an
∈(0,1),
∴a1<0,0<q<1.故选A.
2020北京市高考数学试题逐题解析
=
|3−√2∙0|
√1+2
1
√3
1
=
,渐进线: = ,即 − √2 = 0,
√2
√6
√2
= √3.
(2020 北京高考 13)★★★☆☆
⃗⃗⃗⃗⃗ = 1 (
⃗⃗⃗⃗⃗ +
⃗⃗⃗⃗⃗ ),则|
⃗⃗⃗⃗⃗ | =_______;
⃗⃗⃗⃗⃗ ⋅
⃗⃗⃗⃗⃗ =_______.
(Ⅱ)∵ = − 1 , ∈ (0, ), ∴ = √1 − 2 = 4 3 ,
7
7
√
8
7
√3
由正弦定理得 = , ∴ 4√3 = , ∴ = 2 ,
7
1
1
√3
= 2 = 2 (11 − 8) × 8 × 2 = 6√3.
1
函数() = +1 + 的定义域是________.
>0
解:由题意{
,∴ > 0,定义域是(0, +∞).
+1≠0
(2020 北京高考 12)★★☆☆☆
2
2
已知双曲线: 6 − 3 = 1,则的右焦点的坐标为______;的焦点到其渐近线的距离是______.
解: = √6, = √3, = √6 + 3 = 3,右焦点(3,0), =
(2020 北京高考 1)☆☆☆☆☆
已知集合 = {−1,0,1,2}, = {|0 < < 3},则⋂ =
(){−1,0,1}
(){0,1}
(){−1,1,2}
(){1,2}
解:选.
2020年高考北京卷数学试题解析(精编版)
__________ 姓名:__________ 班级:__________一、选择题1.已知,a b,其中1,2a b==,且()a a b⊥-,则向量a和b的夹角是()A.2πB.3πC.4πD.6π2.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433 B.233 C.3 D.23.点P的直角坐标为(-,则点P的极坐标可以为()A.2)3πB.2()3π-C.5()6π- D.5)6π4.若△ABC的内角A,B,C的对边分别为a,b,c,且2,b c==,△ABC的面2S=,则a= ()A. 15.下列程序语句正确的是()A. 输出语句PRINT4A= B. 输入语句INPUT3x=C. 赋值语句*3A A A A=+- D. 赋值语句55a=6.若关于x方程()22120x m x m+-+-=的一个实根小于-1,另一个实根大于1,则实数m的取值范围是()A. (B. ()2,0- C. ()2,1- D. ()0,1 7.正实数x、y满足22424x y xy+-=,则2x y+的最大值是()A. 2B. 3C. 4D. 8二、填空题8.等比数列{}n a的前n项和为n S,若633SS=,则96SS=________.9.函数5()sin cos cos cos88f x x x ππ=+的最大值为_______ 【答案】1 【解析】 【分析】 因为5cos sin88ππ=-,所以可以把函数解析式化简,再逆用两角差的正弦公式化简函数解析式,利用正弦函数的性质求出最大值. 【详解】5()sin cos cos cossin cos cos sin 8888f x x x x x ππππ=+=-, 所以()sin 8f x x π⎛⎫=-⎪⎝⎭,因此()f x 的最大值为1. 【点睛】本题考查了二角差的正弦公式的逆用,正弦型函数的最值,考查了三角恒等变换.三、解答题10.(本小题满分12分)△ABC 的对边分别为a,b,c ,满足B c C b a sin cos +=. (1)求角B ; (2)若53cos =A ,试求C cos 的值.11.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线C 的方程为22((1)16x y -++=,直线l 的参数方程为x y t⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求直线l 和曲线C 的极坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,求AB 的值.12.(1)22sin 60cos180tan 225cos 30sin(90)++-+-(2)sin(2)sin()cos()cos()sin(3)παπαπαπαπα-⋅+⋅---⋅-【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】试题分析:由题意知2·()?0a a b a a b -=-=,所以·1a b =,设a 与b 的夹角为θ,则·1cos 2||?a b a bθ==,π3θ∴=,故选B . 考点:1、向量的概念;2、向量的数量积.2.A解析:【答案】A【解析】设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝⎛⎭⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13×3e 22≤⎝⎛⎭⎫1e 21+3e 22⎝⎛⎭⎫1+13=163. 所以1e 1+1e 2≤433.故选A.3.D解析:D 【解析】 【分析】先判断点P 的位置,然后根据公式:222,cos ,sin x y x y ρρθρθ=+==,求出ρ,根据点P 的位置,求出θ.【详解】因为点P 的直角坐标为(-,所以点P 在第二象限.tan ρθ===,因为点P 在第二象限, 所以52()6k k Z θππ=+∈,故本题选D.【点睛】本题考查了点的直角坐标化为极坐标,关键是要知道点的具体位置.4.A解析:A 【解析】 【分析】根据三角形面积公式可得12sinA cos A =,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【详解】因为2b =,5c =,面积51522S cosA bcsinA sinA ===,所以1 2sinA cos A =.所以2222215cos cos 144sin A cos A A A cos A +=+==.所以25cosA =,5 sin A =.所以222252452259815a b c bccosA =+-=+-⨯⨯⨯=-=.故选A. 【点睛】本题考查正余弦定理,面积公式,基础题.5.C解析:C 【解析】试题分析:(1)赋值语句一般格式:变量名=表达式;(2)输入语句一般格式:INPUT 变量名;(3)输出语句一般格式:PRINT 表达式. 考点:基本算法语句.6.D解析:D 【解析】 试题分析:令,由题设,即,解之得,故应选D.考点:二次函数的图象和性质的运用.7.C解析:C 【解析】 分析】对等式22424x y xy +-=的左边进行配方,得2(2)42x y xy -=-,利用平方数的性质,x ,y 是正实数,可得2y x ≤,所以有222x y x x +≤+,利用基本不等式,求出2(2)x x+的最小值,最后求出2x y +的最大值.【详解】22242(2)4204,02x y x x y x y xy y x -=+-=⇒-≥>∴≤, 222x y x x ∴+≤+,2202224x x x x x>∴+≥⋅=(当且仅当1x =,取等号),因此2x y +的最大值为4,故本题选C.【点睛】本题考查了求代数式的最大值,由已知式子得到完全平方式,最后利用基本不等式是解题的关键. 评卷人 得分二、填空题8.【解析】设公比为q(q≠0),由题意知q ≠-1,根据等比数列前n 项和的性质,得==1+q3=3, 即q3=2. 于是===. 解析:【解析】设公比为q (q ≠0),由题意知q ≠-1,根据等比数列前n 项和的性质,得==1+q 3=3, 即q 3=2. 于是===.9.无评卷人 得分三、解答题10.无11.选修4-4:坐标系与参数方程 (1)l :()6R πθρ=∈,C :243cos 2sin 30ρρθρθ-+-=;(237【分析】(1)直线l 的参数方程x y t⎧=⎪⎨=⎪⎩,利用代入法消去参数可得其普通方程,再化为极坐标方程即可;圆的标准方程化为一般方程,再利用222x y ρ+=,cos x ρθ=,sin y ρθ=,可得结果;(2)将6πθ=代入2cos 2sin 30ρθρθ-+-=化简,可得12||AB ρρ=-=.【详解】(1)由x =得y x=,所以l 的极坐标方程为()6R πθρ=∈,由22((1)16x y -++=得22230x y y +-+-=, 又因为222x y ρ+=,cos x ρθ=,sin y ρθ=,所以曲线C 的极坐标方程为2cos 2sin 30ρθρθ-+-=.(2)将6πθ=代入2cos 2sin 30ρθρθ-+-=,可得2630ρρρ-+-=,即2530ρρ--=, 所以125ρρ+=,123ρρ⋅=-,由极坐标几何意义得12||AB ρρ=-===.12.(1)-1;(2)sin α 【解析】 【分析】(1)利用特殊角三角函数求解即可;(2)利用诱导公式化简求值即可 【详解】(1)原式=33111144-+--=- (2)由诱导公式得()()sin sin cos sin cos sin αααααα---=-【点睛】本题考查三角函数的诱导公式及特殊角的三角函数值,熟记公式准确计算是关键,是基础题。
2020北京高三数学高考考试大纲说明及解析素材
2020北京高三数学高考考试大纲说明及解析素材《考试说明》的研究与思考数学教研室根据《普通高中数学课程标准(实验)》,以及《北京市普通高中新课程数学学科教学指导意见和模块学习要求(试行)》制定的北京市数学学科的《考试说明》是高三教师和学生复习备考的重要参考资料,同时也是高考北京试卷命题的依据.它不但明确了高考的性质、考查范围和内容,也对考试的形式、题型、分值等做出了规定,使教师和考生能准确地了解高考的内容和形式.一、总体分析:1.试卷结构:全卷共20题,分为选择题、填空题和解答题三种题型。
三种题型题目的个数分别为8、6、6,分值分别为40、30、80.试卷由容易题、中等题、难题组成,并以中等题为主,总体难度适当.2020年北京市数学高考试卷不设选做题.2.考试内容:2020年北京高考数学理科考试含19个板块内容,其中包括课标必修的5个模块和选修系列2、选修系列4的4-1和4-4.其中,对选修系列4中的4-1及4-4内容,试题将按照实际难度排列在试卷中,题型为选择题或填空题,分值为10分.文科数学考试含16个板块内容,其中包含课标中必修的5个模块及选修系列1的相关内容.根据课程标准要求,为适应信息社会需要,2020年高考数学文、理科均新增了算法初步和统计两部分内容,文科另增加了框图等内容.具体增减考点如下:(1)新增加的考点:文科:幂函数、算法初步、函数与方程理论、茎叶图、几何概型、三视图、量词、推理与证明、框图、复数.理科:幂函数、算法初步、函数与方程理论、茎叶图、几何概型和条件概率、三视图、量词、推理与证明、定积分,几何证明选讲,极坐标、参数方程.(2)删减的考点:反函数的符号表示,任意角的余切、正割、余割,反三角函数,三垂线定理及逆定理,含有绝对值的不等式、分式不等式的解法,线段的定比分点公式、平移,两直线所成角的公式,极限、连续等.3.能力要求:依据《课程标准》和《考试大纲》,2020年北京高考数学科对能力体系进行了调整、细化和解释.数学科将以往的“思维能力、运算能力、空间想象能力、分析问题和解决问题的能力”这四种能力调整为“抽象概括能力、推理论证能力、运算求解能力、空间想象能力、数据处理能力、分析问题和解决问题的能力”的六种能力,并作了详细的分层解释.其中空间想象能力、运算求解能力、分析问题和解决问题的能力分别和旧考试说明中的空间想象能力、运算能力、分析问题和解决问题的要求基本一致.抽象概括能力、推理论证能力、数据处理能力为新增能力.推理论证能力是伴随着课标中推理与证明的内容产生的,课标指出,推理与证明的内容是对学生已经学过的基本证明方法的总结,所以对于这部分内容我们更加注重方法层面的考查,注重各种推理与证明方法的应用,而对概念的抽象表述不做过多追究。
2020年高考数学北京卷 试题+答案详解
2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题:10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = ().A.{1,0,1}- B.{0,1} C.{1,1,2}- D.{1,2}2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A.12i +B.2i-+ C.12i- D.2i--3.在52)-的展开式中,2x 的系数为().A.5- B.5C.10- D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A.6+B.6+C.12+D.12+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.76.已知函数()21x f x x =--,则不等式()0f x >的解集是().A.(1,1)- B.(,1)(1,)-∞-+∞ C.(0,1)D.(,0)(1,)-∞+∞ 7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线().A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B.30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C.60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D.60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()ln 1f x x x =++的定义域是____________.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD ⋅=_________.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.17.在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)19.已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.20.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.21.已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =.(Ⅰ)若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.参考答案一、选择题.1.【答案】D【解析】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D.2.【答案】B【解析】由题意得12z i =+,∴2iz i =-.故选B.3.【答案】C【解析】)52-展开式的通项公式为()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得1r =,则2x 的系数为()()11522510C -=-⨯=-.故选C.4.【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭D.5.【答案】A【解析】设圆心(),C x y 1=,化简得()()22341x y -+-=,∴圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,∴||1||OC OM +≥5==,∴||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选A.6.【答案】D【解析】∵()21xf x x =--,∴()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.∴不等式()0f x >的解集为()(),01,-∞+∞ .故选D.7.【答案】B【解析】如图所示,线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选B.8.【答案】B【解析】由题意可知,等差数列的公差511925151a a d --+===--,通项公式为()()11912211n a a n d n n =+-=-+-⨯=-,∵123456701a a a a a a a <<<<<<=<< ,50T <,∴()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,∴数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.∴数列{}n T 中存在最大项,且最大项为4T .故选B.9.【答案】C【解析】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,∴存在k Z ∈使得(1)k k απβ=+-.∴“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选C.10【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn ︒,∴单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tan n ︒,其周长为3012tan n n︒,∴303012sin 12tan303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选A.二、填空题.11【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,∴0x >,故答案为(0,)+∞.12【答案】(1)()3,0.【解析】在双曲线C中,a =,b =,则3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C的渐近线方程为2y x =±,即0x ±=,∴双曲线C 的焦点到其渐近线的距离为23312=+.故答案为()3,0;3.13【答案】(1)5;(2)1-.【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,∴()22215PD =-+= ,()021(1)1PB PD ⋅=⨯-+⨯-=- .故答案为5;1-.14【答案】2π(2,2k k Z ππ+∈均可)【解析】∵()()()()22cos sin sin 1cos cos sin 1sin f x x x x ϕϕϕϕθ=++=+++,∴()22cos sin 12ϕϕ++=,解得sin 1ϕ=,故可取2ϕπ=.故答案为2π(2,2k k Z ππ+∈均可).15【答案】①②③【解析】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,∴甲的斜率的相反数比乙的大,∴甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,当甲企业在[]12,t t 这段时间内时,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,∴甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,都已达标;③正确;故答案为①②③.三、解答题16【答案】(Ⅰ)证明见解析;(Ⅱ)23.【解析】(Ⅰ)如图所示,在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,∴11//AB C D 且11AB C D =,∴四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,∴1//BC 平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅.∴直线1AA 与平面1AD E 所成角的正弦值为23.17【答案】选择条件①(Ⅰ)8(Ⅱ)3sin 2C =,63S =;选择条件②(Ⅰ)6(Ⅱ)7sin 4C =,1574S =.【解析】选择条件①(Ⅰ)17,cos 7c A ==- ,11a b +=2222cos a b c bc A =+- ,∴2221(11)72(11)7()7a a a =-+--⋅⋅-,∴8a =.(Ⅱ)2143cos (0,)sin 1cos 77A A A A π=-∈∴=-=,由正弦定理得873sin sin sin sin 2437a c C A C C=∴=∴=113sin (118)863222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈ ,∴223757sin 1cos ,sin 1cos 816A AB B =-==-=,由正弦定理得:116sin sin 3757816a b a aa A B -=∴=∴=(Ⅱ)sin sin()sin cos sin cos C A B A B B A=+=+918161684=+=11sin (116)62244S ba C ==-⨯⨯=.18【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;(Ⅱ)1336,(Ⅲ)01p p <.【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,∴3人中恰有2人支持方案一概率为2121311313((1()3433436C -+-=;(Ⅲ)01p p <19【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【解析】(Ⅰ)∵()212f x x =-,∴()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,∴切点为()1,11,由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠,∵()y f x =在点()2,12t t-处的切线方程为()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,∴()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果相同),则()423241441144(2444t t S t t t t t++==++,∴()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,∴()S t 在()0,2上递减,在()2,+∞上递增,∴2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==.20【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【解析】(1)设椭圆方程为()222210x y a b a b+=>>,由题意可得224112ab a b⎧+=⎪⎨⎪=⎩,解得2282a b ⎧=⎨=⎩,∴椭圆方程为22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为()4y k x =+,与椭圆方程22182x y +=联立可得()222448x k x ++=,即()()222241326480k x k x k +++-=,则2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++,令4x =-,可得()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++,同理可得()()222142Q k x y x -++=+.显然0P Q y y <,且PQPB y PQy =,注意到()1212442122P Q x x y y k x x ⎛⎫+++=-++ ⎪++⎝⎭()()()()()()()12211242422122x x x x k x x +++++=-+⨯++,而()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,∴0,P Q P Q y y y y +==-.从而1PQPB y PQy ==.21【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①;(Ⅱ)∵2*(2)1*,,,2,2i j i ja i j N i j i j N a --∀∈>=-∈,∴22i i j ja a a -=,∴{}n a 具有性质①;∵2*(2)11,3,1,2,22k l n k n la n N n k n l n a a ---∀∈≥∃=-=-===,∴{}n a 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<,第一种情况:若01N =,即01230a a a a <<<<< ,由①可知存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<,由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k la a >>,而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*)由②得存在s t >,满足:21s s k s s t ta aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+,由()111s s a a q s k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>=(**)由(**)和(*)式可得:211111ks t k a q a qa q ---≥>,结合数列的单调性有:211k s t k ≥-->-,注意到,,s t k 均为整数,故21k s t =--,代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为11n n a a q-=.即数列{}n a 为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k l a a >>,而3kkk la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设()22131,1a a q a a qq ==>,利用性质①取3,2i j ==,则224331121m a a q a a q a a q===,即数列中必然存在一项的值为31a q ,下面证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l l a aa a a a a ==>,从而4k <,与前面类似的可知则存在{}{}(),1,2,3k l k l ⊆>,满足24k l a a a =,若3,2k l ==,则:2341k la a a q a ==,与假设矛盾;若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾;若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾;即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =,同理可得:455161,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.。
2020年北京市高考数学试卷(pdf详细解析版)
的“割圆术”相似,数学家阿尔卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形(各边均与圆相切的正 6n 边形)的周长,将它们的算术平均数作为 2π的近似值。按照阿尔卡西的 方法, π 的近似值的表达方式是
(A) 3n(sin 30 tan 30)
n
n
答案: (0, )
解析:要使
x
1
1
有意义,则有
x
1
0
,即
x
1
,要使
ln
x
有意义,则
x
0
,所以函数的定义域是
(0,
)
(12)已知双曲线 C : x2 y2 1,则 C 的右焦点的坐标为________; C 的焦点到其渐近线的距离是________. 63
答案:(3,0), 3
解析:设双曲线的焦距为 2c,则有 c2 6 3 9 ,故 c=3,则 C 的右焦点的坐标为(3,0).易知 C 的焦点到其渐
(7)设抛物线的顶点为 O ,焦点为 F ,准线为 l ,P 是抛物线上异于 O 的一点,过 P 做 PQ ⊥ l 于 Q ,则线段 FQ
的垂直平分线
(A)经过点 O
(B)经过点 P
第 3页 / 共 17页
(C)平行于直线 OP
答案:B
(D)垂直于直线 OP
解析:如图,连接 PF,由抛物线的定义可知, PF PQ ,所以线段 FQ 的垂直平分线经过点 P,故选 B
(5)已知半径为 1 的圆经过点 (3,4) ,则其圆心到原点的距离的最小值为
(A)4 (C)6 答案:A
(B)5 (D)7
解析:由已知,圆心在以点 A(3, 4) 为圆心,1 为半径为圆上,当圆心在下图点 B 位置时,圆心到原点的距离最 小,所以圆心到原点的距离的最小值为 OB OA 1 32 42 1 5 1 4 ,选 A
2020年普通高等学校招生全国统一考试数学理试题(北京卷,解析版)
2020年普通高等学校招生全国统一考试数学理试题(北京卷,解析版)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共140分)【名师简评】2020年北京市的高考数学试题从整体看,体现“总体稳定,深化能力”的特点,在保持2020年特点的同时,又力争创新与变化;试题不仅注意对基础知识的考查,更注重了对能力的考查。
从考生角度来说,试卷总体难度“没有想象的那么难”。
试题有较好的梯度,注重认知能力和数学运用能力的考查,稳中求新。
1. 忠实地遵循了《普通高中新课程标准教学要求》和2020年《考试说明》。
2. 题型稳定,突出对基本知识但考查,全卷没有一道偏题、怪题。
全卷结构、题型包括难度基本稳定。
填空题比较基础,平和。
不需要太繁的计算,考生感觉顺手。
许多试题源于课本,略高于课本。
3. 把关题与往年相似,多题把关,有和好的区分度。
如填空题第14题,第19题的第二问,和第20题,更能有效区分不同能力层次的考生群体。
4. 深化能力立意。
知识与能力并重。
全卷在考查知识的同时,注重考查学生的数学基本能力。
许多试题实际上并不难,知识点熟悉,但需要考生自主综合知识,才能解决问题。
5. 关注联系,有效考查数学思想方法。
(1) 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = (A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}(2)在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C(5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线⊥”是“函数f(x)=(xa+b)g(xb-a)为一次函数”的(6)a、b为非零向量。
2020北京高三数学高考考试大纲说明素材
数学Ⅰ.试卷结构全卷包括第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题.全卷20题,分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不要求写出计算过程或证明过程;解答题包括计算题、证明题、应用题等,要求写出文字说明、演算步骤或证明过程.三种题型的题目个数分别为8、6、6;分值分别为40、30、80.试卷由容易题、中等难度题和难题组成,并以中等难度题为主,总体难度适当.Ⅱ.考试内容及要求一、考核目标与要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力.根据普通高等学校对新生文化素质的要求,依据教育部2020年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》,以及《北京市普通高中新课程数学学科教学指导意见和模块学习要求(试行)》,确定必修课程、选修课程系列2和系列4中的4—1,4-4的内容为理工类高考数学科的考试内容.关于考试内容的知识要求和能力要求的说明如下.1.知识要求对知识的要求由低到高分为了解、理解、掌握、灵活和综合运用四个层次,分别用A,B,C,D表示,且高一级的层次要求包含低一级的层次要求.了解、理解、掌握是对知识的基本要求(详见考试范围与要求层次),灵活和综合运用不对应具体的考试内容.(1)了解(A):对所列知识内容有初步的认识,会在有关的问题中进行识别和直接应用.(2)理解(B):对所列知识内容有理性的认识,能够解释、举例或变形、推断,并能利用所列的知识解决简单问题.(3)掌握(c):对所列知识内容有较深刻的理性认识,形成技能,并能利用所列知识解决有关问题.(4)灵活和综合运用(D):系统地把握知识的内在联系,并能运用相关知识分析、解决比较综合的问题.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变形.(2)抽象概括能力:能在对具体的实例抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.(3)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题的正确性.(4)运算求解能力:会根据概念、公式、法则正确地对数、式、方程、几何量等进行变形和运算;能分析条件,寻求与设计合理、简捷的运算途径;能根据要求对数据进行估计,并能近似计算.(5)数据处理能力:会依据统计中的方法对数据进行整理、分析,并解决给定的实际问题.(6)分析问题和解决问题的能力:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相:关学科、生产、生活中简单的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,创造性地解决问题.3.个性品质要求考生能以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求(1)对数学基础知识的考查,既全面又突出重点,注重学科的内在联系和知识的综合.(2)数学思想和方法是数学知识在更高层次上的抽象和概括.对数学思想和方法的考查与数学知识的考查结合进行,考查时,从学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧.(3)对数学能力的考查,以抽象概括能力和推理论证能力为核心,全面考查各种能力.强调探究性、综合性、应用性.突出数学试题的能力立意,坚持素质教育导向.(4)注重试题的基础性、综合性和层次性.合理调控综合程度,坚持多角度,多层次的考查.。
精品解析:2020年北京市高考数学试卷(原卷版)
ln
x
的定义域是____________.
12.已知双曲线 C : x2 y2 1 ,则 C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是 63
_________.
13.已知正方形
ABCD
的边长为
2,点
P
满足
AP
1
( AB
AC)
,则 |
PD
|
_________;
2
PB PD பைடு நூலகம்________.
A. {1, 0,1}
B. {0,1}
C. {1,1, 2}
D. {1, 2}
2.在复平面内,复数 z 对应的点的坐标是 (1, 2) ,则 i z ( ).
A. 1 2i
B. 2 i
C. 1 2i
D. 2 i
3.在 ( x 2)5 的展开式中, x2 的系数为( ).
A. 5
B. 5
C. 10
其中所有正确结论的序号是____________________.
三、解答题共 6 小题,共 85 分,解答应写出文字说明,演算步骤或证明过程. 16.如图,在正方体 ABCD A1B1C1D1 中,E 为 BB1 的中点.
(Ⅰ)求证: BC1 / / 平面 AD1E ;
(Ⅱ)求直线 AA1 与平面 AD1E 所成角的正弦值. 17.在 ABC 中, a b 11,再从条件①、条件②这两个条件中选择一个作为己知,求:
污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在 t1,t2 这段时间内,甲企业的污水治理能力比乙企业强;
②在 t2 时刻,甲企业的污水治理能力比乙企业强; ③在 t3 时刻,甲、乙两企业的污水排放都已达标;
2020年北京市高考数学试卷(pdf详细解析版)
必要性:若 sin α sin β ,则有 sin α sin β 0 ,所以 2 cos α β sin α β 0 ,所以 cos α β 0 或者
2
2
2
sin α β 0 , 若 cos α β 0 , 则 有 α β nπ π (n Z) , 所 以 α 2nπ π β , 令 k 2n 1 , 则 有
(4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为
(A) 6 3
(B) 6 2 3
(C)12 3
(D)12 2 3
答案:D
解析:三棱柱的直观图如图所示, △ABC 是等边三角形,所以三棱柱的表
面积为 2
3 4
BC
2
3
BC
AA1
3 22 3 2 2 12 2 2
3 ,故选 D
2
2
2
2
kπ (1)k ;若 sin α β 0 ,则有 α β nπ ,所以 α 2nπ β ,取 k 2n ,则有 kπ (1)k .
2
2
所以 sin α sin β 故“存在 k Z ,使得 kπ (1)k ”是“ sin sin ”的必要条件.
第一部分(选择题共 40 分) 一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合 A {1, 0,1, 2}, B {x 0 x 3} ,则 A B
(A){1, 0,1}
(B) {0,1}
(C){1,1, 2}
(D){1, 2}
(3)在 ( x 2)5 的展开式中, x2 的系数为
(A) 5 (C) 10
(B) 5
(D)10
2020年高考数学北京卷 试题详解
n
n
∴ 2
12n sin
30 n
12n tan 2
30 n
6n
sin
30 n
tan
30 , n
则
3n
sin
30 n
tan
30 n
.故选
A.
2020 年高考数学北京卷试题详解 第 3 页,共 11 页
第二部分(非选择题 共 110 分)
二、填空题:共 5 小题,每小题 5 分,共 25 分.
tan
60 n
D.
6n sin
60 n
tan
60 n
【答案】A
【解析】单位圆内接正
6n
边形的每条边所对应的圆周角为
360 n6
60 n
,
每条边长为 2 sin 30 ,∴单位圆的内接正 6n 边形的周长为12n sin 30 ,
n
n
单位圆的外切正 6n 边形的每条边长为 2 tan 30 ,其周长为12n tan 30 ,
AP
1
AB AC
1 2,0 1 2, 2 2,1 ,
则点
2
P 2,1
,
PD
2
2,1
2 , PB
0,
1
,
∴ PD
22 12
5 , PB PD 0 2 1 (1) 1 .
故答案为 5 ; 1.
14.若函数 f (x) sin(x ) cos x 的最大值为 2,则常数 的一个取值为________.
11.函数
f
(x)
1 x 1
ln
x
的定义域是____________.
【答案】 (0, )
【解析】由题意得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种命题的相互关系
√
充要条件
√
简单的逻辑联结词
√
全称量词与存在量词◇
√
考试内容2
要求层次
A
B
C
函数概念与指数函数、对数函数、幂函数
函数
函数的概念与表示
√
映射
√
单调性与最大(小)值
√
奇偶性
☆
√
指数函数
有理指数幂
√
△
实数指数幂◇
√
幂的运算
√
指数函数的概念、指数函数的图象及其性质
√
△
对数函数
对数的概念及其运算性质
√
简单的恒等变换
√
解三角形
正弦定理、余弦定理
√
△
解三角形
√
△
考试内容4
要求层次
A
B
C
数列
数列的概念
数列的概念和表示法
√
等差数列、
等比数列
等差数列的概念
√
等比数列的概念
√
等差数列的通项公式与前 项和公式
√
等比数列的通项公式与前 项和公式
√
考试内容5
要求层次
A
B
C
不等式
一元二次
不等式
解一元二次不等式
√
简单的
△
弧度与角度的互化◇
√
任意角的正弦、余弦、正切的定义
√
用单位圆中的三角函数线表示正弦、余弦和正切
√
△
弧度与角度的互化◇
√
任意角的正弦、余弦、正切的定义
√
用单位圆中的三角函数线表示正弦、余弦和正切
√
诱导公式
√
△
同角三角函数的基本关系式
√
周期函数的定义、三角函数的周期性
√
函数 , , 的图象和性质
√
函数 的图象
√
用三角函数解决一些简单的实际问题◇
√
三角
恒等
变换
两角和与差的正弦、余弦、正切公式
√
二倍角的正弦、余弦、正切公式
√
排列与组合
排列、组合的概念
√
排列数公式、组合数公式
√
用排列与组合解决一些简单的实际问题
√
二项式定理
用二项式定理解决与二项展开式有关的简单问题
√
△
考试内容16
要求层次
A
B
C
统计
随机抽样
简单随机抽样
√
分层抽样和系统抽样
√
△
用样本
估计总体
频率分布表,直方图、折线图、茎叶图
√
样本数据的基本的数字特征(如平均数、标准差)
圆与方程
圆的标准方程与一般方程
√
直线与圆的位置关系
√
两圆的位置关系◇
√
考试内容13
要求层次
A
B
C
圆锥
曲线
与方程
圆锥曲线
椭圆的定义及标准方程
√
椭圆的简单几何性质
√ቤተ መጻሕፍቲ ባይዱ
抛物线的定义及标准方程
√
抛物线的简单几何性质
√
双曲线的定义及标准方程
√
△
双曲线的简单几何性质
√
△
直线与圆锥曲线的位置关系
√
曲线与方程
曲线与方程的对应关系
平面向量
平面向量的相关概念
√
△
向量的线
性运算
向量加法与减法
√
向量的数乘
√
两个向量共线
√
平面向量的基本定理及
坐标表示
平面向量的基本定理
√
平面向量的正交分解及其坐标表示
√
用坐标表示平面向量的加法、减法与数乘运算
√
用坐标表示的平面向量共线的条件
√
平面向量
的数量积
数量积
√
数量积的坐标表示
√
用数量积表示两个向量的夹角
4.知识要求:
根据高中课程标准和北京地区的实际情况,在考试范围与要求层次中,除了新增加或删减的内容作了必要的说明外,也有一些重要知识点的要求层次与以往相比做了一些调整.如:函数的奇偶性,由原来的A层次要求调整到B层次要求;在导数及其应用中,利用导数研究函数的单调性、函数的极值、最值中,都由原来的B层次要求调整到C层次要求;又如:函数中的反函数,由原来B层次要求调整到A层次要求;三角函数中的诱导公式、正弦定理、余弦定理都由原来的C层次要求调整到B层次要求;在导数及其应用中:导数的概念及其几何意义,也由原来B、C层次的要求调整到A、B层次要求;复数的四则运算也由原来C层次要求调整到B层次要求;特别是理科解析几何中对“双曲线”的要求,由原来C层次要求调整到A层次要求,等等.这些调整是我们高三数学教师和考生在备考中应当关注的问题,要有目的、有计划的进行复习.
其中空间想象能力、运算求解能力、分析问题和解决问题的能力分别和旧考试说明中的空间想象能力、运算能力、分析问题和解决问题的要求基本一致.抽象概括能力、推理论证能力、数据处理能力为新增能力.
推理论证能力是伴随着课标中推理与证明的内容产生的,课标指出,推理与证明的内容是对学生已经学过的基本证明方法的总结,所以对于这部分内容我们更加注重方法层面的考查,注重各种推理与证明方法的应用,而对概念的抽象表述不做过多追究。
√
四种命题的相互关系
√
充要条件
√
简单的逻辑联结词
√
全称量词与存在量词◇
√
考试内容2
要求层次
A
B
C
函数概念与指数函数、对数函数、幂函数
函数
函数的概念与表示
√
映射
√
单调性与最大(小)值
√
奇偶性
☆
√
指数函数
有理指数幂
√
△
实数指数幂◇
√
幂的运算
√
指数函数的概念、图象及其性质
√
△
对数函数
对数的概念及其运算性质
√
换底公式◇
√
对数函数的概念、图象及其性质
√
△
指数函数 与对数函数 互为反函数( 且 )
√
△
幂函数◇
幂函数的概念
√
幂函数 , , , , 的图象及其性质
√
函数的模型
及其应用
函数的零点◇
√
二分法◇
√
函数模型的应用
√
△
考试内容3
要求层次
A
B
C
三角函数、
三角恒等
变换、
解三角形
三角函数
任意角的概念和弧度制
√
《考试说明》的研究与思考
数学教研室
根据《普通高中数学课程标准(实验)》,以及《北京市普通高中新课程数学学科教学指导意见和模块学习要求(试行)》制定的北京市数学学科的《考试说明》是高三教师和学生复习备考的重要参考资料,同时也是高考北京试卷命题的依据.它不但明确了高考的性质、考查范围和内容,也对考试的形式、题型、分值等做出了规定,使教师和考生能准确地了解高考的内容和形式.
对比新、旧考试说明可以看出抽象概括能力和推理论证能力替代了原来的思维能力.事实上,对考生抽象概括能力和推理论证能力一直是北京高考数学试卷考查的重点,北京市的很多高考试题都蕴含着对这两个方面数学能力的考查, 对这两种能力的考查要求大家并不陌生.
数据处理能力:会依据统计中的方法对数据进行整理、分析,并解决给定的实际问题.对数据处理能力的明确要求,会使统计知识与方法的考查得到加强.
√
△
换底公式◇
√
对数函数的概念、对数函数的图象及其性质
√
△
指数函数 与对数函数 互为反函数( 且 )
√
△
幂函数◇
幂函数的概念
√
幂函数 , , , , 的图象及其性质
√
函数的模型
及其应用
函数的零点◇
√
二分法◇
√
函数模型的应用
√
△
考试内容3
要求层次
A
B
C
三角函数、
三角恒等
变换、
解三角形
三角函数
任意角的概念和弧度制
☆
√
考试内容14
要求层次
A
B
C
算法
初步◇
算法及其
程序框图
算法的含义
√
程序框图的三种基本逻辑结构
√
基本算法语句
输入语句、输出语句、赋值语句、条件语句、循环语句
√
考试内容15
要求层次
A
B
C
计数
原理
加法原理、
乘法原理
分类加法计数原理、分步乘法计数原理
√
△
用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题
线性规划
用二元一次不等式组表示平面区域
√
简单的线性规划问题
√
基本不等式: ( )
用基本不等式解决简单的最大(小)值问题
√
考试内容6
要求层次
A
B
C
推理与证明
合情推理与
演绎推理◇
合情推理
√
归纳和类比
√
演绎推理
√
直接证明与
间接证明◇
综合法
√
分析法
√
反证法
√
数学归纳法
数学归纳法
√
试内容7
要求层次
A
B
C
平面
向量
√
△
线、面平行或垂直的判定
√
线、面平行或垂直的性质
√
*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。