第九章基因工程与基因组学
基因和基因组及基因工程的概念
利用基因工程改良作物品质、抗虫抗 病、抗旱耐盐等特性,提高农业生产 效率。
医学领域
利用基因工程治疗遗传性疾病、恶性 肿瘤、病毒感染等疾病,以及开发新 型药物和疫苗。
工业领域
利用基因工程生产高附加值的产品, 如蛋白质药物、酶制剂、生物材料等。
环保领域
利用基因工程降解污染物、修复生态 系统和生物监测等。
THANKS
感谢观看
生物农药
利用基因工程技术开发新型生物农药,减少化学农药的使用,降 低环境污染和对生态的破坏。
医学领域的应用
01
02
03
疾病诊断
基因工程技术可用于检测 和诊断遗传性疾病、肿瘤 等疾病,为疾病的早期发 现和治疗提供有力支持。
药物研发
基因工程技术可用于筛选 和开发具有特定疗效的药 物,提高药物研发的效率 和成功率。
2
转化技术可以用于基因治疗、基因克隆、基因鉴 定等领域。
3
转化技术需要掌握基因表达、载体构建、受体细 胞筛选等技术,是基因工程中的关键技术之一。
基因敲除和基因编辑技术
基因敲除是指通过特定的方法将一个 或多个基因从生物体的基因组中删除 或破坏,导致其失去功能的技术。
基因编辑是指通过特定的酶对生物体 的基因组进行精确的修改,以达到治 疗或改变生物性状的目的。
细胞治疗
基因工程技术可用于改造 和优化细胞,用于治疗各 种疾病,如肿瘤、遗传性 疾病等。
工业领域的应用
生物能源
利用基因工程技术改良微生物, 提高微生物的产油、产气等能力,
为生物能源的开发和利用提供支 持。
生物材料
基因工程技术可用于开发和生产新 型生物材料,如生物塑料、生物纤 维等,替代传统石化材料。
基因组学杨金水电子版 基因工程 电子版
基因组学杨金水电子版基因工程电子版导读:就爱阅读网友为您分享以下“基因工程电子版”的资讯,希望对您有所帮助,感谢您对的支持! 作者:吴乃虎出版社:高等教育出版社第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系二、基因工程的诞生与发展第二节基因工程是生物科学发展的必然产物一、基因是基因重组的物质基础二、DNA的结构和功能三、基因操作技术的发展促进基因工程的诞生和发展四、基因工程的内容第三节基因的结构——基因操作的理论基础一、基因的结构组成对基因操作的影响二、基因克隆的通用策略第一篇基因操作原理第二章分子克隆工具酶第一节限制性内切酶一、限制与修饰二、限制酶识别的序列三、限制酶产生的末端四、DNA末端长度对限制酶切割的影响五、位点偏爱六、酶切反应条件七、星星活性八、单链DNA的切割九、酶切位点的引入十、影响酶活性的因素十一、酶切位点在基因组中分布的不均一性第二节甲基化酶一、甲基化酶的种类二、依赖于甲基化的限制系统三、甲基化对限制酶切的影响第三节DNA聚合酶一、大肠杆菌DNA聚合酶二、KIenow DNA聚合酶三、T4噬菌体DNA聚合酶四、T7噬菌体DNA聚合酶五、耐热DNA聚合酶六、反转录酶七、末端转移酶第四节其他分子克隆工具酶一、依赖于DNA的RNA聚合酶二、连接酶三、T4多核苷酸激酶四、碱性磷酸酶五、核酸酶六、核酸酶抑制剂七、琼脂糖酶八、DNA结合蛋白九、其他酶第三章分子克隆载体第一节质粒载体一、质粒的基本特性二、标记基因三、质粒载体的种类第二节λ噬菌体载体一、λ噬菌体的分子生物学二、λ噬菌体载体的选择标记……第四章人工染色体载体第五章表达载体第六章基因操作中大分子的分离和分析第七章基因芯片技术第八章PCR技术及其应用第九章DNA序列分析第十章DNA诱变第十一章DNA文库的构建和目的基因的筛选第十二章基因组研究技术第二篇基因工程应用第十三章植物基因工程第十四章动物基因工程第十五章酵母基因工程第十六章细菌基因工程第十七章病毒基因工程第十八章医药基因工程第十九章基因工程产品的安全及其管理第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系基因操作(gene manipulation):指对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。
基因工程和基因组
针对特定基因突变或表达异常,开发相应的靶向药物或治疗方法,实现精准治疗。
基因组学在临床试验中的应用
利用基因组学技术,对患者进行分层和精准治疗,提高临床试验的成功率和患者的生存率 。
基因组学在农业领域
05
应用
植物抗逆性改良及新品种选育
利用基因编辑技术改良作物抗逆性
通过CRISPR-Cas9等基因编辑技术,对作物抗逆性相关基因进行定点突变或敲除,提高作物对干 旱、高温、盐碱等逆境的抵抗能力。
转基因技术
基因枪法
将外源基因包裹在金属微粒中,通过高压气体加 速将微粒射入受体细胞或组织。
显微注射法
在显微镜下将外源基因直接注入受体细胞的细胞 核内。
农杆菌转化法
利用农杆菌感染植物细胞,将外源基因导入植物 基因组中。
基因编辑技术
01 02
CRISPR-Cas9技术
利用CRISPR-Cas9系统对目标基因进行定点切割,通过非同源末端连接 或同源重组方式修复DNA双链断裂,实现基因敲除、插入或替换等编 辑操作。
尽管基因工程和基因组学已经 取得了很大的进展,但仍存在 一些技术瓶颈,如基因编辑的 效率和安全性、基因测序的准 确性和灵敏度等,需要进一步 研究和突破。
基因工程和基因组学的发展需 要跨学科的合作和交流,包括 生物学、医学、化学、物理学 、计算机科学等,以推动技术 的创新和应用。
加强跨学科合作,推动创新发展
THANKS.
比较基因组学
比较不同物种或个体基因组的差异和相似 性,揭示物种进化、基因功能等生物学问 题。
基因工程核心技术
03
DNA重组技术
010203Fra bibliotek限制性内切酶
识别并切割DNA特定序列, 产生黏性末端或平末端。
基因工程和基因组学
探秘基因工程和基因组学
基因工程和基因组学是当今最先进的生物学科学领域之一,其应用涵盖医疗、 农业、工业和环境等各个领域。本次演讲将为您揭开真相。
基因工程的应用领域
医疗
基因工程技术可以用于开发新药、制备疫苗、诊 断遗传性疾病。
工业
基因工程技术可以用于生产制造业中,如生产高 纯度的发酵酶、生物柴油等。
基因工程的基本原理
分离选择
找到想要的基因。
切割粘贴
精准操作基因。
转化
把修改后的基因引入到目标生 物体中。
基因组学的研究方法和技术
1
基因组测序
分析和揭示生物体各种基因的位置、数
基因表达谱分析
2
量和结构信息,是研究基因组学的重要 手段。
通过大规模分析细胞或组织中的基因表
达水平,揭示基因在不同生理状态下的
活性表达。
3
蛋白质组学
通过研究蛋白质的组成、构象、功能等, 揭示蛋白质与生物体生命活动的关系。
基因工程和基因组学的现状和发展趋 势
1 技术发展日新月异
新的技术手段已经大大提高了操作的效率和精度。
2 应用领域扩展不断
新的应用领域不断涌现,如人工合成生物体、微生物代谢工程等。
3 伦理和社会问题关注加深
农业
基因工程技术可以用于培育抗病虫害、耐旱抗寒、 高产优质的农作物。
环境
基因工程技术可以用于生物修复,如污染泥土中 的重金属,清洁污染的水源。
基因组学的意义和目标
1
认知世界
了解基因组组成可以增加我们对生命活动和生命起源的认识。
2
促进发展
研究人员可以借助基因组学开展与生物遗传相关的诸多领域的探索和研究,推动社会进步。
遗传学精品科习题
第二章遗传的细胞学基础1.植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?2.玉米体细胞里有10对染色体,写出下列各组织的细胞中染色体数目。
(1)叶(2)根(3)胚乳(4)胚囊母细胞(5)胚(6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核3.有丝分裂和减数分裂有什么不同?用图表示并加以说明。
第三章遗传物质的分子基础1.如何证明DNA是生物的主要遗传物质?2.简述DNA的双螺旋结构及其特点。
3.真核生物与原核生物DNA合成过程有何不同?4.某DNA的核苷酸中,A的含量为30%,则G的含量是多少?第四章孟德尔遗传1.纯种甜粒玉米和纯种非甜粒玉米间行种植,收获时发现甜粒玉米果穗上结有非甜粒的子实,而非甜粒玉米果穗上找不到甜粒的子实。
如何解释这种现象?怎样验证解释?2.光颖、抗锈、无芒(ppRRAA)小麦和毛颖、感锈、有芒(PPrraa)小麦杂交,希望从F3选出毛颖、抗锈、无芒(PPRRAA)的小麦10个株系,试问在F2群体中至少应选择表现型为毛颖、抗锈、无芒(P_R_A_)的小麦多少株?3.设玉米子粒有色是独立遗传的三显性基因互作的结果,基因型为A_C_R_的子粒有色,其余基因型的子粒均无色。
某有色子粒植株与以下3个纯合品系分别杂交,获得下列结果:(1)与aaccRR品系杂交,获得50%有色子粒;(2)与aaCCrr品系杂交,获得25%有色子粒;(3)与AAccrr品系杂交,获得50%有色子粒。
试问这个有色子粒植株是怎样的基因型?4.萝卜块根的形状有长形的,圆形的,椭圆形的,以下是不同类型杂交的结果:长形×圆形→595椭圆形;长形×椭圆形→205长形,201椭圆形;椭圆形×圆形→198椭圆形,202圆形;椭圆形×椭圆形→58长形,112椭圆形,61圆形说明萝卜块根形状属于什么遗传类型,并自定基因符号,标明上述各杂交组合亲本及其后裔的基因型。
遗传学名词解释
绪论(一) 名词解释:遗传学:研究生物遗传和变异的科学。
遗传:亲代与子代相似的现象。
变异:亲代与子代之间、子代个体之间存在的差异.第二章遗传的细胞学基础(一) 名词解释:1. 原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细胞或集中于某一区域形成拟核。
如:细菌、蓝藻等。
2. 真核细胞:有核膜包围的完整细胞核结构的细胞。
多细胞生物的细胞及真菌类。
单细胞动物多属于这类细胞。
3. 染色体:在细胞分裂时,能被碱性染料染色的线形结构。
在原核细胞内,是指裸露的环状DNA分子。
4. 姊妹染色单体:二价体中一条染色体的两条染色单体,互称为姊妹染色单体。
5. 同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。
6. 超数染色体:有些生物的细胞中出现的额外染色体。
也称为B染色体。
7. 无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。
认为是有性生殖的一种特殊方式或变态。
8. 核小体(nucleosome):是染色质丝的基本单位,主要由DNA分子与组蛋白八聚体以及H1组蛋白共同形成。
9. 染色体组型(karyotype) :指一个物种的一组染色体所具有的特定的染色体大小、形态特征和数目。
10. 联会:在减数分裂过程中,同源染色体建立联系的配对过程。
11. 联会复合体:是同源染色体联会过程中形成的非永久性的复合结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。
12. 双受精:1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
另1精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳的过程。
13. 胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。
14. 果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则另称为果实直感。
基因工程和基因组学
靶向药物设计及治疗方法探讨
根据患者的基因型和疾病特征, 制定个性化的治疗方案。
通过激活患者自身的免疫系统, 攻击异常基因或其产物,达到治 疗目的。
靶向药物设计 个体化治疗 组合治疗 免疫治疗
针对特定异常基因或其产物,设 计能够特异性结合并抑制其功能 的药物。
将多种靶向药物联合使用,以同 时抑制多个异常基因或通路,提 高治疗效果。
02
基因组学基础
Chapter
基因组学概念及研究内容
01
02
03
基因组学定义
研究生物体基因组的组成 、结构、功能及进化的科 学。
研究内容
包括基因组的测序、组装 、注释、比较基因组学、 功能基因组学等。
研究意义
揭示生物体的遗传信息, 为生物医学研究、生物技 术应用等提供基础数据。
基因组测序技术与方法
microRNA
一类小型非编码RNA,通过与 mRNA结合抑制其翻译或降解,从 而调控基因表达。
疾病相关基因表达异常分析
疾病相关基因
某些基因的表达异常与特定疾病 的发生和发展密切相关。
基因表达谱分析
利用高通量测序技术,对疾病样 本和正常样本的基因表达水平进
行比较,找出差异表达基因。
疾病分子分型
基于基因表达谱等分子特征,对 疾病进行更精细的分类和诊断。
发展历程
自20世纪70年代重组DNA技术诞生以来,基因工 程经历了不断的发展和完善,包括基因克隆、基因 编辑、基因合成等技术的出现和应用。
基因工程应用领域
医药领域
工业领域
基因工程在医药领域的应用包括基因 诊断、基因治疗和药物研发等,例如 利用基因工程技术生产重组蛋白药物 、抗体药物等。
工业领域中的基因工程应用包括生物 制造、生物能源和生物环保等,例如 利用基因工程技术生产生物塑料、生 物燃料等。
基因组学与基因工程
疾病治疗:通过基因编辑技术,治疗遗 传性疾病和罕见病
农业生产:利用基因工程技术,提高作 物产量和抗病能力
环境保护:通过基因工程技术,治理环 境污染和生态破坏
生物制药:利用基因工程技术,生产新 型药物和疫苗
生物能源:利用基因工程技术,开发清 洁能源和可再生能源
人类健康:通过基因工程技术,提高人 类健康水平和生活质量
基因组学与基因工程面临的挑战与机遇
技术挑战:如何提高基因编辑的精确度和效率 伦理挑战:如何平衡基因编辑技术的发展和伦理问题 机遇:基因编辑技术在疾病治疗、农业生产、环境保护等领域的应用前景 政策支持:政府对基因组学与基因工程研究的支持和鼓励政策
感谢您的观看
汇报人:XX
04
基因组学与基因工程的 关系
基因组学对基因工程的影响
基因组学为基因工程提供了理 论基础和指导
基因组学帮助科学家了解基因 的功能和作用
基因组学促进了基因工程的发 展和应用
基因组学为基因工程提供了新 的技术和方法
基因工程对基因组学的影响
基因工程为基因组学提供了技术支持,使得基因组学研究得以深入进行。 基因工程通过对基因的改造和编辑,为基因组学提供了新的研究方法和思路。 基因工程在基因组学中的应用,使得基因组学研究更加精准和高效。 基因工程和基因组学的结合,为医学、农业、环保等领域带来了革命性的变革。
基因突变和遗传病 的关系
基因组学在疾病诊 断和治疗中的应用
基因组学的重要性
基因组学是研究生 物基因组的科学, 对于理解生物的遗 传特性和生命活动 具有重要意义。
基因组学可以帮助 我们更好地理解疾 病的发生和发展, 为疾病的诊断和治 疗提供新的思路和有 广泛的应用,可以 改良品种,提高产 量和质量。
遗传课后题
第六章染色体变异1.植株是显性AA纯合体,用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有2株表现为aa。
如何证明和解释这个杂交结果?答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断裂,丢失了具有A基因的染色体片断,与带有a基因的花粉授粉后,F1缺失杂合体植株会表现出a基因性状的假显性现象。
可用以下方法加以证明:(1)细胞学方法鉴定:①缺失圈;②非姐妹染色单体不等长。
(2)育性:花粉对缺失敏感,故该植株的花粉常常高度不育。
(3)杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后代6显性∶1隐性。
2.玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C 等位的无色基因c在正常染色体上。
玉米的缺失染色体一般是不能通过花粉而遗传的。
在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。
试解释发生这种现象的原因。
答:这可能是Cc缺失杂合体在产生配子时,带有C基因的缺失染色体与正常的带有c基因的染色体发生了交换,其交换值为10%,从而产生带有10%C基因正常染色体的花粉,它与带有c基因的雌配子授粉后,其杂交子粒是有色的。
10.使普通小麦与圆锥小麦杂交,它们的F1植株的体细胞内应有哪几个染色体组和染色体?该F1植株的孢母细胞在减数分裂时,理论上应有多少个二价体和单价体?F2群体内,各个植株的染色体组和染色体数是否还能同F1一样?为什么?是否还会出现与普通小麦的染色体组和染色体数相同的植株?答:F1植株体细胞内应有AABBD 5个染色体组,共35条染色体,减数分裂时理论上应有14II+7I。
F2群体内各植株染色体组和染色体数绝大多数不会同F1一样,因为7个单价体分离时是随机的,但也有可能会出现个别与普通小麦的染色体组和染色体数相同的植株。
因为产生雌雄配子时,有可能全部7 I 都分配到一个配子中。
12.三体的n+1胚囊的生活力一般远比n+1花粉强。
遗传学部分整理复习提纲
遗传学部分整理复习提纲遗传学部分整理复习提纲第⼀章:绪论1. 最重要⼈物的贡献、年份、论著1900年,孟德尔规律的重新发现标志遗传学的诞⽣,贝特⽣发现了连锁现象,但做出了错误的解释,发现连锁与交换规律的科学家是摩尔根。
约翰⽣最先提出“基因”⼀词。
斯特蒂⽂特绘制出第⼀张遗传连锁图。
1953年,⽡特森和克⾥克提出DNA分⼦结构模式理论。
第⼆章:遗传的细胞学基础1. 重要概念:染⾊体:间期细胞核内由DNA、组蛋⽩、⾮组蛋⽩及少量RNA 组成的线性复合结构。
异染⾊质:染⾊质上染⾊深,通常不含有功能基因,在细胞周期中变化较⼩的区域,具有这种固缩特性的染⾊体。
A染⾊体:真核细胞染⾊体组的任何正常染⾊体,包括常染⾊体和性染⾊体(A染⾊体在遗传上是重要的,对个体的正常⽣活和繁殖是必需的。
其数⽬的增减和结构的变化对机体会造成严重的后果);B染⾊体:在⼀组基本染⾊体外,所含的多余染⾊体或染⾊体断⽚称为B染⾊体,它们的数⽬和⼤⼩变化很多。
⼀般在顶端都具有着丝粒,⼤多含有较多的异染⾊质。
随体:位于染⾊体次缢痕末端的、圆形或圆柱形的染⾊体⽚段。
胚乳直感(花粉直感):在3n胚乳的性状上由于精核的影响⽽直接表现⽗本的某些性状。
果实直感:种⽪或果⽪组织在发育过程中由于花粉影响⽽表现⽗本的某些性状。
⽆融合⽣殖:雌雄配⼦不发⽣核融合的⼀种⽆性⽣殖⽅式。
巨型染⾊体:⽐普通染⾊体显著巨⼤的染⾊体的总称。
有丝分裂⼀般没有同源染⾊体联会,果蝇唾腺中的多线染⾊体,染⾊质线不断复制,但是染⾊体着丝粒不分裂。
联会:在减数分裂前期过程中,同源染⾊体彼此配对的过程。
⼆价体:减数分裂前期Ι的偶线期,同源染⾊体联会形成联会复合体的⼀对染⾊体。
单价体:在特殊情况,减数分裂前期Ι的偶线期联会时,存在不能配对的染⾊体。
同源染⾊体:形态、结构和功能相似的⼀对染⾊体,⼀条来⾃⽗本,⼀条来⾃母本。
组型分析:利⽤染⾊体分带技术等,在染⾊体长度、着丝粒位置、长短臂⽐、随体有⽆特点基础上,进⼀步根据染⾊的显带表现区分出各对同源染⾊体。
基因组学杨金水电子版 基因工程 电子版
基因组学杨金水电子版基因工程电子版导读:就爱阅读网友为您分享以下“基因工程电子版”的资讯,希望对您有所帮助,感谢您对的支持! 作者:吴乃虎出版社:高等教育出版社第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系二、基因工程的诞生与发展第二节基因工程是生物科学发展的必然产物一、基因是基因重组的物质基础二、DNA的结构和功能三、基因操作技术的发展促进基因工程的诞生和发展四、基因工程的内容第三节基因的结构——基因操作的理论基础一、基因的结构组成对基因操作的影响二、基因克隆的通用策略第一篇基因操作原理第二章分子克隆工具酶第一节限制性内切酶一、限制与修饰二、限制酶识别的序列三、限制酶产生的末端四、DNA末端长度对限制酶切割的影响五、位点偏爱六、酶切反应条件七、星星活性八、单链DNA的切割九、酶切位点的引入十、影响酶活性的因素十一、酶切位点在基因组中分布的不均一性第二节甲基化酶一、甲基化酶的种类二、依赖于甲基化的限制系统三、甲基化对限制酶切的影响第三节DNA聚合酶一、大肠杆菌DNA聚合酶二、KIenow DNA聚合酶三、T4噬菌体DNA聚合酶四、T7噬菌体DNA聚合酶五、耐热DNA聚合酶六、反转录酶七、末端转移酶第四节其他分子克隆工具酶一、依赖于DNA的RNA聚合酶二、连接酶三、T4多核苷酸激酶四、碱性磷酸酶五、核酸酶六、核酸酶抑制剂七、琼脂糖酶八、DNA结合蛋白九、其他酶第三章分子克隆载体第一节质粒载体一、质粒的基本特性二、标记基因三、质粒载体的种类第二节λ噬菌体载体一、λ噬菌体的分子生物学二、λ噬菌体载体的选择标记……第四章人工染色体载体第五章表达载体第六章基因操作中大分子的分离和分析第七章基因芯片技术第八章PCR技术及其应用第九章DNA序列分析第十章DNA诱变第十一章DNA文库的构建和目的基因的筛选第十二章基因组研究技术第二篇基因工程应用第十三章植物基因工程第十四章动物基因工程第十五章酵母基因工程第十六章细菌基因工程第十七章病毒基因工程第十八章医药基因工程第十九章基因工程产品的安全及其管理第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系基因操作(gene manipulation):指对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。
《遗传学》朱军版习题及答案
《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。
答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。
2.简述遗传学研究的对象和研究的任务。
答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。
遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。
3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
遗传学基本知识点
第一章绪论遗传学遗传变异遗传、变异和选择是生物进化和新品种选育的三大基础第二章遗传的细胞学基础原核生物和真核生物的区别以及组成真核生物和原核生物细胞的基本结构和细胞器染色体及其组成部分与分类主缢痕次缢痕随体同源染色体非同源染色体核型分析有丝分裂无丝分裂细胞周期及其不同时期的划分有丝分裂基本过程、有丝分裂不同时期的划分以其特征性变化(简答)无丝分裂基本过程、有丝分裂不同时期的划分以其特征性变化(简答)动物雌雄配子形成的基本过程及其染色体的变化第三章遗传物质的分子基础DNA作为主要遗传物质的证据(直接证据和间接证据)DNA和RNA的基本组成和差别(简答)DNA双螺旋结构假说(简答)DNA构型(A-DNA, B-DNA, Z-DNA)染色质及其组成成分染色质的基本单位及核小体的成分异染色质、常染色质异固缩染色体的结构模型(简答)着丝粒端体简并遗传密码及其基本特性第四章孟德尔遗传基因型表现型纯合体杂合体测交自交一至两对基因分离和重组的概率计算和个体基因型的推算(计算)完全显性不完全显性共显性镶嵌显性显性与环境的关系复等位基因致死基因显性致死基因隐形致死基因互补作用、积加作用、重叠作用、显性上位作用、隐形上位作用、抑制作用多因一效、一因多效第五章连锁遗传和性连锁连锁遗传完全连锁不完全连锁交换交换值及交换值的计算(计算)连锁遗传图两点测验三点测验连锁群性染色体常染色体性别决定的方式(雄杂合型、雌杂合型)性别决定的畸变性连锁(伴性遗传)限性遗传从性遗传第六章染色体变异染色体结构变异的四种类型缺失、重复、倒位以及易位的定义、类型及遗传效应染色体结构变异的应用(基因定位、果蝇的CIB测定法、利用易位创造玉米核不育系的双杂合保持系、易位在家蚕生产上的应用)染色体组染色体数的基数同源多倍体异源多倍体单倍体非整倍性三体单体双三体双单体四体缺体非整倍体的应用第七章细菌和病毒的遗传质粒影印培养法病毒和细菌在遗传研究中的优越性温和噬菌体、烈性噬菌体以及两者侵染细菌过程的差异转化及其基本过程和应用接合F因子Hfr细胞F因子介导的接合基本过程及应用性导转导普遍性性导特殊性转导第八章基因的表达与调控分子遗传学关于基因的概念:突变子重组子顺反子基因的概念p179 第三段结构基因重叠基因隔裂基因调控基因跳跃基因顺式排列反式排列互补测验顺式调控反式调控基因作用与性状的表达基因调控乳糖操纵元模型及其正、负调控(论述)色氨酸操纵元模型及其调控(论述)启动子强化子第九章基因工程和基因组学基因工程技术的主要内容(简答)Ⅰ、Ⅱ型限制性内切酶的区别载体DNA分子具备的基本条件限制性酶图谱(计算)p227PCR的基本原理及过程(简答)DNA测序的基本原理(简答)RFLP方法及其在临床诊断中的应用基因组图谱的构建(常用Marker、遗传图谱的构建)习题2、3、4、6、7第十章基因突变基因突变突变体基因突变的一般特性突变的重演性正突变反突变突变的多方向性复等位基因突变的有害性和有利性突变的平行性突变的鉴定方法(p254-258,理解,能用突变鉴定方法解释生物学现象)DNA的防护机制(密码简并性、回复突变、抑制、致死和选择、二倍体和多倍体)基因突变的诱发:物理因素诱变(电力辐射诱变、非电离辐射诱变)、化学因素诱变(哪四类?)转座遗传因子原核生物转座因子的分类(插入因子、转座子、Mu噬菌体)真核生物的转座子习题8第十一章细胞质遗传细胞质遗传及其特点母性影响叶绿体遗传线粒体遗传第十二章遗传与发育个体发育细胞质和细胞核在个体发育中的作用及两者的依存关系个体发育阶段性转变的过程,实质就是不同基因被激活或被阻遏的过程细胞的全能性第十三章数量遗传质量性状数量性状杂交近交及其分类近交与杂交的遗传效应(三点)回交回交与自交的差别杂种优势及其三个类型杂种优势的显性假说和超显性假说第十四章群体遗传与进化基因型频率基因频率哈迪-魏伯格定律(p344-346)改变基因平衡的因素(突变、选择、迁移、遗传漂变)界定五种的主要标准生殖隔离物种形成的两种方式渐进式继承式分化式爆发式。
第9章 基因功能与基因组学 习题
第9章基因工程与基因组学习题一、名词解释1.标记基因:指与目标性状紧密连锁、同该性状共同分离且易于识别的可遗传的等位基因变异。
2.cDNA库:是以mRNA为模板,经反转录酶合成互补DNA构建的基因库。
3.克隆(无性繁殖系)选择学说:一个无性繁殖系是指从一个祖先通过无性繁殖方式产生的后代,是具有相同遗传性状的群体。
经过选择培养,可以获得无性系变异体,但其遗传性状不一定有差异,在适当的培养条件下可产生逆转。
4.基因组:一个物种的单倍体细胞中所含有的遗传物质的总和称为该物种的基因组。
5.遗传多态现象:同一群体中存在着两种以上变异的现象。
通常不同变异型间易于区别,不存在中间类型,而且遗传方式清楚。
例如人的ABO血型就是遗传多态,这个血型系统由同一基因座上的3个等位基因决定,各型间区分明确,在同一地区有一定的频率分布。
6.基因芯片:所谓基因芯片,是指利用大规模集成电路的手段,控制固相合成成千上万个寡核苷酸探针,并把它们有规律地排列在指甲大小的硅片上,然后将要研究的材料,如DNA或cDNA用荧光标记后在芯片上与探针杂交,再通过激光共聚焦显微镜对芯片进行扫描,并配合计算机系统对每一个探针上的荧光信号作出比较和检测,从而迅速得出所需的信息。
7.BAC文库(bacterial artificial chromosome,细菌人工染色体文库):BAC是人工染色体的一种,是以细菌F因子(细菌的性质粒)为基础组建的细菌克隆体系。
8.Ti质粒:在根瘤土壤杆菌细胞中存在的一种染色体外自主复制的环形双链DNA分子,称为Ti质粒,它控制根瘤的形成,Ti是英文tumor-inducing(肿瘤的诱发)的略语。
可作为基因工程的载体。
9.穿梭载体(shuttle vector):指既能在真核细胞中繁殖,又能在原核细胞中繁殖的载体。
它既含有原核细胞的复制原点,又含有真核生物的复制原点,而且又具备可利用的酶切位点和合适的筛选指标。
二、是非题1.限制性内切酶EcoRI对一定核甘酸顺序的切割位点是G↓AATTC CTTAA↑G。
遗传学名词解释(答案)
名词解释第一章绪论遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。
第二章遗传的细胞学基础染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
染色体:在细胞分裂时期,在细胞核中容易被碱性染料染色、具有一定数目和形态结构的的杆状体。
(染色体:指任何一种基因或遗传信息的特定线性序列的连锁结构。
)染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色单体。
姐妹染色单体:二价体中的同一各染色体的两个染色单体,互称姐妹染色单体,它们是间期同一染色体复制所得。
非姐妹染色单体:单体二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是同源染色体这些间期各自复制所得。
联会:减数分裂中,同源染色体的配对过程。
同源染色体:大小,形态和结构相同,功能相似的一对染色体。
非同源染色体:形态和结构不同的各对染色体互称为非同源染色体。
有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。
即细胞分裂为二,各含有一个核。
分裂过程包括四个时期:前期、中期、后期、末期。
在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。
减数分裂:又称成熟分裂,是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂。
它使体细胞染色体数目减半。
它含两次分裂,第一次是减数的,第二次是等数的。
双受精:授粉后,一个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
同时另一精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳。
基因工程与基因组学
基因工程的定义和作用
1 定义
基因工程是指通过改变生物体的遗传物质, 创造新的生物特性或改变已有特于医学、农业和工业等领 域,用于治疗疾病、提高农作物产量和生产 特定化合物。
基因组学的定义和作用
1 定义
基因组学是研究整个生物体的基因组,包括基因组的结构、功能和相互关系。
2 作用
基因组学可以帮助我们理解生物体的遗传信息,预测疾病风险,开发新的药物和改善农 作物。
基因工程与基因组学的关系
基因工程和基因组学紧密相连,基因组学提供了基因工程所需的遗传信息,而基因工程则利用基因组学的信息 来创造新的生物特性。
基因工程的应用领域
医学
基因工程可以用于治疗遗传性疾 病,开发新药和生产生物医药产 品。
农业
基因工程可以提高农作物的抗病 性、产量和营养价值。
工业
基因工程可以用于生产各种化合 物、酶和其他工业产品。
基因组学的应用领域
人类基因组学
研究人类基因组的结构和功能, 有助于了解人类的遗传信息和 疾病风险。
微生物基因组学
研究微生物的基因组,有助于 了解微生物的生态学、代谢和 作用。
植物基因组学
研究植物的基因组,有助于了 解植物的生长、适应性和抗病 性。
未来发展和挑战
1
发展
基因工程和基因组学将继续发展,带来
道德和法律问题
2
更多创新和应用领域的拓展。
伦理和道德问题将继续围绕基因工程和
基因组学展开讨论,并推动相关法律的 制定。
3
安全和风险
基因工程和基因组学的应用需要对安全 和风险进行评估和管理,以确保人类和 环境的安全。
基因工程与基因组学
基因工程是通过改变或操作生物的遗传信息来创造新的生物特性的技术,而 基因组学研究整个生物体的基因组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 广义的遗传工程:包括细胞工程、染色体工程、
•
细胞器工程、基因工 程。
• 狭义的遗传工程:即基因工程
2020/6/28
2
•
• 2.基因工程的发展:
基因工程的产生和发展在遗传学的发展史上是一次大革命,它打 破了种、属的界线,可以在生物大系统内交流基因。其发展情况如下:
• 1971年,史密斯(Smith H. O.)等人从细菌中分离出的一种限制性酶
• 二个平齐末端。
2020/6/28
8
三、载体
• 载体是将“目的”基因即重组DNA分子导入受体细胞的运载 工具。
DNA载体:质粒、噬菌体、病毒、细菌或酵母菌人工染色 体等,现在使用的载体都是采用基因工程的方法构建的。
• 载体的条件:
①.具有复制原点,能自我复制,并能带动携带的外源
DNA一起复制。
②.具多克隆位点,即有多种限制酶的切点;且切点不存
在于复制原点或抗性选择标记内,即切点不影响复制和标记
性状的表现。
③.至少有一个选择标记基因,便于鉴定进入宿主细胞与
否,如抗生素基因或某种酶的基因,而宿主细胞没有这些基
因。
④.易从宿主细胞中回收克隆。
2020/6/28
9
• 一些常用的载体:
• ㈠、细菌质粒 :
• 质粒是细菌细胞内独立于细菌染色体而自然 存在的、能自我复制、易分离和导入的环状 双链DNA分子,是质粒具有重组表型检测标 记,可检测是否携带外源DNA片段。
⑥.从繁殖的大量细胞群体中筛选和鉴定含有目标基因 的重组DNA,受体细胞的克隆;
•
⑦. 能从选出的宿主细胞中回收、纯化和分析克隆的重
组的DNA分子;
• 2020/6/28⑧.克隆的基因能够正常表达。
5
二、限制性内切核酸酶
• 限制性内切核酸酶,是一种核酸水解酶,主 要从细菌中分离得到,这些酶能识别特定的
•
(如α–互补的显色表型)
•。
•
2020/6/28
15
③ lacZ的肽互 补
1)-肽( lacZ’ ):
-半乳糖苷酶N端的一段氨基酸片断 (11-41氨基酸)。
4聚体
N端的11-41aa N端的11-41aa N端的11-41aa N端的11-41aa
C端大部分 C端大部分 C端大部分 C端大部分
6
• ⑵.限制性内切酶的类别: 根据限制性内切酶的作用特点,可分为两类:第Ⅰ 类酶、第Ⅱ类酶
• 第Ⅰ类酶 : • 如EcoB(大肠杆菌B株)、EcoK(大肠杆菌K株)分
子量较大(约300,000), 由于这类酶的切割部位无 特异性,是随机的,每隔一段DNA 序列随机切割双 链DNA分子,切割点不固定,所以在基因工程中很 少应用。 第Ⅱ类酶():
5’ MCS lacZ’
3’ 5’ 外源DNA lacZ’ 3’
肽 互补
肽移码突变 不互补
④ IPTG的诱导作 用
IPTG 是 乳 糖 的 类 似 物 。 能 诱 导 lac 操 纵 子的启动转录,使受体菌基因组中的 lacZ 的C端部分和载体的lacZ’肽都表 达。从而互补。 但载体MCS上插入外源DNA后,仍然 不能产生肽!
DNA的体外重组:
• 1. 体外通过限制性内切酶的修剪和DNA连接酶的连接; • 2. 目标DNA分子+载体DNA,共价连接; • 3. 获得重组DNA分子。
2020/6/28
24
• ㈠、从基因库中分离基因:
1. 基因库(gene library): 是一组DNA和cDNA序列克隆的集合体
。从基因库中分离基因,首先要构建基因库 。
的转录水平,检测mRNA的存在。
• ③. Western 杂交分析:用于蛋白质的分
析。
2020/6/28
29
• ㈡、PCR扩增基因:
聚合酶链式反应 (polymerase chain reaction,PCR)可以体外快速 扩增DNA。
美国Mullis(1986)发明 (现代生物学发展史上的里程碑)。 PCR反应三个步聚 (一个循环): 1. 变性:94-95℃使模板DNA双链变成单链; 2. 复性:50-70℃下,引物分别与互补DNA单链互补配对; 3. 延伸:在引物的引导和Taq酶作用下,72 ℃下合成模板DNA的互 补链。 PCR反应通常有25-35个循环,一般可扩增5kb左右的片段。㈢、
化学合成的方法人工合成基因;
③.将DNA片段或人工合成的基因与能够自我复制并 具有选择标记的载体在体外连接,形成重组DNA分子;
④.将重组的DNA分子引入受体(宿主)细胞中,使 重组DNA分子在受体细胞内复制,产生多个拷贝,即克隆 ;
⑤.重组DNA能随宿主细胞的分裂而分配到子细胞中 ,使子代群体细胞均具有重组的DNA分子的拷贝;
如EcoR I(大肠杆菌)、Hind Ⅲ(嗜血杆菌),分子 量较小(约 20,000-100,000), 这类酶的切割部 位有特异性,可准确切割DNA双链的特异序列,因 此在基因工程中广泛应用。
•
2020/6/28
7
• 这类酶的切割点是对称序列。如回文对称 序列(又称反向重复序列,即从两个方向 阅读,其序列相同的序列)。识别特定的 碱基序列,交错切割产生二个粘性末端。
(其中Hind III、BamH I、Sal I 3个位于 选择标记Tetr的内部)
抗菌素选择原理
含有抗菌素的培养基(选择培养基)中 能够生长抗菌素抗性基因的受体菌
当带有抗菌素抗性基因的载体进入受体菌 后,受体菌才能生长。
抗性基因
死
抗菌素
活
• 另:pUC18质粒具有以下特点:
①. 分子量小,可接受较大外源片段; ②. 拷贝数多,500个/细胞; ③. 克隆位点的酶切位点多,克隆方便; ④. 具有用于检测重组质粒的选择标记
根据克隆核酸序列、来源,基因库可分 为:核基因库、染色体库、cDNA库、线粒体 库等
2020/6/28
25
• ①. 核基因库 : 核基因库(genomic library):将某生物全部基因组DNA入感受态细胞 收集菌落。 噬菌体或柯斯质粒 (cosmid)载体:将重组DNA包装进噬菌体 感染细
菌 收集噬菌斑。 BAC(细菌人工染色体)或YAC(酵母人工染色体)载体:重组人工染色
体 导入宿主细胞 收集细胞。 ②. 染色体基因库:
将染色体用来构建基因库,可选择特异基因和分析染色体结构和组织。
• 如果蝇的多线染色体:对染色NA为模板反转录酶合成互补DNA 构建基因库。cDNA库与核
第九章 基因工程和基因组学
2020/6/28
1
• §1.基因工程(Gene engineering)
一、基因工程概述
• 1、基因工程的概念
• 20世纪70年代随着DNA重组技术的发展在遗传学上产生 了一门新的分支遗传工程( Genetics engineering )
• 遗传工程:又称遗传操作(Genetic manipulation),是以 分子遗传学为 基础,以现代物理、化学等为手段,按照 人们设 计的生物蓝图在细胞、染色体和基因等不同水平 上,对生物的遗传性状进行定向改造,创造新的生物类型 。
DNA库不同:cDNA库仅具有细胞或组织内表达基因的mRNA序列 仅包 括基因组的部分基因序列。
2020/6/28
26
• 2. 筛选基因库:
根据待选基因相关信息 确定
• 筛选方法和条件
从基因库中筛选、
• 分离基因。多数方法是利用一段核苷酸
• 序列(DNA、cDNA或寡聚核苷酸)或抗体
• 作探针(Probe),用放射性同位素或非放
•
酶切病毒DNA分子,标志着DNA重组时代的开始。
1972年 伯格(Berg P.)等用限制性酶分别酶切猿猴病毒和噬菌体
•
DNA,将两种DNA分子用连接酶连接起来 得到新的DNA分子。
1982年,美国食品卫生和医药管理局批准,用基因工程在细菌中生产人
的胰岛素投放市场。
• 自从1983年第一株转基因烟草获得以来,至今已有120种植物转基因获 得成功。2019年全球大面积种植,并不断扩大。
IPTG
IPTG诱导的结果: MCS无插入时,互补,蓝菌斑。 MCS有插入时,不互补,白菌斑。
通过看培养皿上的菌斑的颜色就能直接知道是 否有DNA插入。
• ㈤、细菌人工染色体(bacterial artificial
chromosome,BAC): BAC载体一般可携带大于50kb的外源
DNA片段。F因子改造成BAC载体,甚至可 用于克隆100kb以上的DNA片段。 • ㈥、酵母人工染色体(yeast artificial chromosome,YAC):
• 射性同位素标记探针 筛选基因库。
•
筛库过程:
将噬菌体感染形成的噬菌斑印影在硝酸
• 纤维膜上变性 带有目的基因的放射性
• DNA或cDNA作探针进行杂交 放射性
• 自显影 杂交信号(黑点)对应的
• 噬菌斑即为阳性克隆。
2020/6/28
27
• 3. 阳性克隆的分析与鉴定: 从基因库中筛选出阳性克隆, 分析、鉴定,得到目的基因 。 ⑴. 限制性酶图谱: 根据同源性分析,了解 阳性克隆片段的酶切位点及 相对位置 用于进一步亚 克隆或同已知的其它序列比 较。
核苷酸序列, 所以称之为限制性内切酶。是 基因工程的常用工具酶。
• ⑴.限制性内切酶的命名: 根据其来自的生物名称,用英文字母和数字 表示;
①. EcoR I 来自大肠杆菌(Escherichia coli);
②. Hind Ⅲ来自嗜血杆菌(Haemophilus influenzae)。
2020/6/28
3)载体lacZ’与互补
pUC质粒载体上的lacZ’ 编码肽与这个 缺失突变的-半乳糖苷酶“互补”,使 它能形成4聚体,从而能分解X-gal,产 生蓝色物质。