初二数学压轴大题集(100道)
初二下学期数学期末综合压轴题100题锦集
初二下学期数学期末综合压轴题100题锦集1.△ABC是等边三角形,D是射线BC上的一个动点(与点B、C 不重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点F,连接BE.(1)如图E 13.1,当点D在线段BC上运动时.①求证:△AEB≌△ADC;②探究四边形BCFE是怎样特殊的四边形?并说明理由;(2)如AFDFDCE图(备用图)图13.113.2,当点D在BC的延长线上运动时,请直接写出(1)中的两个结论是否仍图然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由.,B60°,BC2.点O是AC的2.如图,在Rt△ABC中,ACB90°中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设AOD=.(1)当等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;EDBC90°(2)当时,判断四边形是否为菱形,并说明理由.-1)3.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,,且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;..(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以 OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n 的代数式表示),并写出其最小值...第3题图14.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是 ,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.AAF第3题图2D EG C BC B4.例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.思路点拨:取的AB中点P,连结PM易证△APM ≌△MCQ从而AM=MN.问题解决: (1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.①填空:当∠AMN = °时,AM=MN;②证明①的结论.(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)第5题图2 第5题图3 第5题图15.如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.6.如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y的图象上,点P(m,n)是函数y k(k0,x0)xk(k0,x0)的图象上异于B的任意一点,过点Px分别作x轴、),轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为s1,求s2;(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为.s2写出.s2与m的函数关系式,并标明m的取值范围.7.在直角坐标系xoy中,将面积为3的直角三角形AGO沿直线y=x翻折,得到三角形CHO,连接AC,已知反比例函数y k x0的图象过A、C两点,如图①. x(1)k的值是 .(2)在直线y=x图象上任取一点D,作AB⊥AD,AC⊥CB,线段OD交AC于点F,交AB于点E, P为直线OD上一动点,连接PB、PC、CE.㈠如图②,已知点A的横坐标为1,当四边形AECD为正方形时,求三角形PBC的面积. ㈡如图③,若已知四边形PEBC为菱形,求证四边形PBCD是平行四边形.㈢若D、P两点均在直线y=x上运动,当ADC=60°,且三角形PBC的周长最小时,请直接写出三角形PBC与四边形ABCD的面积之比.8.(1)如图6,点E,F,M,N分别是菱形ABCD四条边上的点,若AE=BF=CM=DN,求证:四边形EFMN是平行四边形.(2)如图7,当E,F,M,N分别是菱形ABCD四条边的中点时,试判断四边形EFMN的形状,并说明理由.9、如图,在四边形ABFC中,∠ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。
八年级数学试卷易错易错压轴勾股定理选择题训练经典题目(含答案)100
八年级数学试卷易错易错压轴选择题精选:勾股定理选择题训练经典题目(含答案)100一、易错易错压轴选择题精选:勾股定理选择题1.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间2.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cm B .152cm C .7cmD .132cm 3.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .44.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是A .13B .25C .47D 135.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .96.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .217B .25C .42D .77.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)8.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )A .13 cmB .4cmC .4cmD .52 cm9.如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A .2B .3C .10 cmD .12 cm10.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.411.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则 h 的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 12.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm13.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒14.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1:2:3;(4)GE2+CE2=BG2.A.1个B.2个C.3个D.4个15.如图,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分线AD交BC于点D,则点D到AB的距离是()A .3B .4C .7(21)-D .7(21)+16.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A .5 B .25 C .7D .15 17.下列长度的三条线段能组成直角三角形的是( )A .9,7,12B .2,3,4C .1,2,3D .5,11,1218.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+19.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①BC=2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个 B .2个 C .3个 D .4个 20.一个直角三角形两边长分别是12和 5,则第三边的长是( )A .13B .13或15C .13或119D .1521.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④22.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .1823.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .624.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 230=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( )A .6B .8C .10D .1225.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60° 26.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( )A .5B .4C .7D .4或527.已知直角三角形纸片ABC 的两直角边长分别为6,8,现将ABC 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长是( )A .72 B .74 C .254D .15428.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )A .222221a b h+= B .222111a b h+= C .2h ab = D .222h a b =+29.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .2C .8D .1030.三个正方形的面积如图,正方形A 的面积为( )A.6 B.36 C.64 D.8【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.C解析:C【分析】利用勾股定理求出AB的长,再根据无理数的估算即可求得答案.【详解】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴2222+=+=,2313OA AB∴P13∵91316<<<,∴3134即点P所表示的数介于3和4之间,故选C.【点睛】本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.2.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm,设AF=xcm,则DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【详解】∵四边形ABCD是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD ∴△CFE≌△AFD ∴EF=DF设AF=xcm ,则DF=(8-x )cm 在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm ,222(8)6x x =-+254x cm =故选择A. 【点睛】此题是翻折问题,利用勾股定理求线段的长度.3.B解析:B 【分析】过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果. 【详解】解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F , ∵BO,CO 分别为∠ABC ,∠ACB 的平分线, 所以OD=OE=OF , 又BO=BO,∴△BDO ≌△BEO,∴BE=BD. 同理可得,CE=CF.又四边形ADOE 为矩形,∴四边形ADOE 为正方形. ∴AD=AF.∵在Rt △ABC 中,AB=6,AC=8,∴BC=10. ∴AD+BD=6①, AF+FC=8②, BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14, ∴AD=2. 故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.4.C解析:C 【分析】根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解. 【详解】四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C . 【点睛】理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.5.D解析:D 【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】 ∵90BAC ︒∠=, ∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠, ∴DE=AD ,∠BED=90BAC ︒∠=, ∴∠BDE=∠BDA , ∴BE=AB=AC , ∵CDE ∆的周长为6, ∴DE+CD+CE=AC+CE=BC=6, ∵,90︒=∠=AB AC BAC ∴22236AB AC BC +==, ∴2236AB =,218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D. 【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.6.A解析:A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBE AB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC=25+9=34,在Rt△ABC中,根据勾股定理,得AC=342=217⨯.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.7.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.8.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm,∵∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩带最短是52cm.故选D.【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,9.A解析:A【解析】【分析】将图形展开,可得到安排AP较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP=22+=310cm39((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,22+6266综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是2cm.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.10.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.11.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD 是筷子,AB 长是杯子直径,BC 是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm ,BC=8cm ,△ABC 是直角三角形∴在Rt △ABC 中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.12.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm ,∴BD=16cm ,Rt △A'DB 中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.14.C解析:C【分析】(1)根据角平分线的定义可得∠ABE =∠CBE ,根据等角的余角相等求出∠A =∠BCA ,再根据等角对等边可得AB =BC ,从而得证;(2)根据三角形的内角和定理求出∠A =∠DFB ,推出BD =DC ,根据AAS 证出△BDF ≌△CDA 即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF =AC ,再由BF 平分∠DBC 和BE ⊥AC 通过ASA 证得△ABE ≌△CBE ,即得CE =AE =12AC ,连接CG ,由H 是BC 边的中点和等腰直角三角形△DBC 得出BG =CG ,再由直角△CEG 得出CG 2=CE 2+GE 2,从而得出CE ,GE ,BG 的关系.【详解】解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵CD ⊥AB ,∴∠ABE +∠A =90°,∠CBE +∠ACB =90°,∴∠A =∠BCA ,∴AB =BC ,∴△ABC 是等腰三角形;故(1)正确;(2)∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°﹣45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△BDF ≌△CDA (AAS ),∴BF =AC ;故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°,∴∠DCB =45°,∴BD =CD ,BCBD .由点H 是BC 的中点,∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2.故(3)错误;(4)由(2)知:BF =AC ,∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE ⊥AC ,∴∠AEB =∠CEB ,在△ABE 与△CBE 中, ==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ),∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD =CD ,H 是BC 边的中点,∴DH 是BC 的中垂线,∴BG =CG ,在Rt △CGE 中有:CG 2=CE 2+GE 2,∴CE 2+GE 2=BG 2.故(4)正确.综上所述,正确的结论由3个.故选C .【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.15.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =72-x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB =22AC +BC =72,在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.解析:C【分析】本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【详解】依题意得:2240,30x y -=-=, ∴2,x y ==,斜边长==所以正方形的面积27==.故选C .考点:本题综合考查了勾股定理与非负数的性质点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.17.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、因为92+72≠122,所以三条线段不能组成直角三角形;B 、因为22+32≠42,所以三条线段不能组成直角三角形;C 、因为12= 22,所以三条线段能组成直角三角形;D 、因为52+112≠122,所以三条线段不能组成直角三角形.故选C .【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.18.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.【详解】∴由图可知:点A 所表示的数为: 1-故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AC=BC=4,则AE=3=DE,由勾股定理可得,①正确;>,②正确;1由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长,△BDF的周长+4-4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.20.C解析:C【分析】记第三边为c,然后分c为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c,若c为直角三角形的斜边,则13c==;若c为直角三角形的直角边,则c=故选:C.【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.21.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在Rt ABC中,m=AB故①②③正确,∵m2=13,9<13<16,∴3<m<4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.22.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.23.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.24.B解析:B【解析】【分析】MN 表示直线a 与直线b 之间的距离,是定值,只要满足AM +NB 的值最小即可.过A 作直线a 的垂线,并在此垂线上取点A ′,使得AA ′=MN ,连接A 'B ,则A 'B 与直线b 的交点即为N ,过N 作MN ⊥a 于点M .则A 'B 为所求,利用勾股定理可求得其值.【详解】过A 作直线a 的垂线,并在此垂线上取点A ′,使得AA ′=4,连接A ′B ,与直线b 交于点N ,过N 作直线a 的垂线,交直线a 于点M ,连接AM ,过点B 作BE ⊥AA ′,交射线AA ′于点E ,如图,∵AA ′⊥a ,MN ⊥a ,∴AA ′∥MN .又∵AA ′=MN =4,∴四边形AA ′NM 是平行四边形,∴AM =A ′N .由于AM +MN +NB 要最小,且MN 固定为4,所以AM +NB 最小.由两点之间线段最短,可知AM +NB 的最小值为A ′B .∵AE =2+3+4=9,AB 230=,∴BE 2239AB AE =-=. ∵A ′E =AE ﹣AA ′=9﹣4=5,∴A ′B 22'A E BE =+=8.所以AM +NB 的最小值为8.故选B .【点睛】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M 、点N 的位置,难度较大,注意掌握两点之间线段最短.25.C解析:C【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.【详解】连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形∴45AMB ∠=︒故选C .【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.26.D解析:D【分析】根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾股定理求斜边即可.【详解】当3和4为两直角边时,由勾股定理,得:22345+=;当3和4为一直角边和一斜边时,可知4为斜边.∴斜边长为4或5.故选:D .【点睛】本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.27.C解析:C【分析】根据图形翻折变换的性质可知,AE=BE ,设AE=x ,则BE=x ,CE=8-x ,再在Rt △BCE 中利用勾股定理即可求出BE 的长度.【详解】解:∵△ADE 翻折后与△BDE 完全重合,∴AE =BE ,设AE =x ,则BE =x ,CE =8﹣x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即x 2=62+(8﹣x )2,解得,x =254, ∴BE =254. 故选:C .【点睛】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.28.B解析:B【分析】设斜边为c ,根据勾股定理得出【详解】解:设斜边为c ,根据勾股定理得出 ∵12ab=12ch ,∴,即a 2b 2=a 2h 2+b 2h 2, ∴22222a b a b h =22222a h a b h +22222b h a b h, 即21a +21b =21h . 故选:B .【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.29.A解析:A【分析】设CF=x ,则AC=x+2,再由已知条件得到AB=6,BC=6+x ,再由AB 2+AC 2=BC 2得到62+(x+2)2=(x+4)2,解方程即可.【详解】设CF=x,则AC=x+2,∵正方形ADOF的边长是2,BD=4,△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,AD=AF=2,∴AB=6,BC=6+x,∵∠A=90°,∴AB2+AC2=BC2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故选:A.【点睛】考查正方形的性质、勾股定理,解题关键是设CF=x,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.30.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.。
初中数学八年级上册压轴题专项练习(解析版)
八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。
八年级数学上册期末压轴100题:第十一章20题(含答案)
1.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为( )
A.8B.9.6C.10D.12
2.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()
A.40°B.45°C.50°D.60°
(3)如图3,将点C向左平移4个单位得到点H,连接AH,AH与y轴交于点D.
①求点D的坐标;
②y轴上是否存在点M,使三角形AHM和三角形AHB的面积相等?若存在ቤተ መጻሕፍቲ ባይዱ求出点M的坐标;若不存在,请说明理由.
16.在 中, , ,点 在直线 上运动(不与点 、 重合),点 在射线 上运动,且 ,设 .
(1)如图①,当点 在边 上,且 时,则 __________ , __________ ;
(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG, 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.
14.(1)如图,点 在射线 上,求证: .
(2)如图,在直角坐标系 中,点 在 轴上,点 在 轴上,点 是线段 上一点,满足 ,点 是线段 上一动点(不与 , 重合),连接 交 于点 .当点 在线段 上运动的过程中, 的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.
(3)如图3,若将(2)中的“点E在射线OC上”改为“点E在射线OD上”,其他条件不变,直接写出∠EGF的度数(用含有a的代数式表示)
10.(1)如图1,证明结论∠BDC=∠A+∠B+∠C成立;
(2)如图2,AE∥BF,利用(1)的结论,求∠A+∠B+∠C+∠D的度数;
八年级数学上册期末压轴100题:第十四章20题(含答案)
八年级数学上册期末压轴100题:第十四章20题1.若x 2+mx+9=(x ﹣3)2,则m 的值为( ) A .6B .﹣6C .±6D .32.下列因式分解正确的是( ) A .3ab 2﹣6ab =3a (b 2﹣2b ) B .x (a ﹣b )﹣y (b ﹣a )=(a ﹣b )(x﹣y )C .a 2+2ab ﹣4b 2=(a ﹣2b )2D .﹣a 2+a ﹣14=﹣14(2a ﹣1)23.下列因式分解正确的是( ) A .2p +2q +1=2(p +q )+1 B .m 2﹣4m +4=(m ﹣2)2 C .3p 2﹣3q 2=(3p +3q )(p ﹣q ) D .m 4﹣1=(m ²+1)(m ²﹣1) 4.下列运算正确的是( ) A .a 3+a 3=a 6 B .(a ﹣b )2=a 2﹣b 2 C .(﹣a 3)2=a 6D .a 12÷a 2=a 65.如图,正方形的边长为()1a a >,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l ,……如此继续下去,第n 次操作后得到的长方形的周长为________.6.已知10a =2,10b =3,则102a +3b =______. 7.分解因式:4433y x -=__________.8.已知2ab =,3a b -=,则32232a b a b ab -+=______. 9.分解因式:2244a ab b -+=______. 10.已知x m =6,x n =2,则x m ﹣n =___.11.若一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,如对于四位数3674,∵3764+=+,∴3674是“交替数”,对于四位数2353,2533+≠+,∴2353不是“交替数”.(1)最小的“交替数”是________,最大的“交替数”是__________. (2)判断2376是否是“交替数”,并说明理由;(3)若一个“交替数”满足千位数字与百位数字的平方差是12,且十位数字与个位数的和能被6整除.请求出所有满足条件的“交替数”.12.阅读材料:1261 年,我国南宋数学家杨辉著《详解九章算法》,在注释中提到“杨辉三角”解释了二项和的乘方规律.在他之前,北宋数学家贾宪也用过此方法,“杨辉三角”又叫“贾宪三角”.这个三角形给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序、b 的次数由小到大的顺序排列)的系数规律.例如:在三角形中第三行的三个数 1、2、1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第四行的四个数 1、3、3、1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数等.从二维扩展到三维:根据杨辉三角的规则,向下进行叠加延伸,可以得到一个杨辉三角的立体图形.经研究,它的每一个切面上的数字所对应的恰巧是展开式的系数.(1)根据材料规律,请直接写出()4a b +的展开式;(2)根据材料规律,如果将-a b 看成()a b +-,直接写出211n n ⎛⎫-+ ⎪⎝⎭的展开式(结果化简);若24212527n n n =-+,求211n n ⎛⎫-+ ⎪⎝⎭的值; (3)已知实数a 、b 、c ,满足22224610a b c a b c +++-+=-,且1110123a b c +-=+-+,求a b c +-的值.13.任何一个正整数n 都可以这样分解:n p q =⨯(p 、q 是正整数,且p q ),则n 的所有这种分解中,如果两因数p ,q 之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()pF n q=. 例如:18可以分解成118,29⨯⨯或36⨯,则1(18)236F ==. (1)计算:(24)F 、(270)F .(2)如果一个三位正整数,10600t t x y =++(19x y <,x ,y 为自然数),交换其个位上的数与百位上的数得到的新三位正整数加上原来的三位正整数所得的和恰好能被11整除,那么我们称这个数t 为“心意数”. ①求所有满足条件的“心意数”t ;②对于满足“心意数”t 中的x ,y ,设10m x y =+,求()F m 的最小值.14.在平面直角坐标系中,A (a ,0),B (0,b )分别是x 轴负半轴和y 轴正半轴上一点,点C 与点A 关于y 轴对称,点P 是x 轴正半轴上C 点右侧一动点. (1)当2a 2+4ab +4b 2+2a +1=0时,求A ,B 的坐标; (2)当a +b =0时,①如图1,若D 与P 关于y 轴对称,PE ⊥DB 并交DB 延长线于E ,交AB 的延长线于F ,求证:PB =PF ;②如图2,把射线BP 绕点B 顺时针旋转45o ,交x 轴于点Q ,当CP =AQ 时,求∠APB 的大小.15.知直线//a b ,一块直角三角板的顶点A 在直线a 上,B ,C 两点在平面上移动,其中90ACB ∠=︒,30BAC ∠=︒.请解答下列问题:(1)如图1,若点C 在直线b 上,点B 在直线b 的下方,240∠=︒,求1∠的度数: (2)如图2,若三角板的位置绕着点A 进行转动,使得点C 在直线a ,b 之间,点B 在直线b 的下方.①请说明α∠和β∠的数量关系;②若图中两个角的度数x ︒和y ︒之间满足关系式2212000x y -=,求x ,y 的值. 16.定义:若一个整数能表示成a 2+b 2(a ,b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b )2+b 2,所以a 2+2ab +2b 2也是“完美数”. (1)请直接写出一个小于10的“完美数”,这个“完美数”是 ; (2)判断53 (请填写“是”或“否”)为“完美数”;(3)已知M =x 2+4x +k (x 是整数,k 是常数),要使M 为“完美数”,试求出符合条件的一个k 值,并说明理由;(4)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.17.一个三位或者三位以上的整数,从左到右依次分割成三个数,记最左边的数为a ,最右边的数为b ,中间的数记为m ,若满足m =a 2+b 2,我们就称该整数为“空谷”数.例如:对于整数282.∵22+22=8,∴282是一个“空谷”数,又例如:对于整数121451,∵122+12=145∴121451也是一个“空谷”数.满足m =2ab ,我们就称该整数为“幽兰”数;例如:对于整数481,∵2×4×1=8,∴481是一个“幽兰”数,又例如:对于整数13417,∵2×1×17=34,∴13417是一个“幽兰”数.(1)若一个三位整数十位数字为9,且为“空谷”数,则该三位数为 ;若一个四位整数为“幽兰”数,且中间的数为40,则该四位数为 ;(2)若586a b 是一个“空谷”数,570a b 是一个“幽兰”数,求a 2﹣b 2的值.(3)若一个整数既是“空谷”数,又是“幽兰”数,我们就称该整数为“空谷幽兰”数.请写出所有的四位“空谷幽兰”数.18.材料一:一个正整数x 能写成22x a b =-(a ,b 均为正整数,且ab ),则称x 为“雪松数”,a ,b 为x 的一个平方差分解,在x 的所有平方差分解中,若22a b +最大,则称a ,b 为x 的最佳平方差分解,此时()22F x a b =+.例如:222475=-,24为雪松数,7和5为24的一个平方差分解,22223297,3262=-=-,因为22229762+>+,所以9和7为32的最佳平方差分解,()223297F =+.材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”,例如4334,5665均为“南麓数”. 根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解; (2)试说明10不是雪松数;(3)若一个数t 既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t 的一个平方差分解,请求出所有满足条件的数t .19.已知5a b +=,3ab =. (1)求22a b +的值. (2)求-a b 的值.20.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简) (3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________; (4)用不同的方法表示图1中几何体的体积,可以得到的等式为________. (5)已知4a b -=,2ab =,求33a b -的值.参考答案1.B 【分析】根据完全平方公式()22369x x x -=-+,可求得m 的值. 【详解】解:()2229=369x x mx xx +=-++﹣, 可得m=-6. 故答案选B . 【点睛】本题主要考查完全平方公式,关键在于记住口诀“首平方,尾平方,积的二倍放中央,符号看前方” . 2.D 【分析】根据因式分解的定义及方法即可得出答案. 【详解】A :根据因式分解的定义,每个因式要分解彻底,由3ab 2﹣6ab =3a (b 2﹣2b )中因式b 2﹣2b 分解不彻底,故A 不符合题意.B :将x (a ﹣b )﹣y (b ﹣a )变形为x (a ﹣b )+y (a ﹣b ),再提取公因式,得x (a ﹣b )﹣y (b ﹣a )=x (a ﹣b )+y (a ﹣b )=(a ﹣b )(x +y ),故B 不符合题意.C :形如a 2±2ab +b 2是完全平方式,a 2+2ab ﹣4b 2不是完全平方式,也没有公因式,不可进行因式分解,故C 不符合题意.D :先将214a a -+-变形为()214414a a --+,再运用公式法进行分解,得()()22211144121444a a a a a -+-=--+=--,故D 符合题意. 故答案选择D . 【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式. 3.B 【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意; B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意; 故选择:B 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 4.C 【分析】根据整式的加法、完全平方公式、幂的乘方以及同底数幂的除法计算即可得出答案. 【详解】A 、原式32a =,不符合题意;B 、原式222a ab b =-+,不符合题意;C 、原式6a =,符合题意;D 、原式10a =,不符合题意, 故选C . 【点睛】本题考查了整式的运算,涉及合并同类项、完全平方公式、幂的乘方、同底数幂的除法等,熟练掌握相关运算法则是解决本题的关键. 5.52a - 21112222nn n a +-+-+【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得. 【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-,则第一次得到的长方形的周长为12(21)522a a a +-=-,第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-,第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+, 第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+, 第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦,故答案为:52a -,21112222nn n a +-+-+.【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键. 6.108 【分析】逆用同底数幂的乘法,幂的乘方计算即可 【详解】解:∵10a =2,10b =3,∴102a +3b =(10a )2•(10b )3=4×27=108, 故答案为108. 【点评】本题考查了幂的乘方、同底数幂的乘法,掌握运算法则是解题的关键.7.()()22()3y x y x y x ++-【分析】先提取公因式,再用平方差公式进行因式分解即可得出答案. 【详解】444422222233=3()3()()3()()()y x y x y x y x y x y x y x --=+-=++-,故答案为()()22()3y x y x y x ++-.【点睛】本题考查的是因式分解,熟练掌握平方差公式是解决本题的关键. 8.18 【分析】本题要求代数式a 3b -2a 2b 2+ab 3的值,而代数式a 3b -2a 2b 2+ab 3恰好可以分解为两个已知条件ab ,(a -b )的乘积,因此可以运用整体的数学思想来解答. 【详解】解:a 3b -2a 2b 2+ab 3=ab (a 2-2ab +b 2) =ab (a-b )2当a-b =3,ab =2时,原式=2×32=18, 故答案为:18 【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力. 9.()22a b - 【分析】运用完全平方公式分解即可; 【详解】解:原式=22(2)22a a b b -⋅⋅+ = ()22a b - 故答案为:()22a b - 【点睛】本题主要考查了用完全平方公式进行因式分解,熟练掌握完全平方公式分解因式的方法是解题的关键. 10.3 【分析】逆向运用同底数幂的除法计算法则进行计算求解. 【详解】解:623m n m n x x x -=÷=÷=,故答案为:3【点睛】本题考查同底数幂的除法运算,理解运算法则,注意逆向运用运算法则是解题的关键. 11.(1)1001,9999;(2)是,理由见解析;(3)满足条件的“交替数”是4224或4257.【分析】(1)根据新定义,即可得出结论;(2)根据新定义,即可得出结论;(3)根据题意知()()1216243a b a b +-=⨯=⨯=⨯,求得a 和b 的值,再根据题意c d +是6的倍数,结合a c b d +=+,取舍即可求得所有满足条件的“交替数”.【详解】(1)根据题意:一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”, 最小的正整数是1,最大的正整数是9,∵1001+=+,9999+=+,∴最小的“交替数”是1001,最大的“交替数”是9999,故答案为:1111,9999;(2)是,理由如下:∵2736+=+,∴2376是“交替数”;(3)设这个“交替数”为abcd ,k 为正整数,依题意得:2212a b -=,6c d k +=,且a c b d +=+,由2212a b -=,知()()1216243a b a b +-=⨯=⨯=⨯,且19a ≤≤,19b ≤≤,即121a b a b +=⎧⎨-=⎩或62a b a b +=⎧⎨-=⎩或43a b a b +=⎧⎨-=⎩, 解得:132112a b ⎧=⎪⎪⎨⎪=⎪⎩(舍去),或42a b =⎧⎨=⎩或7212a b ⎧=⎪⎪⎨⎪=⎪⎩(舍去), ∵19c ≤≤,19d ≤≤,2618c d k ≤+=≤,∴k 取1或2或3,当k 取1时,即6c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴62c d c d +=⎧⎨-=-⎩, 解得:24c d =⎧⎨=⎩, ∴“交替数”是4224;当k 取2时,即12c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴122c d c d +=⎧⎨-=-⎩, 解得:57c d =⎧⎨=⎩, ∴“交替数”是4257;当k 取3时,即18c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴182c d c d +=⎧⎨-=-⎩, 解得:810c d =⎧⎨=⎩(不合题意,舍去); 综上,满足条件的“交替数”是4224或4257.【点睛】本题主要考查了新定义,倍数问题,二元一次方程的整数解的求解,平方差公式的应用,理解新定义是解本题的关键.12.(1)()4432234464a b a a b a b ab b +=++++;(2)211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-,211n n ⎛⎫-+ ⎪⎝⎭=1或9; (3)6a b c +-=或2【分析】(1)依据规律进行计算即可;(2)24212527n n n =-+分子分母同时除以2n 可化为22112725n n =-+,得出222257n n -+=,从而求得2216n n +=,即可求得12n n -=±,代入211n n ⎛⎫-+ ⎪⎝⎭即可求解; (3)将式子22224610a b c a b c +++-+=-通过完全平方式变形为()()()2221234a b c ++-++=,设1a x +=,2b y -=,3c z +=,通过a b c +-与x y z +-的关系联立阅读材料可求得a b c +-的值.【详解】解:(1)()4432234464a b a a b a b ab b +=++++; (2)22111=1n n n n ⎡⎤⎛⎫⎛⎫-++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 222111122121n n n n n n ⎛⎫⎛⎫⎛⎫=+-++⨯-+⨯+⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2212122n n n n =++-+- 221212n n n n=+-+- ∵24212527n n n =-+ ∴22112725n n =-+,即222257n n-+=,可得2216n n +=, ∵2221126n n n n ⎛⎫+=-+= ⎪⎝⎭,可得12n n -=± 当12n n -=时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=61229=-+⨯= 当12n n -=-时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=()61221=-+⨯-= (3)∵22224610a b c a b c +++-+=-整理得到()()()2221234a b c ++-++= ∵1110123a b c +-=+-+设1a x +=,2b y -=,3c z +=, 则22241110x y z x y z ⎧++=⎪⎨+-=⎪⎩,解得22240x y z xy xz yz ⎧++=⎨--=⎩ ∴()()()2221234x y z a b c a b c +-=++---=+--222222x y z xy xz yz =+++-- ()2222x y z xy xz yz =+++--4=∴42a b c +--=±∴当42a b c +--=时,6a b c +-=;当42a b c +--=-时,2+-=a b c ;∴6a b c +-=或2【点睛】本题考查了乘法公式的运用;解题的关键是根据题目式子的形式进行恰当变形,从而求解,注意平方根的个数.13.(1)F (24)=23,F (270)=1027;(2)①627,649,616,638;②219【分析】(1)把24因式分解为1×24,2×12,3×8,4×6再由定义即可得F (24),同理可得F (270);(2)①首先表示出交换其个位上的数与百位上的数得到的新三位正整数加上原来的三位正整数所得的和,再得到相应的x 和y 值,即可得到“心意数”t ;②将①中x 和y 值代入m =10x +y ,再分别求出相应的F (m ),比较即可.【详解】解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小, ∴F (24)=4263=; ∵270=1×270=2×135=3×90=5×54=9×30=10×27,其中10与27的差的绝对值最小, ∴F (270)=1027; (2)①t =10x +y +600,交换其个位上的数与百位上的数得到的新三位正整数是10x +100y +6, ∵交换其个位上的数与百位上的数得到的新三位正整数加上原来的三位正整数所得的和恰好能被11整除,则10x +y +600+10x +100y +6=20x +101y +606,即20x +101y +606恰好能被11整除,1≤x <y ≤9,经计算可得:27x y =⎧⎨=⎩或49x y =⎧⎨=⎩或16x y =⎧⎨=⎩或38x y =⎧⎨=⎩, ∴所有满足条件的“心意数”t 为627,649,616,638;②∵m =10x +y ,∴m 可以取27,49,16,38,F (27)=13,F (49)=1,F (16)=1,F (38)=219, 求()F m 的最小值为219. 【点睛】此题考查了列代数式,解决第(2)小题时,能根据“心意数”的定义,找出三位数中的所有的“心意数”是关键. 14.(1)1(1,0),(0,)2A B -;(2)①见解析;②∠APB =22.5° 【分析】(1)利用非负数的性质求解即可;(2)①想办法证明∠PBF =∠F ,可得结论;②如图2中,过点Q 作QF ⊥QB 交PB 于F ,过点F 作FH ⊥x 轴于H ,可得等腰直角△BQF ,证明△FQH ≌△QBO (AAS ),再证明FQ =FP 即可解决问题.【详解】解:(1)∵2a 2+4ab +4b 2+2a +1=0,∴(a +2b )2+(a +1)2=0,∵(a +2b )2≥0 ,(a +1)2≥0,∴a +2b =0,a +1=0,∴a =﹣1,b =12,∴A (﹣1,0),B (0,12).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90°﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45°+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°,∴∠APB=22.5°.【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题.15.(1)50°;(2)①∠α+∠β=90°;②x=130,y=70【分析】(1)利用平行线的性质得到∠ACD,从而得出结果;(2)①过点C作CD∥a,利用内错角的性质得到∠α=∠ACD,∠β=∠BCD,相加可得结果;②利用∠α+∠β=90°进行等量代换,得到x-y=60,再根据2212000-=得到方程组,解之即x y可.【详解】解:(1)∵∠2=40°,∠ACB=90°,∴∠ACD=50°,∵a∥b,∴∠1=∠ACD =50°;(2)①如图,过点C 作CD ∥a ,∵a ∥b ,∴CD ∥b ,∴∠α=∠ACD ,∠β=∠BCD ,∴∠α+∠β=∠ACD +∠BCD =90°;②∵∠α=180°-x °-30°,∠β=y °,∠α+∠β=90°,∴180°-x °-30°+y °=90°,∴x -y =60,①∵()()2212000x y x y x y -==-+,∴x +y =200,②①+②得:2x =260,解得:x =130,②-①得:2y =140,解得:y =70.【点睛】本题考查了平行线的性质,平方差公式,二元一次方程组,解题的关键是添加辅助线得到∠α+∠β=90°,再进行等量代换得到x 和y 的关系.16.(1)2或5或8;(2)是;(3)k =5,理由见解答过程;(4)见解析【分析】(1)2=12+12,5=22+12,8=22+22,这些数都是小于10的“完美数”;(2)利用53=22+72即可判断;(3)由M=x2+4x+k得M=(x+2)2+k-4,则使k-4为一个完全平方数即可;(4)设m=a2+b2,n=c2+d2,则mn=(a2+b2)(c2+d2),进行整理可得:mn=(ac+bd)2+(ad-bc)2,从而可判断.【详解】解:(1)根据题意可得:2=12+12,5=22+12,8=22+22,故2,5,8都是“完美数”,且都小于10,故答案为:2或5或8(写一个即可);(2)53=22+72,故53是“完美数”,故答案为:是;(3)k=5(答案不唯一),理由:∵M=x2+4x+k∴M=x2+4x+4+k-4M=(x+2)2+k-4则当k-4为完全平方数时,M为“完美数”,如当k-4=1时,解得:k=5.(4)设m=a2+b2,n=c2+d2,则有mn=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+b2d2+a2d2+b2c2+2abcd-2abcd=(ac+bd)2+(ad-bc)2故mn是一个“完美数”.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.17.(1)390;4405或5404;(2)136或-136;(3)1021或2082或3183或4324或5505或6726或7987.【分析】(1)根据“空谷”数,“幽兰”数的特点进行分析并解答即可;(2)据题意可得:a2+b2=586,2ab=570,从而可求得a+b与a-b的值,进而可求a2-b2的值;(3)由题意可得:a2+b2=2ab,整理可得a=b,再由这个数是四位数,分析可得出结果.【详解】解:(1)∵这个三位数是“空谷”数,且十位数字为9,∴a2+b2=9,∴有3ab=⎧⎨=⎩,3ab=⎧⎨=⎩(不符合题意),∴这个三位数是390;∵这个四位数是“幽兰”数,且中间数为40,∴2ab=40,则ab=20,∴有45ab=⎧⎨=⎩,54ab=⎧⎨=⎩,210ab=⎧⎨=⎩(不符合题意),102ab=⎧⎨=⎩(不符合题意),∴这个四位数是:4405或5404;故答案为:390;4405或5404;(2)∵586a b是一个“空谷”数,570a b是一个“幽兰”数,∴a2+b2=586,2ab=570,∴(a+b)2=a2+b2+2ab=586+570=1156,则a+b=34,(a-b)2=a2+b2-2ab=586-570=16,则a-b=±4,∴a2-b2=(a+b)(a-b)=34×4=136或a2-b2=(a+b)(a-b)=34×(-4)=-136;(3)由题意得:222m a bm ab⎧=+⎨=⎩,则有a2+b2=2ab,整理得:(a-b)2=0,则有a=b;∵这个整数是一个四位数,∴1≤a≤9,1≤b≤9,中间数是两位数,则有:a=b=1时,这个四位数是1021;a=b=2时,这个四位数是2082;a=b=3时,这个四位数是3183;a=b=4时,这个四位数是4324;a=b=5时,这个四位数是5505;a=b=6时,这个四位数是6726;a=b=7时,这个四位数是7987.综上,这个四位数是1021或2082或3183或4324或5505或6726或7987.【点睛】本题主要考查了因式分解的应用,解答的关键是理解清楚题意,灵活运用因式分解进行解答.18.(1)22112113=-,224073=-;(2)见解析;(3)2772,5445【分析】(1)根据雪松数的特征即可得到结论;(2)根据题意即可得到结论;(3)设(t abba a =,b 均为正整数,且09)a b <≠,另一个“南麓数”为(t mnnm m '=,n 均为正整数,且09)n m <<,根据“南麓数”的特征即可得到结论.【详解】解:(1)由题意可得:22112113=-,224073=-;(2)若10是“雪松数”,则可设2210(a b a -=,b 均为正整数,且)a b ≠,则()()10a b a b +-=,又1025101=⨯=⨯, a ,b 均为正整数,a b a b ∴+>-,∴52a b a b +=⎧⎨-=⎩,或101a b a b +=⎧⎨-=⎩, 解得:7232a b ⎧=⎪⎪⎨⎪=⎪⎩或11292a b ⎧=⎪⎪⎨⎪=⎪⎩, 与a ,b 均为正整数矛盾,故10不是雪松数;(3)设(t abba a =,b 均为正整数,且09)a b <≠,另一个“南麓数”为(t mnnm m '=,n 均为正整数,且09)n m <<,则2222(10)(10)99()99()()t m n n m m n m n m n =+-+=-=+-,99()()1000100101001110m n m n a b b a a b ∴+-=+++=+, 整理得()()109a b m n m n a b ++-=++, a ,b ,m ,n 均为正整数,9a b ∴+=,经探究2786a b m n =⎧⎪=⎪⎨=⎪⎪=⎩,5483a b m n =⎧⎪=⎪⎨=⎪⎪=⎩,符合题意,t ∴的值分别为:2772,5445.【点睛】本题主要考查分解因式的应用,实数的运算,理解新定义,并将其转化为实数的运算是解题的关键.19.(1)19;(2)【分析】(1)先根据求出5a b +=得出2()25a b +=,再利用完全平方公式展开即可求解; (2)根据2219+=a b ,3ab =求出2()a b -,再根据平方根的定义即可求解.【详解】解:(1)∵5a b +=,∴2()25a b +=,∴22225a ab b ++=.∵3ab =,∴22252319a b +=-⨯=.∴22a b +的值为19.(2)∵2219+=a b ,3ab =,∴222()2192313a b a b ab -=+-=-⨯=,∴a b -=∴-a b 的值为【点睛】本题考查了完全平方公式,平方根的性质,熟知完全平方公式是解题关键.20.(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案;(3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】解:(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,a a b -故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点睛】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键.。
初二数学压轴大题集(100道)
一次函数压轴题(一)1. 已知点A (-4,2),B (-1,5)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;(3) 在x 轴上取点D ,y 轴上取点C ,使四边形ABCD 的周长最小,最C 、D 的坐标;2. 已知点A (-4,2),B (1,-3)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;3. 如图,在平面直角坐标系中,点A 、B 、C 在坐标轴上,OA =OB =OC =2,点P 从C 点出发沿y 轴正方向以每秒1个单位长度的速度向上运动,连PB 。
(1) 求直线BC 的解析式;(2) 点P 为第二象限的直线BC 上一点,当P 运动2秒,且S △AQO =2S △OPQ 时,求点Q 的坐标;(3) 若D 为AC 的中点,连DP ,BD ,问点P 运动几秒时,△PDB 为等腰直角三角形?4. 如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A ,与y 轴交于B(0,-4)且OA=AB ,△OAB 的面积为6. (1)求两函数的解析式; (2)若M (2,0),直线BM 与AO 交于P ,求P 点的坐标;(3)在x 轴上是否存在一点E ,使S △ABE =5,若存在,求E 点的坐标;若不存在,请说明理由。
一次函数压轴题(二)1. 如图,直线l 交x 轴、y 轴分别于A 、B 两点,A (a ,0),B (0,b ),且(a -b )2+|b -4|=0.(1) 求A 、B 两点的坐标;(2) C 是线段AB 上一点,C 点的横坐标为3,P 是y 轴正半轴上一点,且满足∠OCP =45°,求出P 点坐标;(3) 在(2)的条件下,过B 作BD ⊥OC ,交OC 、OA 分别于F 、D 两点,E 为OA 上一点,且∠CEA =∠BDO ,试判断线段OD 与AE 的数量关系,并说明理由。
(新)八年级上册数学各种类型典型压轴题练习试题全汇编
(新)八年级上册数学典型压轴题练习试题汇编一、压轴(1) 选填题 (一)多结论证明1.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE ,下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE ,其中正确的有( )A .1个B .2个C .3个D .4个FBAC2.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC 交AC 于D ,AE ⊥BD 于E ,CF ∥AE 交BD 的延长线于F ;给出四个结论:①∠ACF =12∠ABC ;②CF =12BD ;③BE =2AE +DF ;④CF =AE +DE ,其屮正确的结论有( )A .1个B .2个C .1个D .2个AC3.如图,在Rt △ABC 中,AB =CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE ,EF ,下列四个结论:①AB =2BD ;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 一定不会落在AC 上;④BD =BF ,其中正确的是( )A .①②③④B .②③④C .①③④D .②④DBC4.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH ,其中正确的是( )A .①②③④B .①②③C .②④D .①③5.如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB =135°;②BF =BA ;③PH =PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④DC6.如图,△ABC 中,∠ABC =45°,AD ⊥BC 于D 点,BE ⊥AC 于E 点,AD 与BE 交于点F ,连接CF ,DE ,下列结论:①AC =BF ;②∠BED =45°;③BE =AE +2DC ;④若∠ABF =30°,则BF CFAB=1, 其中正确结论的序号是()A .①②③B .①②③④C .①③④D .①③④DABC(二)几何计算7.如图,在△ABC 中,∠BAC =∠BCA =44°,M 为△ABC 内一点,且∠MCA =30°,∠MAC =16°,则∠BMC 的度数为( )A .120°;B .126°C .144°D .150°BCA8.如图,设△ABC 和△CDE 都是等边三角形,若∠AEB =70°,则∠EBD 的度数是( )A .115°B .20°C .125°D .130°DC9.如图,△ABC 中,点D 是BC 上一点,已知∠DAC =30°,∠DAB =75°,CE 平分∠ACB 交AB 于点E 、连DE ,则∠DEC =( )A .10°B .15°C .20°D .25°BACD10.在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDBB .∠BEDC .12∠AFB C .2∠ABFBADC11.如图,已知△ABC 的面积为8cm 2,BP 为∠ABC 的角平分线,AP 垂直BP 于点P ,则△PBC 的面积为( )A .3.5B .3.9C .4D .4.2DACB12.已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =72°,∠ABC =50°,并且∠BAD +∠CAD =180°,那么∠BDC 的度数为________.DAB(三)多解与画图13.在△ABC 中,AC =BC ,∠ACB =90°,CE 是过C 点的一条直线,AD ⊥CE 于D ,BE ⊥CE 于E ,DE =4cm ,AD =2cm ,则BE =( )A . 2cmB . 2cmC .6cm 或2cmD .6cm14.△ABC 中,AD 是高,∠BAD =60°,∠CAD =20°,AE 平分∠BAC ,则∠EAD 的度数为____________. 15.如图,在平面直角坐标系中,点A (12,6),∠ABO =90°,一动点从点 B 出发以2厘米/秒的速度沿射线BO 运动,点D 在y 轴上,D 点随着C 点运动而运动,且始终保持OA =C D .当点C 经过_____秒时,△OAB 与△OCD 全等.16.已知△ABC 中,AB =AC ,BD ⊥AC 于D ,AC =2BD ,则∠BAC =______.17.如图,在△ABC 中,AB =BC ,∠ABC =100°,边BA 绕点B 顺时针旋转m °(0<m <180)得到线段BD ,连接AD ,D C .若△ADC 为等腰三角形,则m 所有可能的取值是________.DAC18.如图,等腰Rt △ABC 中,∠ACB =90°将线段AB 绕点A 逆时针旋转,旋转后B 点的对应点为D ,连接C D .若AB ∥CD ,则∠CAD 的度数是_______.CA B19.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 童合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =________时,△DEF 为等腰直角三角形.20.在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,满足条件的点C 的个数是( )A .6B .7C .8D .9(四)最值问题21.如图,在△ABC 中,∠C =90°,AC =BC =6,D 为AB 的中点,点E ,F 分别在AC ,BC 边上运动(点E不与点A 、C 重合)且保持∠EDF =90°,连接EF ,在此运动过程中,S △CEF 的最大值为______.FA CBE22.如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB 、BC 上分别一点E 、F ,使△DEF 的周长最小,此时,∠EDF =( )A .αB .90°-αC .2D .180°-2αDBF23.如图,P 为∠AOB 内一定点,M ,N 分别是射线OA ,OB 上一点,当△PMN 周长最小时,∠MPN =110°,则∠AOB =( )A .35°B .40°C .45°D .50°O24.如图,在等腰△ABC 中,AB =AC =5,∠ACB =75°,AD ⊥BC 于D ,点M ,N 分别是线段AB ,线段AD 上的动点,则MN +BN 的最小值是( )A .3BC .4.5D .6AD25.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( )A .ED 的最小值是2B .ED 的最小值是1C .ED 有最大值D .ED 没有最大值也没有最小值D26.如图,AD 为等边△ABC 的高,E ,F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =( )A .112.5°B .105°C .90°D .82.5°DABC27.如图,等腰△ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最小值为_______.B28.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°.若点M ,N 分别是线段AB ,AC 上两个动点,BC =4,则MC +MN 的最小值为_____.BCAN二、压轴(2)几何合题29.在△ABC 中,AB =AC ,CD 为AB 边上的高 (1)如图1,求证;∠BAC =2∠BCD ;(2)如图2.∠ACD 的平分线CE 交AB 于E ,过E 作EF ⊥BC 于F ,EF 与CD 交点G .若ED =m ,BD =n ,含有m 、n 的代式表示△EGC 的面积.图2图1FBBCA CA30.射线AE 为△ABC 的外角平分线,点P 为射线AE 上不与A 点重合的一个动点. (1)如图1,若BP 平分∠ABC ,且∠ACB =30°,则∠APB =______;(直接写出结果) (2)如图1,求证:不论P 在何处,总有AB +AC <PB +PC ;(3)如图2,若点P 在AE 上,作PM ⊥BA 交BA 的延长线于M 点,且∠BPC =∠BAC ,求AC ABAM-的值.图1图2BBE31.如图,Rt △ACB 中,∠ACB =90°,AB =BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF =AE(1)如图1,过F 点作FD ⊥AC 交AC 于D 点,求证:EC +CD =DF ;(2)如图2,连接BF 交AC 于G 点,若AGCG=3求证:E 点为BC 的中点; (3)E 点在射线CB 上,连接BF 与直线AC 交于G 点,若43BC BE =,则AGCG=________.图1图2BFBF32.如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A. (1)如图1,若BC =BD ,求证:CD =DE ;(2)如图2,过点C 作CH ⊥DE ,垂足为点H ,若CD =BD ,EH =1,求DE -BE 的值.图1图2AABCBC33.已知△ABC 中,AC =B C .(1)如图1,分别过A ,B 作AM ⊥BC ,BN ⊥AC ,垂足分别为M ,N ,AM 与BN 相交于点P ,求证:AP =BP . (2)如图2,分别在AC 的右侧、BC 的左侧作等边△ACE 和等边△BCD ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G 求证:点G 是AB 的中点;(3)在(2)的条件中,当∠ACE 的大小发生变化时,设直线CD 与直线AE 相交于点H .直接写出: 当∠ACB =_______度时,使得AH =C D .图2图1DEABC C34.如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向外作等边△ABE ,直线CE 与直线AD 交于点F .(1)若AF =10,DF =3,试求EF 的长;(2)若以AB 为边向内作等边△ABE ,其它条件均不改变,用尺规作图补全图2(保留作图痕迹),并直接写出EF ,AF ,DF 三者的数量关系____________.图1图2EBC ACA35.已知:在△ABC 中,∠B =60°,D ,F 分别为AB ,BC 上的点,且AF ,CD 交于点F . (1)如图1,若AE ,CD 为△ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长;(2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .图2图1AACBCB36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E . ①求∠BCD 的度数;②求CDBE的值; (2)如图2,若F 为CD 上一点,且在线段BC 的垂直平分线上,∠BCD =15°,求证:AF =B C.图2图1BCCAA35.已知:在△ABC 中,∠B =60°,D ,E 分别为AB ,BC 上的点,且AE ,CD 交于点F . (1)如图1,若AE ,CD 为ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长; (2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .FDECABFDB EC A36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E .①求∠BCD 的度数;②求BECD的值;(2)如图2,若F 为CD 上一点,且在线段BC 上垂直平分线上,∠BCD =15°,求证:AF =BC .A C DE BBFD AC37.(1)如图1,△ABC 中,∠BAC =90°,AB =BC ,直线m 经过点A ,BD ⊥m ,CE ⊥m ,垂足分别为D ,E ,求证:DE =BD +CE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且满足∠BDA =∠AEC =∠BAC ,求证:DE =BD +CE ;(3)如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE .若∠BDA =∠AEC =∠BAC ,求证:△DEF 为等边三角形.D AE mCBD A mE CBB FCmEA D38.等腰Rt △ABC 中,CA =CB ,∠ACB =90°,点O 是AB 的中点. (1)如图1,求证:CO =BO ;(2)如图2,点M 在边AC 上,点N 在BC 的延长线上,MN -AM =CN ,求∠MON 的度数; (3)如图3,AD ∥BC ,OD ∥AC ,AD 与OD 交于点D ,Q 是OB 的中点,连接CQ ,DQ ,试判断线段CQ 与DQ 的关系,并给出证明.B O A CNMCA O B39.在△ABC 中,BD 为∠ABC 的平分线. (1)如图1,∠C =2∠DBC ,∠A =60°,求证:△ABC 为等边三角形; (2)如图2,若∠A =2∠C ,BC =8,AB =4.8,求AD 的长度;(3)如图3,若∠ABC =2∠ACB ,∠ACB 的平分线OC 与BD 相交于点O ,且OC =AB ,求∠A 的度数.DCB ACDB AB CODA40.在△ABC 中,∠ACB =90°.(1)如图1,点B 与点D 关于直线AC 对称,连接AD ,点E ,F 分别是线段CD ,AB 上的点(点E 不与点D ,C 重合),且∠AEF =∠ABC ,∠ABC =2∠CAE ,求证:BF =DE ; (2)如图2,若AC =BC ,BD ⊥AD ,连接DC ,求证:∠ADC =45°;(3)如图3,若AC =BC ,点D 在AB 的延长线上,以DC 为斜边作等腰直角△DCE ,过直角顶点E 作EF ⊥AC 于点F ,求证:点F 是AC 的中点.DECBF AACDBDBECF A41.在等腰△ABC 中,∠BAC =90°,AB =AC ,点P 为AC 上一点,M 为BC 上一点. (1)若AM ⊥BP 于点E .①如图1,BP 为△ABC 的角平分线,求证:PA =PM ; ②如图2,BP 为△ABC 的中线,求证:BP =AM +MP ;(2)如图3,若点N 在AB 上,AN =CP ,AM ⊥PN ,求AMPN的值.MEPCB A EPMABCNPMABC42.如图,Rt △ABC 中,∠ACB =90°,AC =BC .F 为BC 延长线上一点,连接AF ,BD ⊥AF 于点D ,BD 与AC 交于点E 点. (1)求证:CE =CF ;(2)如图2,若M 为AB 的中点,N 为AE 的中点,P 为BF 的中点,连接MN ,PN ,求∠MNP 的度数;(3)如图3,以AB 为边作Rt △AHB ,∠AHB =90°,过点C 作CG ⊥BH 于G ,若AH =2,CG =5,请直接写出BH 的长为 .ED FCBAPENMA BCFDABC三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0),B (b ,0),050101022=++-+b a b a ,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60°,且OC =35,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 的长度.44.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E .已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n .(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长;(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标.45.如图,直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足0)5(2=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求出点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 于点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.46.如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为C .(1)直接写出点C 的横坐标;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH ,当OH 最短时,求点H 的横坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a ,b 满足++-+b a b a 882232=0. (1)求点A ,点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于于点D ,若点D (-1,0),求点E 的坐标;(3)在(2)条件下,如图2,过E 作EH ⊥OB 交AB 于点H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.48.在平面直角坐标系中,点A (0,a ),B (b ,0)分别在y 轴与x 轴正半轴上,满足0)16(2=-+-ab b a(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,3=∆ACD S ,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,请给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0)、B (b ,0),a 2+b 2-10a +10b +50=0,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60º,且OC =53,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 长度.图1 图244.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E ,已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n ;(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长?(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标?图1 图245.如图,直线AB 交x 轴点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足()052=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 与点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.图1 图246. 如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为点C .(1)直接写出点C 的横坐标 ;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上的一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH .当OH 最短时,求点H 的坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a 、b 满足0328822=++-+b a b a ; (1)求点A 、点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于点D ,若点D (1-,0),求点E 的坐标;(3)在(2)的条件下,如图2,过E 作EH ⊥OB 交AB 于H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.图1图248.在平面直角坐标系中,点A (0,a ),点B (b ,0)分别在y 轴和x 轴正半轴上,满足()0162=-+-ab b a .(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,S △ACD =3,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,情给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.图1图249.如图,已知A (a ,0)、B (0,b ),且a ,b 满足:0328822=++++b a b a .D 为第一象限内一点,连接BD ,连接AD 交y 轴于C 点,且AC =CD (1)求A 、B 点坐标;(2)如图1,若20=ABD S △,求D 点坐标;(3)如图2,过B 作BE ⊥y 轴,且BE =2OC ,连接AE ,问线段AE 和BD 有何数量和位置关系,请证明你的结论.图1图250.如图,已知A (-a ,0)、B (a ,0),点P 为第二象限内一动点,但始终保持PA = a ,∠PAB 的平分线AE 与线段PB 的垂直平分线CD 交于点D ,作DF ⊥AB 于点F . (1)若P 点坐标为(-2,2),求点C 的坐标 (2)求点D 的横坐标(用a 表示)(3)当点P 运动到某一位置时,恰好点C 落在y 轴上,直接写出CDCE=图1图251.已知,点A (0,a )、B (b ,0)、C (c ,0),其中a =|x +2|+|1-x |,且x 满足点(x +1,2x -1)关于x 轴对称的点在第一象限,b 、c 满足|3b +9|+(c +4)2=0.(1)如图1,在△AOC 内有一点D ,连AD 并延长交OC 于点P ,点E 在AC 上,且∠AED =∠AOD ,∠PDE =∠PDO ,若CE =2,求①△AOC 的周长;②OPCP 的值(2)如图2,点M 在线段AB 上(不与A ,B 重合)移动,过点A 作NA ⊥AB 于A ,且∠MON =45°,探究线段AN 、BM 、MN 之间的数量关系并证明你的结论。
人教版八年级数学上册期末压轴精选30题
人教版八年级数学上学期期末压轴精选30题考试范围:全册的内容,共30小题.【点睛】本题考查了等腰三角形的性质,三角形外角定义,直角三角形等知识,熟悉掌握有关知识是解题关键.2.(2022·湖南常德·八年级期中)A.0个B.1【答案】C,∵BF 是ABC Ð的角平分线,∴HBO EBO Ð=Ð,在△HBO 和EBO V 中,BH BE HBO EBO BO BO =ìïÐ=Ðíï=î,∵BAC Ð和ABC Ð的平分线相交于点∴点O 在C Ð的平分线上,∴OH OM OD a ===,∵2AB AC BC b ++=,∴1122ABC S AB OM AC OH =×+×V形一边边长大于另两边之差,小于它们之和,即可得中线长m 的取值范围.【详解】由2212161000a a b b -+-+=可得22680a b -+-=()()\ 6a = ,8b =如图,设AC b =,BC a =,CO 是对边AB 的中线,延长CO 至D 点,使得DO CO =,并连接AD ,Q AOD BOC Ð=Ð , AO BO =,DO CO=\ AOD BOCD D ≌\ AD BC a==\b a CD b a-<<+\214CD <<\17CO <<\中线长m 的取值范围为:17m <<.故答案为:17m <<【点睛】本题考查了因式分解,全等三角形的证明以及三角形的三边关系,掌握相应的知识点是解题的关键.12.(2022·山东济宁·八年级期中)已知一张三角形纸片ABC (如图甲),其中AB AC =,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD (如图乙),再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,BAC Ð的大小为______.【答案】36°##36度【分析】由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,由等腰三角形的性质可得,C ABC Ð=Ð,求解即可.【详解】解:由等腰三角形的性质可得,C ABC Ð=Ð,由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,【答案】11802n -æö´ç÷èø°【分析】根据内角和定理及外角的定义解题即可.【详解】解:∵在1A BC V 中,20B Ð=°,1A B CB =∴()118020280BA C Ð=°-°¸=°,④BD CE DE +=.其中正确的是 _____.【答案】①②③【分析】先根据垂直定义和等角的余角相等证得BAD CAF Ð=Ð,B ACF Ð=Ð,再利用ASA 可判断①正确;再证明ADE AFE △≌△可判断②正确;利用全等三角形的面积相等可判断③正确;根据全等三角形的性质和三角形的三边关系可判断④错误.【详解】解:Q 在Rt ABC V 中,=90BAC Ðo ,=AB AC ,45B ACB \Ð=Ð=o ,90BAD DAC Ð+Ð=o ,Q AF AD ^,90CAF DAC \Ð+Ð=°,BAD CAF \Ð=Ð,CF BC ^Q ,9045ACF ACB \Ð=°-Ð=o ,则B ACF Ð=Ð,在ABD △和ACF △中,BAD CAF AB ACB ACF Ð=Ðìï=íïÐ=Ðî()ABD ACF ASA \V V ≌,故①正确;AD AF \=,45DAE Ð=o Q ,AF AD ^,9045FAE DAE DAE \Ð=-Ð==Ðo o ,在ADE V 和AFE △中,AD AF DAE FAEAE AE =ìïÐ=Ðíï=î()ADE AFE SAS \V V ≌,∴=DE EF ,故②正确;∵ADE AFE △≌△,ABD ACF ≌△△,ABD ACF S S \=V V ,ADE AFE S S =V V ,BD CF =,DE EF =,ABC ABD ADE AECS S S S \=++V V V VÐ的度数;(1)如图1,求BFC(2)如图2,连接ED交BC于点G,连接AG,若【答案】(1)90°(2)见解析∵AE AD ^,∴90BAC DAE °Ð==Ð,∴BADCAE Ð=Ð,在ABD △和ACE △中,AB AC BAD CAE AD AE ìïÐÐíïî=== ,∴(SAS)ABD ACE @V V ,∴ABD ACF Ð=Ð,∵AHB FHC Ð=Ð,∴90BFC BAC °Ð=Ð=;(2)设AC 交EG 于点H ,在AB 上截取AK AD =,连接KG ,如图2所示:∵,90AD AE DAE °=Ð=∴45,AED ACG °Ð==Ð∵,AHE GHC Ð=Ð∴,EAC CGE Ð=Ð由(1)知:,BAD CAE Ð=Ð∴,BAD CGD Ð=Ð设2,BAD a CGD Ð==Ð∴2,EAC BAD a Ð=Ð=∴1802,BGD a °Ð=-∴180,BAD BGD °Ð+Ð=∴180,ABG ADG °Ð+Ð=∵AG 平分,BAD Ð∴,KAG DAG a Ð=Ð=在AKG △和ADG △中,,AK AD KAG DAG AG AG =ìïÐ=Ðíï=î(2)解:∵221012610a b a b +--+=,∴22221051260a a b b -++-+=,∴()()22560a b -+-=,∵()()225060a b -³-³,,∴()()22560a b -=-=,∴5060a b -=-=,,∴56a b ==,,∵b a c a b -<<+,∴111c <<,∵c 是最大边,∴611c £<;(3)解:∵2261P x y x =-+-,22413Q x y =++,∴222612413P Q x y x x y -=-+----,226414x x y y =-+---2269441x x y y =-+-----()()22321x y =---+-,∵()()223020x y -³+³,,∴()()22320x y ---+£,()()223210x y ---+-<∴0P Q -<,∴P Q <.【点睛】本题主要考查了因式分解的应用,三角形三边的关系,平方的非负性,熟知完全平方公式是解题的关键.22.(2022·福建·莆田锦江中学八年级期中)如图,AB AD ^,且AB AD =,AC AE ^,且AC AE =(1)如图1,连接DC 、BE ,求证:DC BE =;(2)如图2,求证:ABC ADE S S D D =(3)如图3,GF 经过A 点与DE 交于G 点,且GF BC ^于F 点.求证:G 为DE 的中点.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据垂直可得90BAE CAE ==°∠∠,得出DAC BAE Ð=Ð,根据全等三角形的判定证明DAC BAE @V V ,可得答案;(2)作EM AD ^交DA 的延长线于M ,作CN AB ^,进而可得CAN MAE =∠∠,根据全等三角形的判定证明ACN AEM @V V ,进而得出CN EM =,根据三角形的面积公式可得;(3)作DM AG ^交AG 的延长线于M ,作EN AG ^,先证明C NAE =∠∠,再证FCA NAE @V V ,得出AF NE =;再证明BAF ADM @V V ,得出AF DM =,进而得出DM NE =,再证明DMG ENG @V V ,即可得出答案.【详解】(1)∵AB AD ^,AC AE ^,∴90BAE CAE ==°∠∠∴BAD BAC BAC CAE +=+∠∠∠∠∴DAC BAE Ð=Ð在DAC △和BAE V 中,AD AB DAC BAE AC AE =ìïÐ=Ðíï=î∴DAC BAE@V V ∴DC BE=(2)作EM AD ^交DA 的延长线于M ,作CN AB^∴90EMD CNA ==°∠∠∵90MAN CAE ==°∠∠∴MAN CAM CAE CAM-=-∠∠∠∠∴CAN MAE=∠∠在ACN △和AEM △中,)DM AG ^交AG 的延长线于M ,作90EMA DMG AFC ===°∠∠90FAC CAF NAE +=+=∠∠∠NAE =∠CAF 和NEA V 中,90CFA ENA C NAE AC AE =Ð=°Ð=Ð=根据三角形三边关系,易得0a b c +->∴0a b -=∴a b=∴ABC V 为等腰三角形【点睛】本题考查了因式分解、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.24.(2022·浙江·八年级专题练习)(1)阅读理解:如图1,在ABC V 中,若10AB =,6AC =.求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连接BE (或将ACD V 绕着点D 逆时针旋转180°得到EBD △),把AB ,AC ,2AD 集中在ABE V 中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图2,在ABC V 中,D 是BC 边上的中点,DE DF ^于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图3,在四边形ABCD 中,180B D Ð+Ð=°,CB CD =,140BCD Ð=°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.【答案】(1)28AD <<;(2)见解析;(3)BE DF EF +=,证明见解析【分析】(1)延长AD 至E ,使DE AD =,连接BE ,证明SAS BDE CDA ≌()V V ,根据三角形三边关系即可求解;(2)延长FD 至点M ,使DM DF =,连接BM ,EM ,同(1)得,(SAS)BMD CFD D V V ≌,证明(SAS)EDM EDF V V ≌在BME D 中,由三角形的三边关系得BE BM EM +>,即可得证;(3)延长AB 至点N ,使BN DF =,连接CN ,证明(SAS)NBC FDC V V ≌,(SAS)NCE FCE V V ≌,根据求的三角形的性质即可得证.【详解】(1)解:延长AD 至E ,使DE AD =,连接BE ,如图①所示:∵AD 是BC 边上的中线,∴BD CD =,在BDE △和CDA V 中,BD CD BDE CDADE AD =ìïÐ=Ðíï=î∴SAS BDE CDA ≌()V V,∴6BE AC ==,在ABE V 中,由三角形的三边关系得:AB BE AE AB BE -<<+,∴106106AE -<<+,即416AE <<,∴28AD <<;故答案为:28AD <<;(2)证明:延长FD 至点M ,使DM DF =,连接BM ,EM ,如图所示同(1)得,(SAS)BMD CFD D V V ≌,BM CF\=DE DF ^Q ,DM DF =,DE DE=(SAS)EDM EDF \V V ≌,EM EF\=在BME D 中,由三角形的三边关系得BE BM EM +>,BE CF EF\+>(3)BE DF EF+=证明如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示180ABC D Ð+Ð=°Q ,180NBC ABC Ð+Ð=°NBC D\Ð=Ð在NBC V 和FDC △中,BN DF NBC D BC DC =ìïÐ=Ðíï=î,(SAS)NBC FDC \V V ≌CN CF \=,NCB FCDÐ=Ð140BCD Ð=°Q ,70ECF Ð=°70BCE FCD \Ð+Ð=°,70ECN ECF\Ð=°=Ð在NCE △和FCE △中,(1) (2)(1)求证:PAB AQE ≌△△;(2)连接CQ 交AB 于M ,求证:BM EM =;(3)如图(2),过Q 作QF AQ ^于AB 的延长线于点F ,过PQ,HA AC^QA AP^QAH HAP HAP \Ð+Ð=Ð\Ð=Ð,QAH PADPAQQ为等腰直角三角形,D\=,AQ AP(1)请用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:.(2)观察图2写出()2m n +,()2m n -,mn 三个代数式之间的等量关系:(3)根据(2)中你发现的等量关系,解决如下问题:若【点睛】本题主要考查完全平方差公式和完全平方和公式的联系,会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到.28.(2022·广东·江门市新会尚雅学校八年级阶段练习)(1)如图1,已知,在ABC V 中,10AB AC ==,BD 平分ABC Ð,CD 平分ACB Ð,过点D 作EF BC ∥,分别交AB 、AC 于E 、F 两点,则图中共有________个等腰三角形:EF 与BE 、CF 之间的数量关系是________,AEF △的周长是________.(2)如图2,若将(1)中“ABC V 中,10AB AC ==”改为“若ABC V 为不等边三角形,8AB =,10AC =”其余条件不变,则图中共有________个等腰三角形;EF 与BE 、CF 之间的数量关系是什么?证明你的结论,并求出AEF △的周长.(3)已知:如图3,D 在ABC V 外,AB AC >,且BD 平分ABC Ð,CD 平分ABC V 的外角ACG Ð,过点D 作DE BC ∥,分别交AB 、AC 于E 、F 两点,则EF 与BE 、CF 之间又有何数量关系呢?写出结论并证明.【答案】(1)5,EF BE CF =+,20(2)2,EF BE CF =+,证明见详解,18(3)EF BE CF =-,证明见详解【分析】(1)根据角平分线的定义可得,EBD CBD FCD BCD Ð=ÐÐ=Ð,再根据平行线的性质,“两直线平行,同位角相等”、“两直线平行,内错角相等”可知DB DC =,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可求出AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,根据“等角对等边”可知,,BE DE CF DF AE AF ===,即可确定等腰三角形的数量,EF 与BE 、CF 之间的数量关系以及AEF △的周长;(2)若ABC V 为不等边三角形,根据角平分线的定义可知,EBD CBD FCD BCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,然后解答即可;(3)根据角平分线的定义可知,EBD CBD FCD GCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC GCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,即可证明EF 与BE 、CF 之间的数量关系.【详解】解:(1)∵AB AC =,∴A ABC CB =Ð∠,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∴DBC DCB Ð=Ð,∴DB DC =,∵EF BC ∥,∴,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,,BE DE CF DF AE AF ===,∴等腰三角形有,,,,ABC AEF DEB DFC DBC V V V V V ,共计5个,∴EF DE DF BE CF =+=+,即EF BE CF =+,∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+1010=+20=,故答案为:5,EF BE CF =+,20;(2)若ABC V 为不等边三角形,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∵EF BC ∥,∴,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,BE DE CF DF ==,∴等腰三角形有,DEB DFC V V ,共计2个,故答案为:2;∵,BE DE CF DF ==,∴EF DE DF BE CF =+=+,即EF BE CF =+;∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+810=+18=;(3)大长方形的面积为()()222365122815a b a b a ab b ++=++,小图形的面积分别为22,,a b ab ,进一步即可得到答案.【详解】(1)拼成的大长方形面积之和()()2a b a b =++,各个小图形面积之和2232a ab b =++,∴图2所表示的数学等式是()()22232a b a b a ab b ++=++.故答案为:()()22232a b a b a ab b ++=++.(2)图(3)中大正方形的面积=()2a b c ++,各个小图形面积之和=222222a b c ab ac bc +++++,∴()2222222a b c a b c ab ac bc ++=+++++.∵8a b c ++=,19ab ac bc ++=.∴()222222228a b c a b c ab ac bc ++=+++++=,即()222264a b c ab ac bc +++++=,∴()2226426421926a b c ab ac bc ++=-++=-´=.(3)大长方形的面积为:()()2222236512101815122815a b a b a ab ab b a ab b ++=+++=++,∵小图形的面积分别为22,,a b ab ,∴12,15,28x y z ===.∴12152855x y z ++=++=.【点睛】本题考查多项式乘多项式的计算,整体代入思想,数形结合思想,能够通过几何图形找到代数之间的等量关系是解决此类题型的关键.30.(2022·全国·八年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(1)探究1:如图1,在ABC V 中,O 是ABC Ð与ACB Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(2)探究2:如图2中,O 是ABC Ð与外角ACD Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(3)探究3:如图3中,O 是外角DBC Ð与外角ECB Ð的平分线BO 和CO 的交点,则BOC Ð与A Ð有怎样的∵BO 和CO 分别是ABC Ð∴111,222ABC Ð=ÐÐ=Ð又∵ACD Ð是ABC V 的一个外角,(112ACD A Ð=Ð=Ð在PCD V 中,()()1801801808595CPD PCD PDC PCD PDC °°°°°Ð=-Ð+Ð=-Ð+Ð=-=.【点睛】本题主要考查了三角形外角的性质与三角形内角和定理,多边形内角和定理,熟练掌握三角形外角的性质与三角形内角和定理,多边形内角和定理,利用类比思想解答是解题的关键.。
初二数学勾股定理常考压轴题专题练习汇总(含解析)
初二数学勾股定理常考压轴题专题练习汇总(含解析)
一.选择题(共8小题)
1.直角三角形两直角边长度为5,12,则斜边上的高( )
A.6B.8C.D.
2.下列说法中正确的是( )
A.已知a,b,c是三角形的三边,则a2+b2=c2
B.在直角三角形中两边和的平方等于第三边的平方
C.在Rt△ABC中,∠C=90°,所以a2+b2=c2
D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
3.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于( )
A.195cm B.200cm C.205cm D.210cm
4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是
( )
A.10尺B.11尺C.12尺D.13尺
5.如图所示,在数轴上点A所表示的数为a,则a的值为( )。
初二数学压轴练习题
初二数学压轴练习题一、选择题1. 下列哪一个是素数?A) 10B) 11C) 12D) 132. 某列车从A地开到B地,全程300公里,上午行驶了3小时,平均时速为60公里/小时。
那么,下午行驶了多少小时使得平均时速增加到80公里/小时?A) 2小时B) 2.5小时C) 3小时D) 3.5小时3. 下列哪一个图形是四边形?A) 正五边形B) 圆形C) 正三角形D) 长方形4. 若x + 6 = 12,则x的值为多少?A) 6B) 12C) 18D) 245. 在一个等边三角形中,每个角的度数是多少?A) 30°B) 45°C) 60°D) 90°二、填空题1. 一个角的补角是140°,那么该角的度数是_______°。
2. 若三角形的两个角分别是30°和80°,那么第三个角的度数是_______°。
3. 若a = 5,b = 3,那么a² - b²的值是_______。
4. 若一个数加上8等于16,那么这个数是_______。
5. 在一个矩形中,两个邻边的长度分别是7cm和12cm,那么该矩形的面积是_______平方厘米。
三、计算题1. 小明的体重是48千克,他每天要喝水的体重比例是1/10。
那么,小明每天喝水的千克数是多少?(保留一位小数)2. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,驶过了多少公里?3. 已知矩形的宽度是5cm,面积是20平方厘米,求矩形的长度是多少厘米?四、应用题某个地区的总人口为1000万人,每年以2%的速度增长。
请回答以下问题:1. 经过5年后,该地区的人口增长到了多少人?2. 经过多少年后,该地区的人口增长到了2000万人?3. 若该地区维持每年2%的增长速度,经过多少年后,该地区的人口将达到5000万人?五、解答题1. 请列举三个连续的整数,使得它们的和等于100。
初二数学压轴大题集100道3篇
初二数学压轴大题集100道对不起,作为一名AI语言模型,我有字数和语言限制。
我可以给您提供数学压轴大题集100道,但是我不能保证每道题的条件和难度都适合初二学生。
希望能够对您有所帮助。
1. 某市一年365天,四年为一个闰年,平年为365天。
请问这个市一共有多少天是闰年?2. 已知一条梯形的上底长为5cm,下底长为12cm,高为3cm,求这个梯形的面积。
3. 某车站每2分钟有一班公交车,每4分钟有一班地铁,如果两个班次同时到达,那么下一次两个班次同时到达该车站的时间是什么时候?4. 已知直角三角形斜边的长度为10cm,一直角边的长度为6cm,求另一直角边的长度。
5. 一根长方形的木头,长为30cm、宽为15cm、厚为6cm,它可以做出多少个边长为3cm、宽为3cm、厚为3cm的立方体?6. 已知△ABC中,∠B=90°,BC=6cm,AC=8cm,求∠A和∠C的度数。
7. 一条铁路要从A点到B点,经过3个车站C、D、E。
AC=3km,CD=5km,DE=7km,EB=4km。
如果列车的速度是60km/h,那么从A到B需要多长时间?8. 某地新修了一座横跨一条直沟的桥,桥面呈α字形,两段斜线长度分别为30m和40m,它与水平面成角的大小分别为30°和60°,求桥下的直沟的宽度。
9. 生产一个产品,设它的成本为x元,售价为y元,已知售价是成本的1.5倍,求售价。
10. 已知一个四边形的对角线互相垂直,一个对角线的长度为5cm,另一个对角线的长度为10cm,求这个四边形的面积。
11. 有一条河流,宽10m,上面有一座桥,桥面平行于河岸。
桥面的长度为30m,桥的一端高于水面7m,另一端高于水面3m,求这座桥的水下部分长度。
12. 甲、乙、丙三个人参加游戏,现在已知甲比乙多得9分,丙比甲多得3分,丙比乙多得6分,求三个人的得分。
13. 已知a+b=3,a−b=1,求a和b的值。
八年级下册数学期末压轴题(含答案)
八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。
初二数学期中压轴题集
初二数学期中压轴题集题目1:已知函数\(f(x) = x^2 - 4x + 3\),求\(f(x)\)在区间[-2, 2]上的最大值和最小值。
题目2:已知等差数列\(a_n\)的首项\(a_1 = 1\),公差\(d = 2\),求第10项\(a_{10}\)的值。
题目3:解方程\(2x^2 - 5x + 3 = 0\)。
题目4:已知\(a^2 + 2ab + b^2 = 0\),求\(a\)和\(b\)的关系。
题目5:计算下列代数式的值:\(3(2x + 1)^2 - 4(2x + 1) + 5\)。
题目6:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^2 + b^2\)的值。
题目7:求函数\(f(x) = \sqrt{x^2 - 1}\)在区间[-1, 1]上的值域。
题目8:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^2 - b^2\)的值。
题目9:解不等式\(2x - 3 > 5\)。
题目10:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^3 + b^3\)的值。
题目11:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^4 + b^4\)的值。
题目12:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^5 + b^5\)的值。
题目13:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^6 + b^6\)的值。
题目14:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^7 + b^7\)的值。
题目15:已知\(a\)和\(b\)是方程\(x^2 - 4x + 3 = 0\)的两个根,求\(a^8 + b^8\)的值。
初二数学压轴大题集(100道)
一次函数压轴题(一)1. 已知点A (-4,2),B (-1,5)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;(3) 在x 轴上取点D ,y 轴上取点C ,使四边形ABCD 的周长最小,最C 、D 的坐标;2. 已知点A (-4,2),B (1,-3)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;3. 如图,在平面直角坐标系中,点A 、B 、C 在坐标轴上,OA =OB =OC =2,点P 从C 点出发沿y 轴正方向以每秒1个单位长度的速度向上运动,连PB 。
(1) 求直线BC 的解析式;(2) 点P 为第二象限的直线BC 上一点,当P 运动2秒,且S △AQO =2S △OPQ 时,求点Q 的坐标;(3) 若D 为AC 的中点,连DP ,BD ,问点P 运动几秒时,△PDB 为等腰直角三角形?4. 如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A ,与y 轴交于B(0,-4)且OA=AB ,△OAB 的面积为6. (1)求两函数的解析式; (2)若M (2,0),直线BM 与AO 交于P ,求P 点的坐标;(3)在x 轴上是否存在一点E ,使S △ABE =5,若存在,求E 点的坐标;若不存在,请说明理由。
一次函数压轴题(二)1. 如图,直线l 交x 轴、y 轴分别于A 、B 两点,A (a ,0),B (0,b ),且(a -b )2+|b -4|=0.(1) 求A 、B 两点的坐标;(2) C 是线段AB 上一点,C 点的横坐标为3,P 是y 轴正半轴上一点,且满足∠OCP =45°,求出P 点坐标;(3) 在(2)的条件下,过B 作BD ⊥OC ,交OC 、OA 分别于F 、D 两点,E 为OA 上一点,且∠CEA =∠BDO ,试判断线段OD 与AE 的数量关系,并说明理由。
八年级数学上册期末压轴100题:第十五章20题(含答案)
(1)根据相对离散度的定义求解即可;
(2)根据相对离散度的定义,结合 得到 ,再分情况去绝对值讨论,求出S值即可;
(3)设点P、Q表示的数分别为p、q,表示出OP,OQ,OT,得到各线段中线表示的数,得到WV和XV,则有 , ,根据 得到关于p和q的等式,化简得到 ,从而得到pq的值,利用完全平方公式得到 ,可得r的范围.
【点睛】
本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.
3.D
【分析】
首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到x﹣3=0,据此求出x的值,代入整式方程求出a的值即可.
【详解】
解:去分母,得:x﹣3a=3a(x﹣3),
由分式方程有增根,得到x﹣3=0,即x=3,
(2)若哥哥的速度为m米/秒,
①弟弟的速度为________米/秒(用含m的代数式表示);
②如果两人想同时到达终点,哥哥应向后退多少米?
17.阅读材料:对于非零实数m,n,若关于x的分式 的值为零,则x=m或x=n.又因为 = =x+ ﹣(m+n),所以关于x的方程x+ =m+n的解为x1=m,x2=n.
(2)设数轴上点O右侧的点S表示的数是s,若线段 的相对离散度为 ,求s的值;
(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段 的中点,设线段 的相对离散度为e1,线段 的相对离散度为 ,当 时,直接写出点R所表示的数r的取值范围.
12.以诗育德,以诗启智,以诗怡情,以诗塑美,万州区某中学开展诗歌创作比赛,积极营造诗韵书香学生生活.年级决定购买 两种笔记本奖励在此次创作比赛中的优秀学生,已知 种笔记本的单价比 种笔记本的单价便宜 元,已知用 元购买 种笔记本的数量是用 元购买 种笔记本的数量的 倍.
初一初二数学压轴题
初一初二数学压轴题一、在直角坐标系中,点A(3,4)关于x轴对称的点的坐标是:A. (-3, -4)B. (3, -4)C. (-3, 4)D. (4, 3)(答案:B)二、若a、b、c为三角形的三边长,且满足a2 + b2 + c2 = ab + bc + ca,则这个三角形是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 无法确定(答案:B)三、已知x2 - 5x + 1 = 0,求x2 + 1/x2的值:A. 21B. 23C. 25D. 27(答案:B)四、若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围为:A. k < 1B. k < 1 且 k ≠ 0C. k ≤ 1D. k ≤ 1 且 k ≠ 0(答案:B)五、在平行四边形ABCD中,AB=5,AD=8,∠BAD的平分线交BC于点E,则DE的长为:A. 3B. 4C. 5D. 6(答案:C)六、已知反比例函数y = k/x的图象经过点A(-2,3),则当x = -3时,y的值为:A. -1B. -2C. 2D. 3(答案:B)七、若关于x的不等式组{ x - m < 0, 3x - 1 > 2(x - 1) }有解,则m的取值范围是:A. m > -1B. m ≥ -1C. m < 1D. m ≤ 1(答案:A)八、已知一次函数y = kx + b的图象与x轴交于点A(-6,0),与y轴交于点B,若△AOB的面积为12,则这个一次函数的解析式为:A. y = -x - 6B. y = x - 6C. y = -2x - 12 或 y = 2x + 12D. y = -x + 6 或 y = x + 6(答案:C)。
初中数学压轴试题及答案
初中数学压轴试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(1,2,3,4,5,6,7,8,9,0循环)B. πC. 0.33333…(3循环)D. √2答案:B2. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是:A. 10B. 11C. 7D. 无法确定答案:B4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 如果一个角是直角三角形的一个锐角,那么这个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 90°到180°答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. √(-8)答案:B7. 在数轴上,-3和2之间的距离是:A. 5B. -5C. 1D. -1答案:A8. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 1或-1D. 0答案:C9. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是答案:A10. 一个数的平方根是它本身,这个数是:A. 0B. 1C. 0或1D. 以上都不是答案:C二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
答案:±52. 一个数的立方是-27,这个数是______。
答案:-33. 一个等腰三角形的两边长分别为5和5,第三边长为8,则这个三角形的周长是______。
答案:184. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°5. 一个数的绝对值是3,这个数是______。
答案:±3三、解答题(每题10分,共50分)1. 已知一个三角形的两边长分别为6和8,第三边长为x,且这个三角形的周长是22,求x的值。
成都初二数学上压轴大题集
成都市初二上期末压轴大题集1.如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PM∥OB交ON 于点M, MD⊥OB于点D,QR∥OB交MD于点R,连结PR交QM于点S。
(1)求证:四边形PQRM为矩形;(5分)(2)若12OP PR=,试探究∠AOB与∠BON的数量关系,并说明理由。
(5分)2.如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标分别为(-,点E是BC的中点,点H在OA上,且AH=12,过点H且平行于y轴的HG与EB交于点G,现将矩形折叠,使顶点C落在HG上,并与HG上的点D重合,折痕为EF,点F为折痕与y轴的交点。
(1)求∠CEF的度数和点D的坐标;(3分)(2)求折痕EF所在直线的函数表达式;(2分)(3)若点P在直线EF上,当⊿PFD为等腰三角形时,试问满足条件的点P有几个?请求出点P的坐标,并写出解答过程。
(5分)(备用图)备用图3.如图,在平面直角坐标系xOy 中,已知直线2321+-=x y 与x 轴、y 轴分别交于点A 和点B,直线)0(2≠+=k b kx y 经过点C(1,0)且与线段AB 交于点P,并把△ABO 分成两部分.(1)求△ABO 的面积.(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.4.如图①,在Rt △ABC 中,已知∠A=90º,AB=AC,G 、F 分别是AB 、AC 上两点,且GF ∥BC ,AF=2,BG=4. (1)求梯形BCFG 的面积.(2)有一梯形DEFG 与梯形BCFG 重合,固定△ABC,将梯形DEFG 向右运动,直到点D 与点C 重合为止,如图②.①若某时段运动后形成的四边形G G BD '中,DG ⊥G B ',求运动路程BD 的长,并求此时2B G '的值. ②设运动中BD 的长度为x ,试用含x 的代数式表示出梯形DEFG 与Rt △ABC 重合部分的面积.AG FB(D) C(E)图①AGFB DC EG 'F ' 图②5.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m(m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。
初二数学压轴练习题
初二数学压轴练习题一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数y=ax^2+bx+c的图像开口向上的条件?A. a > 0B. a < 0C. a = 0D. a ≠ 02. 已知等腰三角形的两边长分别为6和8,求其周长。
A. 20B. 22C. 24D. 263. 计算下列哪个表达式的值等于0?A. (x+2)(x-2)B. (x-2)^2C. x^2 - 4x + 4D. x^2 + 4x + 44. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -25. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π6. 一个多项式P(x)=x^3-6x^2+11x-6可以被哪个一次因式整除?A. x-1B. x-2C. x-3D. x+17. 计算下列哪个表达式的值等于1?A. (x-1)/(x+1)B. (x+1)/(x-1)C. (x^2-1)/(x^2-x)D. (x^2+1)/(x^2-1)8. 一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 7C. 9D. 129. 计算下列哪个表达式的值等于-1?A. 1/(x-1) - 1/(x+1)B. 1/(x+1) - 1/(x-1)C. x/(x+1) + 1/(x-1)D. x/(x-1) - 1/(x+1)10. 一个正六边形的边长是2厘米,求它的周长。
A. 6厘米B. 12厘米C. 18厘米D. 24厘米二、填空题(每题4分,共20分)11. 一个二次函数y=ax^2+bx+c的顶点坐标是(2,-3),则b的值为________。
12. 一个等差数列的首项是1,公差是2,求第10项的值是________。
13. 一个三角形的内角和是________度。
14. 一个圆的直径是10厘米,那么它的周长是________厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数压轴题(一)1. 已知点A (-4,2),B (-1,5)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;(3) 在x 轴上取点D ,y 轴上取点C ,使四边形ABCD 的周长最小,最C 、D 的坐标;!2. 已知点A (-4,2),B (1,-3)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大; (3. 如图,在平面直角坐标系中,点A 、B 、C 在坐标轴上,OA =OB =OC =2,点P 从C 点出发沿y 轴正方向以每秒1个单位长度的速度向上运动,连PB 。
(1) 求直线BC 的解析式;(2) 点P 为第二象限的直线BC 上一点,当P 运动2秒,且S △AQO =2S △OPQ 时,求点Q 的坐标;(3) 若D 为AC 的中点,连DP ,BD ,问点P 运动几秒时,△PDB 为等腰直角三角形?(4)[4. 如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A ,与y 轴交于B(0,-4)且OA=AB ,△OAB 的面积为6. (1)求两函数的解析式; (2)若M (2,0),直线BM 与AO 交于P ,求P 点的坐标;(3)在x 轴上是否存在一点E ,使S △ABE =5,若存在,求E 点的坐标;若不存在,请说明理由。
@一次函数压轴题(二)1. 如图,直线l 交x 轴、y 轴分别于A 、B 两点,A (a ,0),B (0,b ),且(a -b )2+|b -4|=0.(1) 求A 、B 两点的坐标;(2) C 是线段AB 上一点,C 点的横坐标为3,P 是y 轴正半轴上一点,且满足∠OCP =45°,求出P 点坐标; (3) ((4) 在(2)的条件下,过B 作BD ⊥OC ,交OC 、OA 分别于F 、D 两点,E 为OA 上一点,且∠CEA =∠BDO ,试判断线段OD 与AE 的数量关系,并说明理由。
(5)#2. 如图,在平面直角坐标系中,直线y =-12x+b 交x 轴于点A ,交y 轴于点B ,直线y=x 交AB 于点P ,且S △AOP =83.(1) 求直线AB 的解析式;(2) 点M 为第三象限的直线OP 上一点,且∠BAO =∠MAO ,求点M 的坐标;(3) 是否存在直线x=a 交x 轴于点C ,交OP 于D ,交AB 于E ,使得CD =2DE 若存在,求a 的值;若不存在,说明理由。
(4)3. 如图,直线y =kx+3(k ≠0)交x 轴于点A ,交y 轴于点B ,点C 为线段AB 上一点,它的纵坐标为1,点D 的坐标为(0,-2),且S △BCD =10. (1) 、(2) 求直线AB 的解析式;(3) 若在坐标系中有一点P ,使得∠PCD =45°,求直线CP 的解析式; (4) 线段BC 的中点为E ,判断△ADE 的形状,并证明.(5)~4. 直线y=x+2与x 、y 轴交于A 、B 两点,C 为AB 的中点.(1)求C 的坐标;(2)如图,M 为x 轴正半轴上一点,N 为OB 上一点,若BN+OM=MN ,求∠NCM 的度数; (3)P 为过B 点的直线上一点,PD ⊥x 轴于D ,PD=PB ,E 为直线BP 上一点,F 为y 轴负半轴上一点,且DE=DF ,试探究BF -BE 的值的情况. (一次函数压轴题(三)1. 如图,直线AB :y=-x-b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1. (1)求直线BC 的解析式;(2)直线EF :y=kx-k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD 若存在,求出k 的值;若不存在,说明理由(3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y 轴于点K ,当P 点运动时,K 点的位置是否发生变化若不变,请求出它的坐标;如果变化,请说明理由。
—2. #3. 直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB(1) 求AC 的解析式;(2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。
(3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。
(4)xyo B'ACPQxyo B'ACPQM4. 如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。
(1) 当OA=OB 时,试确定直线L 的解析式; (2) ~ (3) 在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。
(4) 当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。
问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。
(5)#5. 如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足2(2)40a b -+-=.(1) 求直线AB 的解析式;(2) 若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3) *(4) 过A 点的直线y=kx-2k 交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线22k ky x =-交AP 于点M ,试证明PM -PN AM 的值为定值.(5)第2题图① 第2题图② 第2题图③一次函数压轴题(四)1. 如图l ,y =-x +6与坐标轴交于A 、B 两点,点C 在x 轴负半轴上,S △OBC =13S △AOB .(1) 求直线BC 的解析式;(2) 直线EF :y =kx-k 交AB 于E 点,与x 轴交于D 点,交BC 的延长线于点F ,且S △BED =S△FBD ,求k 的值;(3) 如图2,M (2,4),点P 为x 轴上一动点,AH ⊥PM ,垂足为H 点.取HG =HA ,连CG ,当P 点运动时,∠CGM 大小是否变化,并给予证明.(4)&2. 在平面直角坐标系中,一次函数y=ax+b 的图像过点B (-1,52),与x 轴交于点A (4,0),与y 轴交于点C ,与直线y=kx 交于点P ,且PO=PA (1) 、(2) 求a+b 的值; (3) 求k 的值;(4) D 为线段PC 上一点,DF ⊥x 轴于点F ,交OP 于点E ,若DE=2EF ,求D 点坐标.(5)3. 如图,在平面直角坐标系中,直线y =2x +2交y ,轴交于点A ,交x 轴于点B ,将A 绕B 点逆时针旋转90°到点C . (1) 求直线AC 的解析式;(2) 若CD 两点关于直线AB 对称,求D 点坐标;(3) 若AC 交x 轴于M 点P (-52,m )为BC 上一点,在线段BM 上是否存在点N ,使PN 平分△BCM 的面积若存在,求N 点坐标;若不存在,说明理由.(4))<4. 如图,直线AB 交x 轴正半轴于点A (a ,0),交y 轴正半轴于点B (0, b ),且a 、b 满足4 a + |4-b |=0(1) 求A 、B 两点的坐标;(2) D 为OA 的中点,连接BD ,过点O 作OE ⊥BD 于F ,交AB 于E ,求证∠BDO =∠EDA ; (3) 如图,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt △PBM ,其中PB =PM ,直线MA 交y 轴于点Q ,当点P 在x 轴上运动时,线段OQ 的长是否发生变化若不变,求其值;若变化,求线段OQ 的取值范围.(4)]AB】 OMPQxy·一次函数压轴题(五)1. 如图,平面直角坐标系中,点A 、B 分别在x 、y 轴上,点B 的坐标为(0,1),∠BAO =30°.(1) 求AB 的长度;(2) 以AB 为一边作等边△ABE ,作OA 的垂直平分线MN 交AB 的垂线AD 于点D .求证:BD =OE .(3) 在(2)的条件下,连结DE 交AB 于F .求证:F 为DE 的中点.(4)!2. 如图,已知在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(2,0),经过原点的直线交线段AB 于点C ,过点C 作OC 的垂线与直线2=x 相交于点P ,设BC=t ,点P 的坐标为()y ,2(1) 求点C 的坐标(用含t 的表达式表示);(2) 求y 关于t 的函数解析式,并写出t 的取值范围; (3) 当△PBC 为等腰三角形时,求点P 的坐标。
(4))DENMB OxyADEB OxyF AY XP CBAO3. 在直角坐标系中,B 、A 分别在x ,y 轴上,B 的坐标为(3,0),∠ABO=30°,AC 平分∠OAB交x 轴于C ; (1) 求C 的坐标;(2) 若D 为AB 中点,∠EDF=60°,证明:CE+CF=OC(3) 若D 为AB 上一点,以D 为顶点作△DEC ,使DC=DE ,∠EDC=120°,连BE ,试问∠EBC的度数是否发生变化;若不变,请求值。
(4):4. ~5. 如图1,在平面直角坐标系中,A (0,a ),C (-a ,a ),△ABO 是等边三角形,直线CB 交x 轴于点D .(1)求的度数; (2)求证:CB =BD ;(3)如图2,作BE ⊥CD 交OA 于E ,试探究线段DO 、AE 、BO 之间的数量关系,并给出证明.BDO ∠AC B#Doxy图1A C B@Doxy图2E~一次函数压轴题(六)1. 如图1,点A 、D 在y 轴正半轴上,点B 、C 分别在x 轴上,CD 平分∠ACB 与y 轴交于D点,∠CAO =90°-∠BDO . 2. (1)求证:AC =BC ;(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且∠DEA =∠DBO ,求BC +EC 的长;(3)在(1)中,过D 作DF ⊥AC 于F 点,点H 为FC 上一动点,点G 为OC 上一动点,当H 在FC 上移动、点G 点在OC 上移动时,始终满足∠GDH =∠GDO +∠FDH ,试判断FH 、GH 、OG 这三者之间的数量关系,并证明.*3. 已知与成正比例,当时,。