广东省佛山市顺德区高中数学《基本初等函数》 新人教A版必修1
新人教A版必修1第二章基本初等函数
logc b loga b (a 0,且a 1; c 0,且c 1; b 0) logc a
三、重点内容
(三)基本性质:
y a x (a 0,且a 1)
0<a<1
y
a>1
y
1
图象
0
1
x
0
x
定义域 值域 性质
(0, )
当x>0时0<y<1; 当x<0时y>1; 当x=0时y=1; 在R上是减函数
R
(0, )
当x>0时y>1; 当x<0时0<y<1; 当x=0时y=1; 在R上是增函数
R
三、重点内容
(三)基本性质: y loga x(a 0,且a 1)
0 a 1
y
a 1
y
图象
定义 域 值域 性质
O
1
x
O
1
x
(0, )
R
(0, )
R
( 3 )) 0过定点 x 1时, y 0; (1)(过定点 3) x 1时, y 0; (1,0) ( 1 (1,0)
四、例题分析 若f ( x) x 2 x b, 且f (log 2 a ) b, log 2 [ f (a )] 2(a 1).
高中数学第二章基本初等函数(Ⅰ)章末复习提升课课件新人教A版必修1
定成立的是( )
A.3c>3b
B.3c>3a
C.3c+3a>2
D.3c+3a<2
【解析】 (1)由题意 y=logax(a>0,且 a≠1)的图象过(3,1)点,
可解得 a=3.选项 A 中,y=3-x=13x,显然图象错误;选项 B
中,y=x3,由幂函数图象可知正确;选项 C 中,y=(-x)3=
第二章 基本初等函数(Ⅰ)
章末复习提升课
指数与对数的运算
求下列各式的值: (1)287-23-3 e·e23+ (2-e)2+10lg 2; (2)lg25+lg2×lg 500-12lg215-log29×log32.
【解】 (1)287-23-3 e·e23+ (2-e)2+10lg 2 =233-23-e13·e23+(e-2)+2 =23-2-e+e-2+2=322=94. (2)lg25+lg 2×lg 500-12lg215-log29×log32 =lg25+lg 2×lg 5+2lg 2-lg15-log39 =lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2 =lg 5+lg 2-1=1-1=0.
解析:当 x=-1 时,y=a0-2=-1,所以该定点的坐标是(-1, -1). 答案:(-1,-1)
2.已知 lg a+lg b=0,则函数 f(x)=ax 与函数 g(x)=-logbx 的 图象可能是________(填序号).
解析:因为 lg a+lg b=lg(ab)=0, 所以 ab=1,即 b=1a, 则 f(x)=ax,g(x)=logax. 当 a>1 时,在各自的定义域内,f(x)是增函数,g(x)是增函数, 所以②正确;0<a<1 时,在各自的定义域内,f(x)是减函数,g(x) 是减函数,所以①③④都不正确.
新课标人教A版高中数学必修一第二章基本初等函数全章教案
新人教A版高中数学必修一教案第二章基本初等函数(Ⅰ)一、课标要求:教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1.了解指数函数模型的实际背景.2.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).4.通过应用实例的教学,体会指数函数是一种重要的函数模型.5.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.6.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).7.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义.8.通过实例,了解幂函数的概念,结合五种具体函数1312,,,y x y x y x y x-====的图象,了解它们的变化情况.二、编写意图与教学建议:1.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.2.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.4.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.5. 通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能 ..6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.三、教学内容与课时安排的建议 本章教学时间约为14课时. 2.1 指数函数: 6课时 2.2 对数函数: 6课时 2.3 幂函数: 1课时 小结: 1课时§2.1.1 指数(第1—2课时)一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力。
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1
2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2006浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1
理论
2.对数函数的图象
由于对数函数 y log a x与指数函数y a x 互为反函数,所以 y log a x 的图象与 y a x
的图象关于直线 y x 对称. 看一般图象:
5
4
3
y=ax (a>1) 2
1
44
33
y=ax 22
∴函数 y loga x2的定义域是 x | x 0
(2)由 4 x 0 得 x 4
∴函数 y loga (4 x) 的定义域是 x | x 4
(3) 由 9 x2 0 得 3 x 3
∴函数 y loga(9 x2) 的定义域是 x | 3 x 3
举例
例2 求下列函数的反函数
在R上是减函数
引例
引例: y 2 x 有无反函数?若有,则求出.
分析:视察图象知,有反函数
由 y 2x 得 x log 2 y 所以,反函数为:
4
fx3 = 2x
2
1
-4
-2
2
y log 2 x x (0,)
理论
1.对数函数的定义:
函数 y log a x (a 0且a 1) 叫做对数函数(logarithmic function), 其中x是自变量,函数的定义域为 (0,) , 值域为 (,) .
1 y 1 x 1;
2
2 y (1) x2 3 (x 0).
2
解 (: 1)
y
1
x
1
1 x
y
1
2
2
(2)
x log1 ( y 1)
2
f 1( x) log1 ( x 1)
高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1
课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高中数学 2.1.1.1 基本初等函数(Ⅰ)课件 新人教A版必修1
4 (1)
-24;
5 (2)
2-π5;
4 (3)
x+14;
3 (4)
x-63.
由题目可获取以下主要信息:
①所给形式均为n an的形式;
②n an形式中 n 分为奇数和偶数两种. 解答本题可依据根式的性质
n an=|aa|
n为大于1的偶数 n为大于1的奇数
,完成化简.
[解题过程]
4 (1)
-24=2;
5 (2)
2-π5=2-π;
4 (3)
x+14=|x+1|=x-+x1-1
x≥-1 x<-1 ;
3 (4)
x-63=x-6.
[题后感悟] 解决根式的化简问题,首先要分 清根式为奇次根式还是偶次根式,然后运用根 式的性质进行解答.
1.下列各式总能成立的是( )
A.(4 a-4 b)4=a-b
B.(4 a+b)4=a+b
【错因】 4 1- 24≠1- 2,而是4 1- 24
=|1- 2|= 2-出错原因是n an=a(a∈ R)成立的条件是 n 为正奇数,如果 n 为正偶数,
那么n an=|a|. 【正解】 3 1+ 23+4 1- 24=(1+ 2) +|1- 2| =1+ 2+ 2-1=2 2.
(3)当 n 为大于 1 的偶数时,n a只有当 a≥0 时 有意义,当 a<0 时无意义.n a(a≥0)表示 a 在实 数范围内的一个 n 次方根,另一个是-n a, ±n an=a. (4)式子n an对任意 a∈R 都成立.
◎计算:3 1+ 23+4 1- 24.
【错解】 3 1+ 23+4 1- 24=(1+ 2) +(1- 2)=2.
a叫 a 的算术平方根. 2.开立方与立方根,若 x3=a,则求 x 的运算
高中数学 2.3.12基本初等函数(Ⅰ)习题课教案 新人教A版必修1
课题:基本初等函数(Ⅰ)习题课课时:012课 型:习题课教学要求:掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质.教学重点:指数函数的图象和性质.教学难点:指数函数、对数函数、幂函数性质的简单应用.教学过程:一、复习准备:1. 提问:指数函数、对数函数、幂函数的图象和性质.2. 求下列函数的定义域:1218-=x y ;x y ⎪⎭⎫ ⎝⎛-=211;2log (1)(0,1)a y x a a =->≠且 3. 比较下列各组中两个值的大小:6log 7log 76与;8.0log log 23与π;5.37.201.101.1与二、典型例题:例1:已知54log 27=a ,54b=3,用108,log 81a b 表示的值 解法1:由54b =3得54log 3=b∴108log 81=5454log 81log 108=54545454log 27log 3log 212log 272a b a b a+++==+-- 解法2:由54log 275427a ==得设108log 81,10881x x ==则所以21(5427)327x -⨯=⨯即:2(5454)5454a x b a -⨯=⨯所以25454,2x ax a b x ax a b -+=-=+即 因此得:2a b x a+=-例2、函数12log 2y x =-的定义域为 .例3、函数2321()2xx y -+=的单调区间为 .例4、已知函数)10(11log )(≠>-+=a a xx x f a且.判断)(x f 的奇偶性并予以证明.例5、按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息. )(小结:掌握指数函数、对数函数、幂函数的图象与性质,会用函数性质解决一些简单的应用问题. )三、 巩固练习:1.函数3log (45)y x =--的定义域为 .,值域为 .2. 函数2322+--=x xy 的单调区间为 .3. 若点)41,2(既在函数b ax y +=2的图象上,又在它的反函数的图象上,则a =______,b =_______4. 函数12+=-x a y (0>a ,且1≠a )的图象必经过点 .5. 计算()[]=++-+⎪⎭⎫ ⎝⎛-----2175.034303101.016254064.0 .6. 求下列函数的值域:x y -=215 ; x y -⎪⎭⎫ ⎝⎛=131; 121-⎪⎭⎫ ⎝⎛=xy ; x y 21-=四、小结本节主要是通过讲炼结合复习本章的知识提高解题能力五、课后作业:教材P82 复习参考题A 组1——8题课后记:精美句子1、善思则能“从无字句处读书”。
高中数学新人教A版必修1课件:第二章基本初等函数(Ⅰ)对数运算及对数函数习题课
2
(2)y=|log1 | =
其图象如图②所示,
2
log2 , > 1,
其定义域为(0,+∞),值域为[0,+∞),在区间(0,1]上是减函数,在区间
(1,+∞)内是增函数.
图①
图②
题型一
题型二
题型三
题型四
反思1.一般地,函数y=f(x±a)±b(a,b为正实数)的图象可由函数
由(1)知f(x)的定义域为(-1,1),
且f(-x)=loga(-x+1)-loga(1+x)= -[loga(x+1)-loga(1-x)]=-f(x),
故f(x)为奇函数.
(3)因为当a>1时,f(x)在定义域(-1,1)内是增函数,
所以由f(x)>0,得loga(x+1)-loga(1-x)>0,即loga(x+1)>loga(1-x),即
y=f(x)的图象变换得到.
将y=f(x)的图象向左或向右平移a个单位长度可得到函数y=f(x±a)
的图象,再向上或向下平移b个单位长度可得到函数y=f(x±a)±b的
图象(记忆口诀:左加右减,上加下减).
2.含有绝对值的函数的图象变换是一种对称变换,一般地,y=
f(|x-a|)的图象是关于x=a对称的轴对称图形,也可以由y=f(x)的图象
题型二
题型三
题型四
4
【变式训练 1】 计算:(log43+log83)(log32+log92)-log1 32.
2
解:原式 =
5
6
3
1
2
1
高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A必修1
[答案] A [解析] ∵函数y=logax的图象一直上升, ∴函数y=logax为单调增函数,∴a>1,故选A.
3.下列函数中是对数函数的是 ( A.y=log1 x
4 4
)
B.y=log1 (x+1) D.y=log1 x+1
4
C.y=2· log1 x
4
[答案] A
[解析] 形如y=logax(a>0,且a≠1)的函数才是对数函数,
[规律总结] 对于对数概念要注意以下两点:
(1)在函数的定义中,a>0且a≠1. (2)在解析式y=logax中,logax的系数必须为1,真数必须为x, 底数a必须是大于0且不等于1的常数.
跟踪练习
指出下列函数中,哪些是对数函数? ①y=5x;②y=-log3x;③y=log0.5 x;④y=log3 x;⑤y
预习自测
1.下列函数是对数函数的是 ( A.y=2+log3x B.y=loga(2a)(a>0,且 a≠1) C.y=logax2(a>0,且 a≠1) D.y=lnx )
[答案] D
[解析] 判断一个函数是否为对数函数,其关键是看其是
否具有“y=logax”的形式,A,B,C全错,D正确.
2. 函数 y=logax 的图象如图所示, 则实数 a 的可能取值为 ( ) A.5 1 B.5 1 C.e 1 D.2
2.对数函数的图象和性质 一般地,对数函数y=logax(a>0,且a≠1)的图象和性质如下表 所示:
a>1
0<a<1
图象
a> 1
0<a<1
,+∞) 定义域:(0 ______ R 值域:______
性质
(1,0) ,即当 x=1 时,y=0 图象过定点______ 增函数 在(0,+∞)上是______ 减函数 在(0,+∞)上是______
广东省佛山市顺德区高中数学《2.1基本初等函数2》复习学案 新人教A版必修1
姓名 班级 组号 学号基础知识点1.对数的概念:一般的,如果)10(≠>=a a N a x 且,那么数x 叫做以 ,记作 ,其中a 叫作对数的 ,N 叫作 .2.指数式与对数式的互化:⇔=N a x3.对数的性质:(1) N 的范围是______________(2) log 1____________a = log ____________a a =(3)对数恒等式: )010______(log >≠>=N a a a N a ,且复习自测题一、考察对数性质及运算:1.用lg x ,lg y ,lg z 表示下列各式: (1)lg()xyz (2)2lg xy z (3)z2.求下列各式的值:(1)23log (279)y=⨯ (2)lg 0.00001 (3)33log 18log 2y =-(4)522log 253log 64- (5)22log (log 16) (6lg 27lg8lg 1000+-3.已知x 的对数满足下列式子,求x :(1)lg lg lg x a b =+(2)log log log a a a x m n =-(3)1log log log 2a a a xbc =-4.函数log (32)(01)a y x a a =->≠且的图像恒过定点5.如果(10)x f x =,则(3)f =6.已知lg 2,lg 3a b ==,试用a 、b 表示2log 12和7.若3log 41,44x x x -=+求的值。
8.已知二、考察函数的定义域1.下列各组函数中,表示同一函数的是( )A .2222log log y x y x ==与B .lg 10lg10x x y y ==与C .log x y x y x x ==与 D .ln x y x y e ==与 2.求下列函数的定义域(1)31log (32)y x =- (2)y =(3)y =(4)(2)log (5)x y x -=-三、考察函数的值域1.函数0.52log (18)y x x =+≤<的值域是2.已知集合{}2|log ,1A y y x x ==>,1|,12x B y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭ B . {}01y y << 1()lg ,,(1,1),()()()11x a b f x a b f a f b f x ab -+=∈-+=++求证:C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅ 四、考察函数的单调性1.已知函数1211()log ,()()(2)42f x x f f f =则、、的大小关系是( )A .11()()(2)42f f f >>B . 11()()(2)42f f f << C .11()(2)()42f f f >> D . 11(2)()()42f f f >> 2. 比较下列两个数的大小(1)log 5a log 3a (2)2log 0.7 3log 0.7 (3) 6log 7 7log 6(4)0.50.8 0.50.9 (5)24.3- 23.3-3.已知下列不等式,比较正数,m n 的大小:(1)33log log m n < (2)0.30.3log log m n < (3)log log a a m n <4.不等式0.450.45log (2)log (1)x x +<-的解集为5.已知log (31)0,a a a -<则的取值范围是6.(1)求使2()log (21)0f x x =-≤的x 取值范围。
人教A版数学必修一第二章 基本初等函数(Ⅰ).docx
高中数学学习材料马鸣风萧萧*整理制作第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x 叫做a 的n 次方根.2.式子na 叫做________,这里n 叫做__________,a 叫做____________. 3.(1)n ∈N *时,(na )n =____.(2)n 为正奇数时,n a n =____;n 为正偶数时,na n =______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m na =__________(a >0,m 、n ∈N *,且n >1);(2)规定正数的负分数指数幂的意义是:m na =_______________(a >0,m 、n ∈N *,且n >1);(3)0的正分数指数幂等于____,0的负分数指数幂________________. 5.有理数指数幂的运算性质: (1)a r a s =______(a >0,r 、s ∈Q ); (2)(a r )s =______(a >0,r 、s ∈Q ); (3)(ab )r =______(a >0,b >0,r ∈Q ).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( )A .①③④B .②③④C .②③D .③④ 2.若2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1 B .122-C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2D .13a 5.下列各式成立的是( ) A.3m 2+n 2=()23m n + B .(ba)2=12a 12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④若100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3题 号 1 2 3 4 5 6 答 案二、填空题 7.614-3338+30.125的值为________. 8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:413322333842a a b b ab a-++÷(1-23b a)×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.1.n a n 与(na )n 的区别(1)na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R ,但这个式子的值受n 的奇偶性限制:当n 为大于1的奇数时,na n =a ;当n 为大于1的偶数时,na n =|a |.(2)(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定:当n 为大于1的奇数时,(n a )n =a ,a ∈R ;当n 为大于1的偶数时,(na )n =a ,a ≥0,由此看只要(n a )n 有意义,其值恒等于a ,即(na )n =a . 2.有理指数幂运算的一般思路化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程.3.有关指数幂的几个结论 (1)a >0时,a b >0; (2)a ≠0时,a 0=1; (3)若a r =a s ,则r =s ;(4)a ±212a 12b +b =(12a ±12b )2(a >0,b >0); (5)( 12a +12b )(12a -12b )=a -b (a >0,b >0).第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1a m n(3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r 作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |,∵2<a <3,∴原式=a -2+3-a =1.] 3.C [∵(-12)-1=-2, 122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2,∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.]4.B [原式=132aa =31322a a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3, ∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10. ∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3 =52-32+12=32. 8.9 5 解析 22y x a +=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎪⎨⎪⎧1, x >0-1, x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2 =|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2 (-3<x <1)-4 (1≤x <3).12.解 原式=()111333212133338242aa b a b b a aa--÷++×13a13.解 ∵x -xy -2y =0,x >0,y >0, ∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy =8y -2y y +4y =65.。
高中数学_第二章_基本初等函数(Ⅰ)_幂函数(习题课)课件_新人教A版必修1
• 1.幂函数y=xα的图象分布规律是一个难点, 应重点抓住. • (1)α=0时,不过(0,1)点; p • (2)α为整数时,α为奇数则函数为奇函数,α (3)α为分数时,设α= (p、q是互质的整数),p、q都是 q 为偶数则为偶函数,α<0不过原点;
∴a≤-1 当a=0时显然成立, 综上知a≤-1或a=0.
7.已知 x <x2,则 x 的取值范围是________.
2
1
[解析]
• [答案] (0,1)
2
在同一直角坐标系内作出函数 y=x2 和 y=x2
2 1
1
的图象如图所示,则 x <x2时 x 的取值范围,即使函数 y= x 的图象在函数 y=x2的图象下方时 x 的取值范围, 由图可 知 x 的取值范围是(0,1).
1 3.设a>0,且a≠1,函数y=logax和函数y=loga x 的 图象关于 A.x轴对称 C.y=x对称 B.y轴对称 D.原点对称 ( )
[答案]
A
[解析]
1 ∵y=loga =-logax, x
∴两函数的图象关于x轴对称.
1-x 4.已知函数f(x)=lg ,若f(a)=b,则f(-a)等于 1+x ( A.b 1 C.b B.-b 1 D.-b )
• [答案] C • [解析] ∵0<a<1,∴该函数为减函数,排 除A、D,又m<-1,∴x=0时,函数有意 义,且y=loga(-m)<0.排除B,选C.
• 2.已知函数f(x)为偶函数,且当x≥0时, f(x)=2x -1,则使f(x)>1成立的x的取值范 围是 ( ) • A.(1,+∞) B.(-∞,-1) • C.(-1,1) D.(-∞,-1)∪(1, +∞) • [答案] D • [解析] 先画出y=2x -1(x≥0)的图象,再 作关于y轴对称的图象,令2x-1=1得x=1,
人教A版数学必修一必修①第二章基本初等函数(Ⅰ).docx
第11讲 §2.1.1 指数与指数幂的运算¤学习目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.¤知识要点:1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈. n 次方根具有如下性质:(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零.(2)n 次方根(*1,n n N >∈且)有如下恒等式:()n n a a =;,||,n n a n a a n ⎧=⎨⎩为奇数为偶数;np n mp m a a =,(a ≥0).2. 规定正数的分数指数幂:mn m na a = (0,,,1a m n N n *>∈>且); 11m nm nmna aa-==.¤例题精讲:【例1】求下列各式的值:(1)3n nπ-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33nnππ-=-(); 当n 为偶数时,3|3|3nnπππ-=-=-(). (2)2()||x y x y -=-.当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-.【例2】已知221na =+,求33n nn na a a a --++的值.解:332222()(1)1121122121n n n n n n n nn n n n a a a a a a a a a a a a ------++-+==-+=+-+=-+++.【例3】化简:(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)3322114423()a b ab ba b a⋅(a >0,b >0); (3)243819⨯.解:(1)原式=2111150326236[2(6)(3)]44a bab a +-+-⨯-÷-==.(2)原式=1312322123[()](/)a b ab ab b a ⋅⋅=1136322733a b a b a b⋅=104632733a b a b=a b. (3)原式=2212124444244332323[(3)]3333⨯⨯⨯=⨯=⨯221111446336444(33)(3)(3)3333=⨯=⨯=⨯=.点评:根式化分数指数幂时,切记不能混淆,注意将根指数化为分母,幂指数化为分子,根号的嵌套,化为幂的幂. 正确转化和运用幂的运算性质,是复杂根式化简的关键.【例4】化简与求值:(1)642642++-; (2)11111335572121n n +++⋅⋅⋅++++-++.解:(1)原式=22222222(2)2222(2)+⨯⨯++-⨯⨯+ =22(22)(22)++- =2222++-=4.(2)原式=3153752121315375(21)(21)n n n n ---+--+++⋅⋅⋅+---+-- =1(3153752121)2n n -+-+-+⋅⋅⋅++--=1(211)2n +-.点评:形如A B ±的双重根式,当2A B -是一个平方数时,则能通过配方法去掉双重根号,这也是双重根号能否开方的判别技巧. 而分母有理化中,常常用到的是平方差公式,第2小题也体现了一种消去法的思想. 第(1)小题还可用平方法,即先算得原式的平方,再开方而得.第11练 §2.1.1 指数与指数幂的运算※基础达标1.化简1327()125-的结果是( ).A. 35B. 53C. 3D.52.下列根式中,分数指数幂的互化,正确的是( ). A. 12()(0)x x x -=-> B.1263(0)y y y =< C.33441()(0)xx x-=> D.133(0)x x x -=-≠3.下列各式正确的是( ). A. 35351a a-=B.3322x x = C. 111111()824824a a aa-⨯⨯-⋅⋅= D. 112333142(2)12x x x x---=-4.计算10()02(4)12(15)221--++---,结果是( ).A.1B. 22C. 2D. 122-5.化简111113216842(12)(12)(12)(12)(12)-----+++++,结果是( ).A. 11321(12)2---B. 1132(12)---C. 13212--D. 1321(12)2--6.化简36639494()()a a 的结果是 .7.计算2110332464()( 5.6)()0.125927--+--+= .※能力提高 8.化简求值:(1)211132221566()(3)13a b a b a b -; (2)34a a a .9.已知1122x x -+=3,求下列各式的值:(1)1x x -+;(2)33222223x x x x --++++.※探究创新10.已知函数11331()()5f x x x -=-,11331()()5g x x x -=+.(1)判断()f x 、()g x 的奇偶性;(2)分别计算(4)5(2)(2)f f g -和(9)5(3)(3)f f g -,并概括出涉及函数()f x 和()g x 对所有不为0的实数x都成立的一个等式,并加以证明.第12讲 §2.1.2 指数函数及其性质(一)¤学习目标:理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质.¤知识要点:1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .2. 以函数2x y =与1()2x y =的图象为例,观察这一对函数的图象,可总结出如下性质:定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.¤例题精讲:【例1】求下列函数的定义域: (1)132xy -=; (2)51()3xy -=; (3)1010010100x x y +=-.解:(1)要使132xy -=有意义,其中自变量x 需满足30x -≠,即3x ≠. ∴ 其定义域为{|3}x x ≠.(2)要使51()3xy -=有意义,其中自变量x 需满足50x -≥,即5x ≤. ∴ 其定义域为{|5}x x ≤. (3)要使1010010100x x y +=-有意义,其中自变量x 需满足101000x -≠,即2x ≠. ∴其定义域为{|2}x x ≠.【例2】求下列函数的值域:(1)2311()3x y -=; (2)421x x y =++解:(1)观察易知2031x ≠-, 则有203111()()133x y -=≠=. ∴ 原函数的值域为{|0,1}y y y >≠且. (2)2421(2)21x x x x y =++=++. 令2x t =,易知0t >. 则22131()24y t t t =++=++.结合二次函数的图象,由其对称轴观察得到213()24y t =++在0t >上为增函数,所以221313()(0)12424y t =++>++=. ∴ 原函数的值域为{|1}y y >.【例3】(05年福建卷.理5文6)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ).A .1,0a b ><B .1,0a b >>C .01,0a b <<>D .01,0a b <<<线位置解:从曲线的变化趋势,可以得到函数()f x 为减函数,从而0<a <1;从曲看,是由函数(01)x y a a =<<的图象向左平移|-b |个单位而得,所以-b >0,即b <0. 所以选D.点评:观察图象变化趋势,得到函数的单调性,结合指数函数的单调性,得到参数a 的范围. 根据所给函数式的平移变换规律,得到参数b 的范围. 也可以取x =1时的特殊点,得到01b a a -<=,从而b <0.【例4】已知函数23()(0,1)x f x a a a -=>≠且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.解:(1)当230x -=,即23x =时,2301x a a -==. 所以,该函数的图象恒过定点2(,1)3.(2)∵ 23u x =-是减函数,∴ 当01a <<时,()f x 在R 上是增函数;当1a >时,()f x 在R 上是减函数.点评:底数两种情况的辨析,实质就是分类讨论思想的运用. 而含参指数型函数的研究,要求正确处理与参数相关的变与不变.第12练 §2.1.2 指数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.40.60.50.5>C. 0.10.10.750.75-<D. 1.6 1.4(3)(3)> 2.已知0c <,在下列不等式中成立的是( ).A. 21c >B. 1()2c c >C. 12()2c c <D. 12()2c c > 3.函数y =a x +1(a >0且a ≠1)的图象必经过点( ).A.(0,1)B. (1,0)C.(2,1)D.(0,2) 4.设,a b 满足01a b <<<,下列不等式中正确的是( ). A. a b a a < B. a b b b < C. a a a b < D. b b b a <5.世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).A. 新加坡(270万)B. 香港(560万)C. 瑞士(700万)D. 上海(1200万)6.某地现有绿地100平方公里,计划每年按10%的速度扩大绿地,则三年后该地的绿地为_____平方公里.7.函数21232x x y --=的定义域为 ;函数2231()2xx y -+=的值域为 .※能力提高8.已知,a b 为不相等的正数,试比较a b a b 与b a a b 的大小.9.若已知函数23()(0,1)x f x a a a -=>≠且,()x g x a =. (1)求函数()f x 的图象恒过的定点坐标;(2)求证:1212()()()22x x g x g x g ++≤.※探究创新10.讨论函数21(01)x y a a a +=>≠,且的值域.第13讲 §2.1.2 指数函数及其性质(二)¤学习目标:在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用.¤知识要点:以函数2x y =与1()2x y =的图象为例,得出这以下结论: (1)函数()y f x =的图象与()y f x =-的图象关于y 轴对称.(2)指数函数(0,1)x y a a a =>≠且的图象在第一象限内,图象由下至上,底数由下到大. ¤例题精讲:【例1】按从小到大的顺序排列下列各数:23,20.3,22,20.2.解:构造四个指数函数,分别为3x y =,0.3x y =,2x y =,0.2x y =,它们在第一象限内,图象由下至上,依次是0.2x y =,0.3x y =,2x y =,3x y =. 如右图所示.由于20x =>,所以从小到大依次排列是:20.2,20.3,22,23.点评:利用指数函数图象的分步规律,巧妙地解决了同指数的幂的大小比较问题. 当然,我们在后面的学习中,可以直接利用幂函数的单调性来比较此类大小.【例2】已知21()21x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.解:(1)()f x 的定义域为R .∵ 21(21)21221()()21(21)21221x x x x x xx x x x f x f x ---------====-=-++++. ∴ ()f x 为奇函数.(2)设任意12,x x R ∈,且12x x <,则121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.由于12x x <,从而1222x x <,即12220x x -<.∴ 12()()0f x f x -<,即12()()f x f x <. ∴ ()f x 为增函数.点评:在这里,奇偶性与单调性的判别,都是直接利用知识的定义来解决. 需要我们理解两个定义,掌握其运用的基本模式,并能熟练的进行代数变形,得到理想中的结果.【例3】求下列函数的单调区间:(1)223x x y a +-=; (2)10.21x y =-.解:(1)设2,23u y a u x x ==+-.由2223(1)4u x x x =+-=+-知,u 在(,1]-∞-上为减函数,在[1,)-+∞上为增函数. 根据u y a =的单调性,当1a >时,y 关于u 为增函数;当01a <<时,y 关于u 为减函数. ∴ 当1a >时,原函数的增区间为[1,)-+∞,减区间为(,1]-∞-; 当01a <<时,原函数的增区间为(,1]-∞-,减区间为[1,)-+∞. (2)函数的定义域为{|0}x x ≠. 设1,0.21x y u u ==-. 易知0.2x u =为减函数.而根据11y u =-的图象可以得到,在区间(,1)-∞与(1,)+∞上,y 关于u 均为减函数. ∴在(,0)-∞上,原函数为增函数;在(0,)+∞上,原函数也为增函数.点评:研究形如()(01)f x y a a a =>≠,且的函数的单调性,可以有如下结论:当1a >时,函数()f x y a =的单调性与()f x 的单调性相同;当01a <<时,函数()f x y a =的单调性与()f x 的单调性相反. 而对于形如()(01)x y a a a ϕ=>≠,且的函数单调性的研究,也需结合x a 的单调性及()t ϕ的单调性进行研究.复合函数(())y f x ϕ=的单调性研究,遵循一般步骤和结论,即:分别求出()y f u =与()u x ϕ=两个函数的单调性,再按口诀“同增异减”得出复合后的单调性,即两个函数同为增函数或者同为减函数,则复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 为何有“同增异减”?我们可以抓住 “x 的变化→()u x ϕ=的变化→()y f u =的变化”这样一条思路进行分析.第13练 §2.1.2 指数函数及其性质(二)※基础达标1.如果指数函数y =(2)x a -在x ∈R 上是减函数,则a 的取值范围是( ). A .a >2 B .a <3 C .2<a <3D .a >32.使不等式31220x -->成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1(,)3-+∞3.某工厂去年12月份的产值是去年元月份产值的m 倍,则该厂去年产值的月平均增长率为( ). A. mB.12mC. 121m - D.111m -4.函数2651()()3xx f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞5.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月) 的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等.其中正确的是( ).A. ①②③B. ①②③④C. ②③④D. ①②6.我国的人口约13亿,如果今后能将人口数年平均增长率控制在1%,那么经过x 年后我国人口数为y 亿,则y 与x 的关系式为 .7.定义运算()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的值域为 .※能力提高8.已知(21)1()(21)1x x f x --=-+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.9.求函数2233x x y -++=的定义域、值域并指出单调区间.2 1 0 y/m 2 t/月2 3814※探究创新 10.函数23()2xax f x --=是偶函数. (1)试确定a 的值及此时的函数解析式;(2)证明函数()f x 在区间(,0)-∞上是减函数;(3)当[2,0]x ∈-时,求函数23()2x ax f x --=的值域.第14讲 §2.2.1 对数与对数运算(一)¤学习目标:理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.解:(1)21log 7128=-; (2)3log 27a =; (3)lg0.11=-; (4)51()322-=; (5)3100.001-=; (6) 4.606100e =. 【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3)ln e .解:(1)设lg0.001x =,则100.001x =,即31010x -=,解得3x =-. 所以,lg0.0013=-.(2)设4log 8x =,则48x =,即2322x =,解得32x =. 所以,43log 82=. (3)设ln e x =,则x e e =,即12xe e =,解得12x =. 所以,1ln 2e =.【例3】求证:(1)log n a a n =; (2)log log log a a a MM N N-=.证明:(1)设log n a a x =,则n x a a =,解得x n =.所以log n a a n =.(2)设log a M p =,log a N q =,则p a M =,q a N =.因为p p q q M a a N a -==,则log log log a a a M p q M N N=-=-.所以,log log log a a a MM N N-=.点评:对数运算性质是对数运算的灵魂,其推导以对数定义得到的指对互化关系为桥梁,结合指数运算的性质而得到. 我们需熟知各种运算性质的推导.【例4】试推导出换底公式:log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >). 证明:设log c b m =,log c a n =,log a b p =,则m c b =,n c a =,p a b =. 从而()n p m c b c ==,即np m =. 由于log log 10c c n a =≠=,则m p n=. 所以,log log log c a c bb a=. 点评:换底公式是解决对数运算中底数不相同时的核心工具. 其推导也密切联系指数运算性质,牢牢扣住指对互化关系.第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. 123 C. 122D. 133 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:3log 81= ; 6l g 0.1= .※能力提高8.求下列各式的值:(1)22log8; (2)9log 3.9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤学习目标:通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题.¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例1】化简与求值:(1)221(lg 2)lg2lg5(lg 2)lg212++-+;(2)2log (4747)++-.解:(1)原式=2211(lg2)lg2lg5(lg 21)22++-=211lg 2lg2lg5(lg 21)42+--=2111lg 2lg2lg5lg21422+-+=1lg 2(lg 22lg52)14+-+=1lg 2(lg1002)10114-+=+=.(2)原式=1222log (4747)⨯++-=221log (4747)2++-=221log (4747247)2++-+-=21log 142.【例2】若2510a b ==,则11a b+= . (教材P 83 B 组2题)解:由2510a b ==,得2log 10a =,5log 10b =. 则251111lg 2g5lg101log 10log 10a b +=+=+==. 【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 . 解:(1)由lg lg(3)1x x ++=,得lg[(3)]lg10x x +=, 即(3)10x x +=,整理为23100x x +-=. 解得x =-5或x =2. ∵ x >0, ∴ x =2.(2)设lg x t =,则原方程化为20t at b ++=,其两根为1122lg ,lg t x t x ==. 由121212lg lg lg()lg10b t t x x x x b +=+===,得到1210b x x =.点评:同底法是解简单对数方程的法宝,化同底的过程中需要结合对数的运算性质. 第2小题巧妙利用了换元思想和一元二次方程根与系数的关系.【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.解:(1)原式=77777log 5log 3log 2log (532)log 30++=⨯⨯=. (2)原式左边=2222222222log 4log 5log 2006log log 3log log 3log 4log 2005log 2006mm ⋅⋅⋅=,∴ 422log 4log 2m ==, 解得16m =.点评:换底时,一般情况下可以换为任意的底数,但习惯于化为常用对数. 换底之后,注意结合对数的运算性质完成后阶段的运算.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.1logn n++(1n n +-)等于( ). A. 1B. -1C. 2D. -2 2.25log ()(5)a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3lg 2lg 5log 1++的结果是( ).A.12B. 1C. 2D.10 4.已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg 2lg50+⋅= .7.若3a =2,则log 38-2log 36= . ※能力提高8.(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值; (2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.9.在不考虑空气阻力的条件下,火箭的最大速度(/)v m s 和燃料的质量()M kg 、火箭(除燃料外)的质量()m kg 的关系是2000ln(1)Mv m=+. 当燃料质量是火箭质量的多少倍时,火箭的最大速度可达到10/km s ?※探究创新10.(1)设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.(2)若a 、b 、c 都是正数,且至少有一个不为1,1x y z y z x z x y a b c a b c a b c ===,讨论x 、y 、z 所满足的关系式.第16讲 §2.2.2 对数函数及其性质(一)¤学习目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3. 解:(1)∵ 0.9log y x =在(0,)+∞上是减函数,且0.90.80.7>>, ∴ 0.90.91log 0.8log 0.7<<.又 0.80.8log 0.9log 0.81<=, 所以0.80.90.9log 0.9log 0.8log 0.7<<. (2)由 333log 1log 2log 3<<,得30log 21<<. 又22log 3log 21>=,441log log 103<=, 所以4321log log 2log 33<<. 【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-. 解:(1)由22log (35)0log 1x -≥=,得351x -≥,解得2x ≥. 所以原函数的定义域为[2,)+∞.(2)由0.5log (4)30x -≥,即30.50.5log (4)3log 0.5x ≥=,所以3040.5x <≤,解得1032x <≤. 所以,原函数的定义域为1(0,]32. 【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围. 解:∵ [2,1]x ∈--, ∴ 132x ≤+≤当1a >时,log 1log (3)log 2a a a x ≤+≤,即0()log 2a f x ≤≤.∵ |()|2f x <, ∴{1log 22a a ><, 解得2a >.当01a <<时,log 2log (3)log 1a a a x ≤+≤,即log 2()0a f x ≤≤. ∵ |()|2f x <, ∴{01log 22a a <<>-, 解得202a <<.综上可得,实数a 的取值范围是2(0,)(2,)2+∞.点评:先对底数a 分两种情况讨论,再利用函数的单调性及已知条件,列出关于参数a 的不等式组,解不等式(组)而得到参数的范围. 解决此类问题的关键是合理转化与分类讨论,不等式法求参数范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.解:当1a >时,原不等式化为2704102741x x x x +>⎧⎪->⎨+>-⎪⎩,解得144x <<.当01a <<时,原不等式化为 2704102741x x x x +>⎧⎪->⎨+<-⎪⎩,解得4x >.所以,当1a >时,x 的取值范围为1(,4)4;当01a <<时,x 的取值范围为(4,)+∞.点评:结合单调性,将对数不等式转化为熟悉的不等式组,注意对数式有意义时真数大于0的要求. 当底数a 不确定时,需要对底数a 分两种情况进行讨论.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).A B C D 3.下列函数中哪个与函数y =x 是同一个函数( ) A.log (0,1)a xy aa a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y =2x4.函数12log (1)y x =-的定义域是( ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2] 5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<< 6.函数3log y x =的定义域为 . (用区间表示)7.比较两个对数值的大小:ln7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()34log 11xf x x x -=++-; (2)21log (45)y x =--.9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.※探究创新10.若,a b 为不等于1的正数,且a b <,试比较log a b 、1log a b 、1log b b.xy1 1oxy o 1 1oy x11 oy x1 1第17讲 §2.2.2 对数函数及其性质(二)¤学习目标:掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函数y =log ax 互为反函数. (a > 0, a ≠1)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.解:先求定义域,由320x ->, 解得32x <. 设332,(,)2t x x =-∈-∞,易知为减函数. 又∵ 函数0.3log y t =是减函数,故函数0.3log (32)y x =-在3(,)2-∞上单调递增.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<变量x解:在同一坐标系中分别画出40.4,3,log x x y y y x ===的图象,分别作出当自取3,0.4,0.3时的函数值.观察图象容易得到:30.44log 0.30.43<<. 故选C.【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系? 解:在指数函数x y a =的图象上任取一点00(,)M x y ,则00x y a =. 由指对互化关系,有00log a y x =.所以,点00'(,)M y x 在对数函数log a y x =的图象上. 因为点00(,)M x y 与点00'(,)M y x 关于直线y x =对称,所以指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象关于直线y x =对称. 点评:两个函数的对称性,由任意点的对称而推证出来. 这种对称性实质是反函数的图象特征,即函数x y a =与log (0,1)a y x a a =>≠互为反函数,而互为反函数的两个函数图象关于直线y x =对称.【例4】2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步.已知火箭的起飞重量M 是箭体(包括搭载的飞行器)的重量m 和燃料重量x 之和.在不考虑空气阻力的条件下,假设火箭的最大速度y 关于x 的函数关系式为:[ln()ln(2)]4ln 2(0)y k m x m k =+-+≠其中. 当燃料重量为(1)e m -吨(e 为自然对数的底数, 2.72e ≈)时,该火箭的最大速度为4(km/s ).(1)求火箭的最大速度(/)y km s 与燃料重量x 吨之间的函数关系式()y f x =;(2)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s ,顺利地把飞船发送到预定的轨道?解:(1)依题意把(1),4x e m y =-=代入函数关系式[ln()ln(2)]4ln 2y k m x m =+-+,解得8k =. 所以所求的函数关系式为8[ln()ln(2)]4ln 2,y m x m =+-+ 整理得8ln().m x y m+= (2)设应装载x 吨燃料方能满足题意,此时,544,8m x y =-= 代入函数关系式8544ln(),ln 1,344().544m x y x m x+===-得解得吨 所以,应装载344吨燃料方能顺利地把飞船发送到预定的轨道.点评:直接给定参数待定的函数模型时,由待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数. 一般求出函数模型后,还利用模型来研究一些其它问题. 代入法、方程思想、对数运算,是解答此类问题的方法精髓.第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称B. x 轴对称C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ). A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.2,43,15,310 B. 2,43,310,15 C. 15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ).A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D. 20.2log (4)y x =- 6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高 8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.9.我们知道,人们对声音有不同的感觉,这与它的强度有关系. 声音的强度I 用瓦/平方米 (2/W m )表示. 但在实际测量中,常用声音的强度水平1L 表示,它们满足以下公式:1010lgIL I = (单位为分贝),10L ≥,其中120110I -=⨯,这是人们平均能听到的最小强度,是听觉的开端. 回答以下问题:(1)树叶沙沙声的强度是122110/W m -⨯,耳语的强度是102110/W m -⨯,恬静的无限电广播的强度为82110/W m -⨯. 试分别求出它们的强度水平. (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?※探究创新10. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且.(1)求函数()()f x g x -的定义域; (2)判断()()f x g x -的奇偶性,并说明理由;(3)求使()()0f x g x ->成立的x 的集合.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象.2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年? 解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n=,解得n =5.所以,到今年为止,该工程已经进行了5年. (3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15.所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 122.下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c4.如图的曲线是幂函数n y x =在第一象限内的图象. 已知n 分别取2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ).A .112,,,222-- B. 112,,2,22--C. 11,2,2,22--D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ). A.12y x = B. 4y x = C. 2y x -= D.13y x = 6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 . 7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x-=;⑧ 53y x =.第19讲 第二章 基本初等函数(Ⅰ) 复习函数代号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 图象代号42510c 4c 3c 2c 1¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a++++-=-12121222()022x x x x x x a a a a a a +--==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x xe af x a e =+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x xe af x a e =+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a ---+--=⇒-+-10()()0x x a e e a-=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e--<0, ∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数x y a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%. 由1854.8(1)y x =⨯+%≤66.8, 解得1866.8100(1) 1.154.8x ≤⨯-≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.。
高中数学第二章基本初等函数2.1.1指数与指数幂的运算第2课时分数指数幂新人教A版必修1
B.234
C.18
D.243
[解析]
4-23
=
1
3
42
=22123
=213=18.
(C)
2.若a>0,n,m为实数,则下列各式中正确的是
m
A.am÷an=a n
B.an·am=am·n
C.(an)m=am+n
D.1÷an=a0-n
(D )
• [解析] 由指数幂的运算法则知1÷an=a0÷an=a0-n正确, 故选D.
(3)由于a23
-a-32
=(a12
)3-(a-12
3
)3,所以有a21 a2
-a-32 -a-12
1
=a2
-a-21 a+a-1+a12
1
a2
-a-12
·a-12
=a+a-1+1=7+1=8.
『规律方法』 (1)条件求值是代数式求值中的常见题型,一般要结合已知
条件先化简再求值,另外要特别注意条件的应用,如条件中的隐含条件,整体
3
(2)化简:
7
a2
a-3÷ 3 a-83 a15÷3
a-3 a-1.
• [思路分析] 将根式化为分数指数幂的形式,利用分数指 数幂的运算性质计算.
[解析] (1)原式=1+14×(49)12 -(1100)21 =1+16-110=1165.
3
(2)原式=
7
a2
a-32
÷
a-83
15
a3
3
÷
a-23
• 利用分数指数幂进行根式计算时,结果可化为根式形式或保留分 数指数幂的形式,不强求统一用什么形式,但结果不能既有根式 又有分数指数幂,也不能同时含有分母和负指数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数的习题课
编制人:陈纪刚审核人:张志勇使用时间:
三、知识点回顾
四、预习自测 1.设
]1,(,2)
,1(,log 81{
)(-∞∈+∞∈-=x x x x x f ,则满足4
1
)(=x f 的x 的值为 2.下列函数中,既是奇函数,又在定义域内为减函数的是 ( )
x y A )21
(.= 2x y .B -= 3x y .C -= x log y .D 3
2=
3.不论为何正实数,函数
的图象一定通过一定点,则该定点的坐标是
_________
4.如果,10<<a 那么下列不等式中正确的是( )
2
131)1()1.(a a A ->- 0)1(log .1>+-a B a 23)1()1.(a a C +>-
1)1.(1>-+a a D
5.已知函数
(其中)的图象如下面右图所示,则函数
的图象是( )
五、典型例题:
例1.已知函数)
1a ,0a (,1])2
1[(log )x (f x 3≠>-= (1)求函数的定义域;
(2)求使0)x (f >的x 的取值范围。
例2.已知函数).1(log )1(log )x (f x x a a +--= (1)求)x (f 的定义域;
(2)求使0)(>x f 的x 的取值范围。
(3) 并判断其奇偶性; 例3.已知m x f x
+-=
1
32
)(是奇函数,
(1)求函数的定义域 (2)求常数m 的值;
例4.已知定义在R 上的奇函数f(x),且当x ∈),0(+∞时,1)(2log )x (f x 2-=. (1)求f (x)在R 上的解析式;
(2)判断f(x)在),0(+∞的单调性并用定义证明.
六、当堂检测: 1.幂函数5
3m x
)x (f -=( N m ∈)在)(0,+∞是减函数,且x)(f )x (f =-,则m =
2.函数⎪⎩⎪⎨⎧>≤-=-0
,0
,12)(21
x x x x f x ,满足1)(>x f 的x 的取值范围 ( )
A .)1,1(-
B . ),1(+∞-
C .}20|{-<>x x x 或
D .}11|{-<>x x x 或
3.已知2
)(x x e e x f --=,则下列正确的是
( )
A .奇函数,在R 上为增函数
B .偶函数,在R 上为增函数
C .奇函数,在R 上为减函数
D .偶函数,在R 上为减函数
七、课后作业
1.函数2
10
)2()5(--+-=x x y 的定义域
( )
A .}2,5|{≠≠x x x
B .}2|{>x x
C .}5|{>x x
D .}552|{><<x x x 或
2.设指数函数)1,0()(≠>=a a a x f x
,则下列等式中不正确的是 ( )
A .f (x +y )=f(x )·f (y )
B .)
()
(y f x f y x f =
-)( C .)()]
([)(Q n x f nx f n
∈= D .)()]([·)]([)(+∈=N n y f x f xy f n
n
n
3.10.下列关系式中,成立的是
( )
A .10log 514log 3
10
3>⎪⎭⎫
⎝⎛>
B . 4log 5110log 30
31>⎪⎭⎫
⎝⎛>
C . 0
3
135110log 4log ⎪⎭⎫
⎝⎛>>
D .0
33
1514log 10log ⎪⎭⎫
⎝⎛>>
4.当a ≠0时,函数y ax b =+和y b ax
=的图象只可能是
( )
5.函数2lg 11y x ⎛⎫
=-
⎪+⎝⎭
的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称
6.已知函数1
1
)(+-=x x a a x f (a >1).
(1)判断函数f (x )的奇偶性; (2)证明f (x )在(-∞,+∞)上是增函数.
答案
预习自测 3 C (-1,-- 1) A A 例1解:(1)由题意得(12)x
-1>0
(12)x >1=(12
)0 解得x<0,即f(x)的定义域为(-∞,0) (2)由题意得log 3((12
)x
-1)> log 3 1
所以1()1021()112x x ⎧->⎪⎪⎨⎪->⎪⎩,即0111()()2211()()22
x
x -⎧>⎪⎪⎨
⎪>⎪⎩ 解得x<-1,所以x 的取值范围是(-∞,-1)
例2 解:(1)由题意得10
10x x ->⎧⎨
+>⎩
解得-1<x<1,所以f(x)的定义域为(-1,1)
(2) f(x)>0即log a (1-x)>log a (1+x)
当a>1时,101011x x x x ->⎧⎪
+>⎨⎪->+⎩,解得x ∈(-1,0)
当0<a<1时,101011x x x x ->⎧⎪
+>⎨⎪-<+⎩
,解得x ∈(0,1)
综上所述,当a>1时,x 的取值范围是(-1,0);当0<a<1时,x 的取值范围是(0,1) (3)∵f(x)的定义域 (-1,1)关于原点对称,以及
f(-x)= log a (1+x)-log a (1-x)= -(log a (1-x) -log a (1+x)) = -f(x) 所以f(x)是奇函数。
例3解:(1)由题意得3x
-1≠0,即x ≠0 所以f(x)的定义域为(-∞,0)∪(0,+∞) (2)∵f(x)是奇函数
∴f(-1)=-f(1) 即23-1-1+m=-(2
31-1
+m )
解得m=1
例4 解:(1)由于奇函数f(x)的定义域为R ,所以x=0时,f(x)=0
当x<0时,f(x)=―f(―x)= ―log 2(2-x
-1)
所以22log (21),0()0,0log (21),0
x x x f x x x -⎧->⎪
==⎨⎪--<⎩
(2)判断: f(x)是(0,+∞)的增函数。
证明:当x ∈(0,+∞)时,f(x)=log 2(2x
-1)
设x 1,x 2∈(0,+∞),当x 1<x 2时,2x1<2x2,(指数函数y=2x
为增函数)
所以2x1-1<2x2
-1
因x 1>0,所以2x1-1>20-1=0,即0<2x1-1<2x2
-1
所以log 2(2x1-1)< log 2(2x2
-1) (用对数函数y=log 2x 为增函数) 即f(x 1)<f(x 2)
所以f(x)是(0,+∞)的增函数。
当堂检测:
1.解:由题意得35035m m N m -<⎧⎪
⎨⎪-⎩
∈为奇数,解得m= 1
2 解:由题意得2110x x ⎧->⎨≤⎩-或1
2
10
x x ⎧⎪>⎨⎪>⎩
解得x<-1或x>1 。
选 D
1. A
课后作业:DDAAC
6.解:(1) 由a x
+1≠0,求得定义域为R ,定义域关于原点对称。
又11()111()
1
x x
x x x x a a f x a a a f x a -----==++-=-=-+
所以f(x)是奇函数。
(2)12()1211
x x x
a f x a a +-=
+=-+ 设x 1,x 2∈(-∞,+∞),当x 1<x 2时
1
21221
1222122
21222
()()(1)(1)11
2222
11112(1)2(1)(1)(1)2()(1)(1)
x x x x x x x x x x x x x x f x f x a a a a a a a a a a a a a a -=-
--++=-+=-+++++-+=
++-=++ 由于x 1<x 2,a>1,所以a x1<a x2,所以a x1-a x2
<0
又a x1+1>0, a x2
+1>0,所以f(x 1)-f(x 2)>0即f(x 1)>f(x 2) 所以f(x)在(-∞,+∞)上是增函数。