高一新生分班考试数学试卷(含答案)教学文案

合集下载

开学分班考试(一)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(一)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(衔接教材部分)(一)一、单选题(共8小题,满分40分,每小题5分) 1、下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )﹣2=C .m 2+m 2=2m 2D .(m +n )2=m 2+n 2【答案】C【解析】A 、m 3•m 2=m 5,故A 错误; B 、(﹣m )﹣2=B 错误;C 、按照合并同类项的运算法则,该运算正确.D 、(m +n )2=m 2+2mn +n 2,故D 错误. 2、若代数式1x−5有意义,则实数x 的取值范围是( )A . x =0B . x =5C . x ≠0D . x ≠5 【答案】D【解析】分数要求分母不为零。

5,05≠≠-x x3、已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A .【解析】设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3.故选A .4、关于二次函数,下列说法正确的是( ) A .图像与轴的交点坐标为B .图像的对称轴在轴的右侧C .当时,的值随值的增大而减小D .的最小值为-3 【答案】D【解析】∵y=2x 2+4x -1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,2241y x x =+-y ()0,1y 0x <y x y当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.5、若,则()A.1B.2C.3D.4【答案】C【解析】将不等式因式分解得,即或,无解或,所以√(2x−1)2+2|x−2|=2x−1+4−2x=3.故选C.6、已知ABC∆的三边a、b、c满足bcbaca-=-22,判断ABC∆的形状( )A.等边三角形B.等腰直角三角形C. 等腰三角形D.直角三角形【答案】C【解析】等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b,故选C.7、若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是()A.(-1, +∞)B.(-∞,-1)C.[-1,+∞)D.(-1,0)∪(0,+∞).【答案】B【解析】当{Δ=4+4a<0a≠0时,一元二次方程无解,解得a<-1,且a≠0,所以a的取值范围是a<-1.8、不等式的解集是( )A.{x|1<x≤5}B.{x|1<x<5}C.{x|1≤x<5 }D.{x|1≤x≤5 }【答案】A【解析】原不等式化为−x+5x−1≥0,x−5x−1≤0,解得1<x≤5.9、不等式2560x x+->的解集是()A.{}23x x x-或B.{}23x x-<<321xx+≥-C .{}61x x x -或 D .{}61x x -<<【答案】C【解析】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,故选C 。

2021年秋季高一新生入学分班考试数学试卷(人教版)4(解析版)

2021年秋季高一新生入学分班考试数学试卷(人教版)4(解析版)

2021年秋季高一新生入学分班考试数学试卷4注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.下列运算正确的是( )A .23633a a a ⋅=B .42254x x x -=C .()()32728a ab a b ⋅-=-D .2220x x ÷=【答案】C【分析】根据整式的加减运算法则以及乘除运算法则即可求出答案.【详解】解:A 、原式53a =,故A 不符合题意.B 、45x 与2x 不是同类项,不能合并,故B 不符合题意.C 、原式678()8a ab a b =⋅-=-,故C 符合题意.D 、原式2=,故D 不符合题意.故选:C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的加减运算法则以及乘除运算法则,本题属于基础题型.2.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们倡导为中国节水,为世界节水,若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为( )A .13.210L -⨯B .23.210L ⨯C .43.210L ⨯D .53.210L ⨯【答案】D【分析】首先算出10000000.32320000L ⨯=,再利用科学记数法将该数表示形式为:10n a ⨯(n 为整数,其中110a ≤<)即可.【详解】解:将10000000.32320000⨯=用科学记数法表示为:53.210⨯,故选:D .【点睛】本题考查了科学记数法的表示方式,解题的关键是:掌握科学记数法的形式为:10n a ⨯(n 为整数,其中110a ≤<),再根据题意确定出,a n 的值. 3在实数范围内有意义,则x 的取值范围是( ) A .2x <B .2x >C .2x ≥D .2x ≤【答案】A【分析】 根据二次根式有意义的条件,列出不等式,进而即可求解.【详解】解:由题意得:2-x >0,解得:x <2,故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方数是非负数,是解题的关键.4.下列等式成立的是( )A .()a a --=B .()0a a +-=C .a b b a -=-D .0a a -=【答案】A【分析】根据平面向量的性质,一一判断即可.【详解】解:(B )原式0=,故B 错误;(C )a b b a -≠-,故C 错误;(D )原式a =-,故D 错误;故选:A .【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.5.李明的身份证号码是321088************,则李明的生日是( ) A .6月2日B .10月26日C .6月21日D .2月10 【答案】D【分析】从第7位数字开始到第14位止表示出生的年(4位数)、月(2位数)、日(2位数);据此解答.【详解】这个身份证号码的7~14位是20060210,表示2006年02月10日出生.∴李明的生日是2月10日.故选:D .【点睛】本题是考查身份证的数字编码问题,身份证上:1,前六位是地区代码;2,7~14位是出生日期;3,15~17位是顺序码,其中第17位奇数分给男性,偶数分给女性;4,第18位是校验码.6.2021年5月11日我国第七次人口普查数据出炉,与第五次、第六次人口普查数据相比较,我国人口总量持续增长.第五次人口普查全国总人口约12.95亿,第七次人口普查全国总人口约14.11亿,设从第五次到第七次人口普查总人口平均增长率为x ,则可列方程为( )A .()212.95114.11x +=B .()212.95114.11x -= C .()212.951214.11x +=D .12.951211=14.x 【答案】A【分析】根据题意,第五次人口总数约是12.95亿,由于两次的增长率为x ,可列出一元二次方程.【详解】解:设从第五次到第七次人口普查总人口平均增长率为x ,根据题意得:()212.95114.11x +=,故选:A .【点睛】本题考查了一元二次方程的实际应用—增长率问题,关键在于弄清题意,列出方程. 7.某市出租车计费方法如图所示,()km x 表示行驶里程,y (元)表示车费,若某乘客有一次乘出租车的车费为36元,则这位乘客乘车的里程为( )kmA .10B .14C .15D .17【答案】D【分析】 根据函数图象可以得出出租车的起步价是8元,设当3x >时,y 与x 的函数关系式为y kx b =+,运用待定系数法求出一次函数解析式,将36y 代入解析式就可以求出x 的值.【详解】解:由图象得:出租车的起步价是8元;设当3x >时,y 与x 的函数关系式为(0)y kx b k =+≠,由函数图象,得 83125k b k b =+⎧⎨=+⎩, 解得:22k b =⎧⎨=⎩, 故y 与x 的函数关系式为:22y x =+; 36元8>元,∴当36y 时,3622x =+,17x =,故选:D .【点睛】本题考查了一次函数的应用,解答时理解函数图象是重点,求出函数的解析式是关键.8.如图,直线12//l l ,点A 、B 在2l 上,射线BD 交1l 于点D ,BC 平分ABD ∠交1l 于点C ,若180∠=︒,则2∠的度数是( )A .40︒B .50︒C .60︒D .80︒【答案】B【分析】 根据平行线的性质得出∴ABD ,由角平分线的定义得出∴CBD ,根据对顶角相等得出∴BDC ,最后根据三角形内角和定理求出∴2即可.【详解】解:如图,∴12//l l ,∴∴3=∴1=80°∴∴ABD =180°-80°=100°∴BC 平分ABD ∠ ∴1502DBC ABD ∠=∠=︒ 又180BDC ∠=∠=︒∴2180508050∠=︒-︒-︒=︒故选:B .【点睛】此题主要考查了平行线的性质、角平分线的定义,三角形内角和定理等知识,求出100ABD ∠=︒是解答此题的关键.9.如图,O 中,点C 为弦AB 中点,连接OC ,OB ,56COB ∠=︒,点D 是AB 上任意一点,则ADB ∠度数为( )A .112︒B .124︒C .122︒D .134︒【答案】B【分析】 连接OA ,在AEB 上取点E ,连接AE ,BE ,先证明ACO BCO △≌△,可得∴AOB =112°,结合圆周角定理和圆内接四边形的性质,即可求解.【详解】解:连接OA ,在AEB 上取点E ,连接AE ,BE ,∴点C 为弦AB 中点,∴OC ∴AB ,即∴ACO =∴BCO =90°,又∴AC =BC ,OC =OC ,∴ACO BCO △≌△,∴∴AOC =56COB ∠=︒,即:∴AOB =112°,∴∴E =12∴AOB =56°, ∴四边形ADBE 是O 的内接四边形,∴ADB ∠=180°-56°=124°,故选B .【点睛】本题主要考查圆周角定理、垂径定理、圆的内接四边形的性质,添加辅助线,构造圆的内接四边形,是解题的关键.10.如图,点P 是反比例函数6(0)y x x=-<上的一个动点,点()()2,00,8A M -、分别在x 轴、y 轴上.当点M 到AP 所在直线距离最大时,点P 的坐标是( )A .(6,1)-B .6(5,)5-C .()34,2-D .()3,2-【答案】A【分析】 过点M 作MB ∴AP ,垂足为B ,分析得出当AB 最小时,MB 最大,过点P 作PN ∴x 轴,垂足为N ,证明∴P AN ∴∴AMO ,得到AN =4PN ,设PN =x ,表示出点P 坐标,代入反比例函数表达式,求出x 值即可.【详解】解:过点M 作MB ∴AP ,垂足为B ,可知∴AMB 为直角三角形,∴AM 固定不变,则当AB 最小时,MB 最大,此时点B 与点A 重合,过点P 作PN ∴x 轴,垂足为N ,∴∴MAP =90°,∴∴P AN +∴MAO =90°,又∴P AN +∴APN =90°,∴∴MAO =∴APN ,又∴PNA =∴MOA =90°,∴∴P AN ∴∴AMO , ∴PN AN AO MO =,即28PN AN =, ∴AN =4PN ,∴ON =AO +AN =2+4PN ,设PN =x ,∴P (-2-4x ,x ),代入6(0)y x x =-<中, 得:()246x x --=-,解得:x =1或x =32-(舍), ∴P (-6,1),故选A .【点睛】本题考查了反比例函数综合,相似三角形的判定和性质,最短距离,解题的关键是分析出MB 最小时的位置情况,从而构造相似三角形得到线段的关系.11.柯桥区某学校开设了5个STEAM 课程,分别为1S 、2S 、3S 、4S 、5S ,有A 、B 、C 、D 、E 共5人一起去报名STEAM 课程,每人至少报一个课程.已知B 、C 、D 、E 分别报名了4、3、3、2个课程,而1S 、2S 、3S 、4S 四个课程中在这5人中分别有1、2、2、3人报名,则这5人中报名参加5S 课程的人数有( ) A .5人B .4人C .3人D .6人【答案】A【分析】 B 、C 、D 、E 报名课程总数12个,1S 、2S 、3S 、4S 四个课程总数8个,A 至少报一个课程,这5人中报名参加5S 课程的人数12+1-8计算即可.【详解】解: ∴B 、C 、D 、E 分别报名了4、3、3、2个课程,∴4+3+3+2=12个,∴1S 、2S 、3S 、4S 四个课程中,∴1+2+2+3=8个,又∴每人至少报一个课程.∴A 至少报一个课程,12+1-8=5,∴这5人中报名参加5S 课程的人数有5个人.故选:A .【点睛】本题考查频数与总数,总报名人数与总课程数关系相等,掌握频数与总数,总报名人数与总课程数关系相等是解题关键.12.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =-【答案】A【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论.【详解】Rt∴ABC 中,∴AB 2+AC 2=BC 2∴S 2=222111*********ABC AB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BC S π∆+-+ =S 1.故选A .【点睛】本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是_____.【答案】421【分析】根据合数与素数的定义、偶数的定义即可得.【详解】百位上是最小的合数,∴百位上的数是4,十位上是正整数中最小的偶数,∴十位上的数是2,个位上的数既不是素数也不是合数,∴个位上的数是1,则这个数是421,故答案为:421.【点睛】本题考查了合数、素数、偶数,熟记各定义是解题关键.14.在半径为2的圆中,某扇形的面积占整个圆的20%,则这个扇形的圆心角是__________;其面积__________.【答案】72︒ 0.8π【分析】利用360︒乘以20%即可得圆心角的度数;再利用圆的面积乘以20%即可得.【详解】这个扇形的圆心角的度数为36020%72⨯︒=︒,这个扇形的面积为2220%0.8ππ⨯⨯=,故答案为:72︒,0.8π.【点睛】本题考查了求扇形的圆心角和面积、圆的面积公式,熟记公式是解题关键.15.若x :y =1:2,则x y x y -+=_____. 【答案】13-【分析】先根据已知等式可得x :y =1:2,再根据分式的基本性质即可得.【详解】由x :y =1:2,得:2x y =, 则x y x y-+ =22x x x x-+ =3x x- =13- 故答案为:13-. 【点睛】本题考查了分式的基本性质,比例的性子,熟练掌握分式的基本性质是解题关键.16.点A (m ,n )到x 轴的距离为3,到y 轴的距离为2,则点A 的坐标为______.【答案】(2,3)或(-2,3)或(2,-3)或(2,-3).【分析】到x 轴的距离为3的点有2个,到y 轴的距离为2的点也有2个,根据平面直角坐标系的定义求解即可.【详解】由已知条件得|n |=3,|m |=2,所以3n ±=,2m ±=,所以A 点的坐标为:(2,3)或(-2,3)或(2,-3)或(2,-3).故答案为:(2,3)或(-2,3)或(2,-3)或(2,-3).【点睛】本题考查了平面直角坐标系的定义,理解点到坐标轴的距离是解题的关键.三、解答题17.(1)计算:212sin 6012-⎛⎫-+︒- ⎪⎝⎭.(2)解分式方程:211x x x +=-. 【答案】(1)5;(2)23x =【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)观察可得最简公分母是x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】(1)解:原式(4212=+⨯+415==.(2)解:去分母,得()()2211x x x x -+=-, 去括号,得2222x x x x -+=-,移项、合并同类项,得32x =,系数化成1,得23x = 经检验,23x =是原方程的根. 【点睛】 此题考查了实数的运算与分式方程的解法.此题比较简单,注意掌握转化思想的应用,注意分式方程需检验.18.疫情期间某家医院从厂家购进甲、乙两种不同类型的防护服.购进甲种防护服需15000元,购进乙种防护服需9000元,购进甲种防护服的数量是购进乙种防护服数量的2倍,且购进一件乙种防护服比购进一件甲种防护服多花10元.(1)求购进一件甲防护服、一件乙防护服各需多少元;(2)今年防疫防控期间,医院决定再次购进甲、乙两种防护服共200件.恰逢该厂家将对两种防护服的价格进行调整,一件甲种防护服价格比第一次购进时提高了20%,一件乙种防护服价格比第一次购进时降低了5元,如果此次购进甲、乙两种防护服的总费用不超过11400元,那么该医院最多可购进多少件甲种防护服?【答案】(1)购进一件甲种防护服需50元,购进一件乙种防护服需60元;(2)该医院最多可购进80件甲种防护服.【分析】(1)根据购买两种防护服的总钱数以及单价之间的关系,结合购买数量得出等式求出即可;(2)设该医院可购进a 件防护服.根据题意得列出不等式求解.【详解】解:(1)设购进一件甲种防护服需x 元,则购进一件乙种防护服需()10x +元. 根据题意,得150009000210x x =⨯+, 解得50x =.经检验,50x =是所列方程的解,且符合题意,所以,1060x +=.答:购进一件甲种防护服需50元,购进一件乙种防护服需60元.(2)设该医院可购进a 件甲防护服.根据题意得50(120%)(605)(200)11400a a ++--≤.解得80a ≤.答:该医院最多可购进80件甲种防护服.【点睛】此题主要考查了分式方程的应用,一元一次不等式的应用,根据已知得出进价与售价关系是解题关键.19.如图,抛物线()()1y x x b =-+与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的顶点为D ,连接AC 、BC ,tan 3OBC ∠=.(1)求抛物线的顶点D 的坐标.(2)求证:ACD COB ∆∆∽.(3)点Р在抛物线上,点Q 在直线y x =上,是否存在点Р、Q 使以点Р、Q 、C 、O 为顶点的四边形是平行四边形?若存在,请直接写出点Р的坐标;若不存在,请说明理由.【答案】(1)抛物线的顶点D 的坐标为()1,4--;(2)见解析;(3)存在,点Р的坐标为()1,4--或()2,5或()3,0-【分析】(1)由抛物线的解析可求出A (﹣b ,0),B (1,0),求出OC =3,求出抛物线的解析式可得出答案;(2)由点的坐标可出AC ,AD ,CD 的长,得出∴ACD =90°,证得∴ACD =∴COB ,AC CD OC OB=,由相似三角形的判定方法可得出结论; (3)分OC 是平行四边形的一条边、CO 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)∴抛物线y =(x ﹣1)(x +b )(b >0)与x 轴交于A 、B 两点(点A 在点B 的左边),∴y =0时,x =1或x =﹣b ,∴A (﹣b ,0),B (1,0),∴tan∴OBC =3.∴OC =3,∴C 点的坐标为(0,﹣3),∴(0﹣1)(0+b )=﹣3,解得b =3,∴抛物线的解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点D的坐标为(﹣1,﹣4);(2)证明:如图1,令y=0,则x=1或x=﹣3,故点A(﹣3,0),∴C(0,﹣3),D(﹣1,﹣4),∴AD==CD=AC==∴AD2=CD2+AC2,∴∴ACD=90°,∴∴COB=90°,AC OCCD OB==3,∴∴ACD=∴COB,AC CD OC OB=,∴∴ACD∴∴COB;(3)存在,理由:∴当OC是平行四边形的一条边时,设:点P(m,m2+2m﹣3),点Q(m,m),则PQ=OC=3,PQ=|m2+2m﹣3﹣m|=3,解得:m=﹣1或2或0或﹣3(舍去0),故m =﹣1或2或﹣3;∴当CO 是平行四边形的对角线时,设点P (m ,m 2+2m ﹣3),点Q (n ,n ),由中点可得:20233m n m m n +=⎧⎨+-+=-⎩, 解得:m =0或﹣1(舍去0);故m =﹣1或2或﹣3,则点P (﹣1,﹣4)或(2,5)或(﹣3,0).【点睛】本题考查的是二次函数综合运用,考查了二次函数图象上点的坐标特征,平行四边形的性质,勾股定理,相似三角形的判定,熟练掌握二次函数的性质是解题的关键.20.如图,ABC 为∴O 的内接三角形,AD 平分BAC ∠交∴O 于点D ,连接OD 交BC 于点E .(1)如图1,求证:OD BC ;(2)如图2,延长DO 交AB 于点F ,连接CF ,延长CF 交∴O 于点H ,求证:AF HF =;(3)如图3,在(2)的条件下,延长DF 交∴O 于点M ,连接HM ,若1tan 2ADM ∠=,10HM =,OF ,求线段AC 的长.【答案】(1)见解析;(2)见解析;(3)10【分析】(1)通过弧,弦,圆心角定理即可得到结果.(2)通过垂径定理,得到弦BC 被平分,然后由垂直平分线得性质,可得BF CF =,再通过弧,弦,圆心角定理证得结论.(3)证明图中12∠=∠.然后通过圆周角定理可证D N ∠=∠.最后通过全等求得10AC =.【详解】解:(1)证明:如图1中,AD 平分BAC ∠BAD CAD ∴∠=∠∴BD CD =,OD BC ∴⊥.(2)证明:如图2中,OB BC ⊥,BE CE ∴=,BF CF ∴=,FBC FCB ∴∠=∠,∴BH AC =,∴AB CH =,AB CH ∴=,HC CF AB BF ∴-=-,AF HF ∴=.(3)如图3中,连接AM ,作直径AN ,连接CN ,AH ,AH 交DM 于点G ,则AH DM ⊥.由对称性的得MD 垂直平分AH .10AM HM ∴==, DM 是直径,90DMA ∴∠=︒,1tan 2AM ADM AD ∴∠==,20AD ∴=,DM =AN ∴=190AMD ∠+∠=︒,90D AMD ∠+∠=︒1D ∴∠=∠,由1tan 2GMADM AG ∠==,10AM =,可求得MG =半径2DMR ==FM OM OF ∴=-=FG FM MG =-=MG FG ∴=,又//AH BC ,B N ∠=∠,2B N ∴∠=∠=∠,N D ∴∠=∠,又AN DM =,90NCA DAM ∠=∠=︒,()NAC DMA AAS ∴∆≅∆,10AC MA ∴==.【点睛】本题属于圆综合题,主要考查弧,弦,圆心角关系定理,垂径定理,圆周角定理,解直角三角形等知识,第三个问题解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

浙江省杭州第二中学2022-2023学年高一上学期分班考数学试题及参考答案

浙江省杭州第二中学2022-2023学年高一上学期分班考数学试题及参考答案

杭二中高一新生实验班选拔考试数学试卷注意:(1)本试卷分三部分,17小题,满分150分,考试时间60分钟. (2)请将解答写在答题卷相应题次上,做在试题卷上无效. 一、选择题.(5分×6=30分)1.如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b +++++的值为( ) A.6B.7C.9D.102.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ) A.1B.2C.3D.43.若质数a ,b 满足2940a b −−=,则数据a ,b ,2,3的中位数是( ) A.4B.7C.4或7D.4.5或6.54. ()62121110121110102x x a x a x a x a x a −−=+++⋅⋅⋅++,则12108642a a a a a a +++++=( ) A.-32B.0C.32D.645.若四个互不相等的正实数a ,b ,c ,d 满足()()20122012201220122012ac ad −−=,()()20122012201220122012bc bd −−=,则()()20122012ab cd −的值为( )A.-2012B.-2011C.2012D.2011二、填空题(6分×8=48分)6.设下列三个一元二次方程:24430x ax a +−+=;()211?0x a x a +−++=;22230x ax a +−+=,至少有一个方程有实根,则实数a 的取值范围是___________.7.如图所示,把大正方形纸片剪成五个部分,在分别距离大正方形的四个顶点5厘米处沿450方向剪开,中间的部分正好是小正方形,那么小正方形的面积是__________平方厘米.8.点A 为y 轴正半轴上一点,A ,B 两点关于x 轴对称,过点A 任作直线交抛物线2y x =于P ,Q 两点.若点A 的坐标为()0,1,且60PBQ ∠=°,则所有满足条件的直线PQ 的函数解析式为:___________.9.111005−>成立的正整数n 的值的个数等于___________.10.如图,四边形ABCD 中,AB BC CD ==,78ABC ∠=°,162BCD ∠=°.设AD ,BC 延长线交于E ,则AEB ∠=____________.11. D 是ABC △的边AB 上的一点,使得3AB AD =,P 是ABC △外接圆上一点,PB 使得ADP ACB ∠=∠,则PBPD的值___________.三、解答题.(12分×6=72分)12.已和x ,y ,z 均为非负数,且满足142x y z y z =+−=−−. (1)用x 表示y ,z ;(2)求222u x y z =−+的最小值.13、由于受到手机更新换代的影响,某手机店经销的Iphone 手机二6月售价比一月每台降价500元.如果卖出相同数量的Iphone6手机,那么一月销售额为9万元,二月销售额只有8万元. (1)一月Iphone6手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone6s 手机销售,已知Iphone6每台进价为3500元,Iphone6s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone6的尾货进行销售,决定在二月售价基础上每售出一台Iphone6手机再返还顾客现金a 元,而Iphone6s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值?14.如图,在ABC △中,AC BC =,90ACB ∠=°,D 、E 是边AB 上的两点,3AD =,4BE =,45DCE ∠=°,则ABC △的面积是多少?15.若直线l :3y x =+交x 轴于点A ,交y 轴于点B .坐标原点O 关于直线l 的对称点O ′在反比例函数ky x=的图象上.(1)求反比例函数ky x=的解析式; (2)将直线l 绕点A 逆时针旋转角()045θθ<<°°,得到直线l ′,l ′交y 轴于点P ,过k 点P 作x 轴的平行线,与上述反比例函数k y x =的图象交于点Q ,当四边形APQO ′的面积为9θ的值. 16.已和关于x 的方程()()221331180m x m x −−−+=有两个正整数根(n 是整数). ABC △的三边a 、b 、c 满足:c =,2280m a m a +−=,2280m b m b +−=. 求:(1)m 的值; (2)ABC △的面积.17.如图ABC △为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是ABD △和ACD △的外接圆的直径,连结EF ,求证:tan EFPAD BC∠=.附加题(同分优先):18.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作A ,A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作B ,B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与A 和B 相切.参考答案一、选择题1-5BDCAA二、填空题6. 12a ≥或32a ≤− 7.508.如图,分别过点P ,Q 作y 轴的垂线,垂足分别为C ,D . 设点A 的坐标为()0,t ,则点B 的坐标为()0,t −.设直线PQ 的函数解析式为y kx t =+,并设P ,Q 的坐标分别为(),P P x y ,(),Q Q x y .由2,23y kx t y x =+=得2203x kx t −−=, 于是32P Q x x t =−,即23P Q t x x =−.于是()()22222222333322223333p p p Q p p Q p p Q Q Q Q p Q Q Q px t x x x x x x y t x BC BD y t x x t x x x x x x +−−+=====−++−−.又因为P Q x PCQD x =−,所以BC PC BD QD=. 因为90BCP BDQ ∠=∠=°,所以BCP BDQ ∽△△, 故ABP ABQ ∠=∠.(2)设PC a =,DQ b =,不妨设0a b ≥>, 由(1)可知30ABP ABQ ∠=∠=°,BC =,BD =,所以2AC =−,2AD =.因为PC DQ ∥,所以ACP ADQ ∽△△.于是PC AC DQ AD =,即a b =所以a b +.由(1)中32p Q x x t =−,即32ab −=−,所以32ab =,a b +,于是可求得2a b==将b =代入223y x =,得到点Q的坐标12. 再将点Q 的坐标代入1y kx =+,求得k =. 所以直线PQ的函数解析式为1y x +.9.1008015 10.21°11.解:连接AP ,∵APB ∠与ACB ∠是 AB 所对的圆周角,∴APB ACB ∠=∠, ∵ADP ACB ∠=∠,∴APB ACB ADP ∠=∠=∠, ∵DAP DAP ∠=∠,∴APB ADP ∽△△,∴APAD PD AB AP PB ==,∴()233AP AD AB AD AD AD =⋅=⋅=,∴PB AP PDAD==.三、解答题.12.(1)32y x =−,23z x =−+ (2)当32x =时,min 12u =− 13.(1)一月Iphone4每台售价为4500元 (2)有5种进货方案(3)当100a =时(2)中所有方案获利相同 14. 36ABC S =△15.(1)9y x=− (2)15θ=°16.(1)2m =(2)1ABC S =△ 17.证明:如图,连接ED ,FD .∵BE 和CF 都是直径,∴ED BC ⊥,FD BC ⊥, ∴D ,E ,F 三点共线,连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠, ∴ABC AEF ∽△△. 作AH EF ⊥,重足为H .又∵AP BC ⊥,DF BC ⊥,∴四边形APDH 是矩形,∴AH PD =, ∵ABC AEF ∽△△,∴EF AHBC AP=, ∴EF PD BC AP=,∴tan PD EFPAD AP BC ∠==.18.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作CE AB ⊥,DF AB ⊥, 垂足分别为E ,F∴CE DF ∥,90AEC ∠=°,90BFD ∠=°. ∵AB 是O 的直径,∴90ACB ADB ∠=∠=°, 又∵CAB ∠是ACB △和AEC △的公共角. ∴ACB AEC ∽△△. ∴::AC AB AE AC =即22·PA AC AE AB ==,同理22·PB BD BF AB ==. 两式相减可得()22PA PB AB AE BF −=−,∴()()()22PA PB PA PB PA PB AB PA PB −=+−=−,∴AE BF PA PB −=−,即PA AE PB BF −=−, ∴PE PF =,∴点P 是线段EF 的中点, ∵M 是CD 的中点,∴MP 是直角梯形CDEF 的中位线, ∴MP AB ⊥,∴MP 分别与A 和B 相切.。

2024-2025学年四川省大邑县实验中学高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省大邑县实验中学高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省大邑县实验中学高一新生入学分班质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,BE 、CF 分别是△ABC 边AC 、AB 上的高,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是()A .21B .18C .15D .132、(4分)直线y=x-2与x 轴的交点坐标是()A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)3、(4分)已知点(-4,y 1),(2,y 2)都在直线y=-12x+2上,则y 1y 2大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较4、(4分)满足下列条件的三角形中,不是直角三角形的是()A .三内角的度数之比为1∶2∶3B .三内角的度数之比为3∶4∶5C .三边长之比为3∶4∶5D .三边长的平方之比为1∶2∶35、(4分)六边形的内角和为()A .360°B .540°C .720°D .900°6、(4分)某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是()A .中位数B .平均数C .众数D .方差7、(4分)下列二次根式中,最简二次根式的是()A .B C D .8、(4分)如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是()A .B .2C D .2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某市出租车白天的收费起步价为10元,即路程不超过3km 时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为()3xkm x >,乘车费为y 元,那么y 与x 之间的关系式为__________________.10、(4分)若x x 的方程20x m -+=的一个根,则方程的另一个根是_________.11、(4分)关于x 的方程()21410k x x -++=有解,则k 的范围是______.12、(4分)矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD ⊥于E ,若13OE DE =::,AE =BD =____.13、(4分)如图,点A 是反比例函数y=2x (x >0)的图象上任意一点,AB ∥x 轴交反比例函数y=k x (k ≠0)的图象于点B ,以AB 为边作平行四边形ABCD ,点C ,点D 在x 轴上.若S ▱ABCD =5,则k =____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线3y x =+与坐标轴交于点A 、B 两点,直线CP 与直线AB 相交于点1,3P m ⎛⎫ ⎪⎝⎭,交x 轴于点C ,且PAC ∆的面积为25 3.(1)求m 的值和点A 的坐标;(2)求直线PC 的解析式;(3)若点E 是线段AB 上一动点,过点E 作//EQ x 轴交直线PC 于点Q ,EM x ⊥轴,QN x ⊥轴,垂足分别为点M 、N ,是否存在点E ,使得四边形EMNQ 为正方形,若存在,请求出点 E 坐标,若不存在,请说明理由.15、(8分)如图,反比例函数y=m x 的图象与一次函数y=kx+b 的图象交于A,B 两点,点A 的坐标为(2,6),点B 的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB=10,求点E 的坐标.(3)结合图像写出不等式0m kx b x -+>的解集;16、(8分)如图,直线过点,且与,轴的正半轴分別交于点、两点,为坐标原点.(1)当时,求直线的方程;(2)当点恰好为线段的中点时,求直线的方程.17、(10分)如图,在ABCD 中,经过A ,C 两点分别作AE ⊥BD ,CF ⊥BD ,E ,F 为垂足.(1)求证:△AED ≌△CFB ;(2)求证:四边形AFCE 是平行四边形.18、(10分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG =AE ,连接CG .(1)求证:△ABE ≌△CDF ;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O,E 、F 分别是AB 、BC 边的中点,连接EF,若,BD=4,则菱形ABCD 的边长为__________.20、(4分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC PD +值最小时,点P 的坐标为______.21、(4分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,线段AC 的垂直平分线DE 交AC 于D 交BC 于E ,则△ABE 的周长为_____.22、(4分)如图,在Rt △ABC 中,∠BAC=90°,AB=6,AC=8,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值是________.23、(4分)如图,C 、D 点在BE 上,∠1=∠2,BD=EC ,请补充一个条件:____________,使△ABC ≌△FED .二、解答题(本大题共3个小题,共30分)24、(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:车型目的地A 村(元/辆)B 村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25、(10分)如图,直线1l 的解析式为2y x =-+,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C 的坐标及直线2l 的解析式;(2)求△ABC 的面积.26、(12分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.()1若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?()2若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】根据直角三角形斜边上的中线等于斜边的一半,先求出EM=FM=12BC,再求△EFM的周长.【详解】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,∴在Rt△BCE中,EM=12BC=4,在Rt△BCF中,FM=12BC=4,又∵EF=5,∴△EFM的周长=EM+FM+EF=4+4+5=1.故选:D.本题主要利用直角三角形斜边上的中线等于斜边的一半的性质.2、A【解析】令y=0,求出x的值即可【详解】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.3、A【解析】根据一次函数的图象和性质,即可得到答案.【详解】∵y=-12x+2,∴k=-12<0,即y随着x的增大而减小,∵点(-4,y1),(2,y2)在直线y=-12x+2上,∴y1>y2故选A.本题主要考查一次函数的性质,理解一次函数的比例系数k的意义,是解题的关键.4、B【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、因为1+2=3,所以是直角三角形.故选B.5、C【解析】根据多边形内角和公式(n-2)×180º计算即可.【详解】根据多边形的内角和可得:(6﹣2)×180°=720°.故选C.本题考查了多边形内角和的计算,熟记多边形内角和公式是解答本题的关键.6、C【解析】根据平均数、中位数、众数、方差的意义进行分析选择.【详解】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C .此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D 【解析】分析:根据最简二次根式的概念逐项分析即可.详解:A.,故不是最简二次根式;B.=13,故不是最简二次根式;C.当a ≥0时,a ,故不是最简二次根式;D.,又不含能开的尽的因式,故是最简二次根式;故选D.点睛:本题考查了二次根式的识别,如果二次根式的被开放式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.8、A 【解析】过点C 作CK ⊥AB 于点K ,将线段CK 绕点C 逆时针旋转90°得到CH ,连接HE,延长HE 交AB 的延长线于点J ;通过证明△CKD ≌△CHE (ASA),进而证明所构建的四边形CKJH 是正方形,所以当点E 与点J 重合时,BE 的值最小,再通过在Rt △CBK 中已知的边角条件,即可求出答案.【详解】如图,过点C 作CK ⊥AB 于点K ,将线段CK 绕点C 逆时针旋转90°得到CH ,连接HE,延长HE 交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90°,得到线段CE ∴∠DCE=∠KCH =90°∵∠ECH=∠KCH -∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK 又∵CD=CE ,CK =CH ∴在△CKD 和△CHE 中 90ECH DCK CK CH DKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA)∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形∴CH=HJ=KJ=C'K ∴点E 在直线HJ 上运动,当点E与点J 重合时,BE 的值最小∵∠A=30°∴∠ABC=60°在Rt △CBK 中,BC=2,∴CK =BCsin60°BK=BCcos60°=1∴KJ =CK 所以BJ =KJ-BK=1-;BE 1.本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、24y x =+【解析】根据乘车费用=起步价+超过3千米的付费得出.【详解】解:依题意有:y=10+2(x-3)=2x+1.故答案为:y=2x+1.根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费10、【解析】设另一个根为y ,利用两根之和,即可解决问题.【详解】解:设方程的另一个根为y ,则y +=4解得y =即方程的另一个根为故答案为:题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11、k ≤5【解析】根据关于x 的方程()21410k x x -++=有解,当10k -=时是一次方程,方程必有解,10k -≠时是二元一次函数,则可知△≥0,列出关于k 的不等式,求得k 的取值范围即可.解:∵方程()21410k x x -++=有解①当10k -=时是一次方程,方程必有解,此时=1k ②当10k -≠时是二元一次函数,此时方程()21410k x x -++=有解∴△=16-4(k-1)≥0解得:k ≤5.综上所述k 的范围是k ≤5.故答案为:k ≤5.本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、1或855【解析】试题解析:如图(一)所示,AB 是矩形较短边时,∵矩形ABCD ,∴OA=OD=12BD ;∵OE :ED=1:3,∴可设OE=x ,ED=3x ,则OD=2x∵AE ⊥BD ,∴在Rt △OEA 中,x 2+2=(2x )2,∴x=1∴BD=1.当AB 是矩形较长边时,如图(二)所示,∵OE :ED=1:3,∴设OE=x ,则ED=3x ,∵OA=OD ,∴OA=1x ,在Rt △AOE 中,x 2+)2=(1x )2,∴,∴BD=8x=8×5=5.综上,BD 的长为1或5.13、-1【解析】设点A (x ,2x ),表示点B 的坐标,然后求出AB 的长,再根据平行四边形的面积公式列式计算即可得解.【详解】设点A (x ,2x ),则B (2kx ,2x ),∴AB=x-2kx ,则(x-2kx )•2x =5,k=-1.故答案为:-1.本题考查了反比例函数系数的几何意义,用点A ,B 的横坐标之差表示出AB 的长度是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)103m =,A 点为()30-,;(2)24y x =-+;(3)存在,E 点为()12-,,理由见解析【解析】(1)利用一次函数图象上点的坐标特征可求出m 的值及点A 的坐标;(2)过点P 作PH ⊥x 轴,垂足为H ,则PH=103,利用三角形的面积公式结合△PAC 的面积为253,可求出AC 的长,进而可得出点C 的坐标,再根据点P ,C 的坐标,利用待定系数法即可求出直线PC 的解析式;(3)由题意,可知:四边形EMNQ 为矩形,设点E 的纵坐标为t ,利用一次函数图象上点的坐标特征可得出点E 的坐标为(t-3,t )、点Q 的坐标为(22t -,t ),利用正方形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:(1)把点1,3P m ⎛⎫ ⎪⎝⎭代入直线3y x =+,即13x =时,110333m =+=直线AB ,当0y =时,03x =+得:3x =-103m ∴=,A 点为()30-,(2)过点P 作PH x ⊥轴,垂足为H ,由(1)得,103PH =∴12PAC AC PH S ∆⨯⋅=11025233AC ∴⨯⨯=解得:5AC = 53OC ∴=- ∴点C 为()20,设直线PC 为y kx b =+,把点110,33P ⎛⎫ ⎪⎝⎭、20C (,)代入,得:1103320k b k b ⎧+=⎪⎨⎪+=⎩解得:24k b =-⎧⎨=⎩∴直线PC 的解析式为24y x =-+(3)由已知可得,四边形EMNQ 为矩形,设点E 的纵坐标为t ,则3t x =+得: 3x t =- E ∴点为()3,t t - //EQ x 轴Q ∴点的纵坐标也为tQ 点在直线PC 上,当y t =时,24t x =-+42t x -∴=()43 3522Q E t EQ x x t t -∴=-=--=-又EM t t ==当EQ EM =时,矩形EMNQ 为正方形,所以352t t -=2t ∴=故E 点为()12-,本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m 的值及点A 的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t 的一元一次方程.15、(1)y=12x ,y=-12x+1;(3)点E 的坐标为(0,5)或(0,4);(3)0<x<3或x>13【解析】(1)把点A 的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B 的坐标代入已求出的反比例函数解析式,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y kx b =+,求出k 、b 的值,从而得出一次函数的解析式;(3)设点E 的坐标为(0,m),连接AE ,BE ,先求出点P 的坐标(0,1),得出PE =|m ﹣1|,根据S △AEB =S △BEP ﹣S △AEP =3,求出m 的值,从而得出点E 的坐标.(3)根据函数图象比较函数值的大小.【详解】解:(1)把点A (3,6)代入y=m X ,得m=13,则y=12x .得2k b 612k b 1+=⎧⎨+=⎩,解得1k 2b 7⎧=-⎪⎨⎪=⎩把点B (n ,1)代入y=12x ,得n=13,则点B 的坐标为(13,1).由直线y=kx+b 过点A (3,6),点B (13,1),则所求一次函数的表达式为y=﹣12x+1.(3)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE ,则点P 的坐标为(0,1).∴PE=|m ﹣1|.∵S △AEB =S △BEP ﹣S △AEP =3,∴12×|m ﹣1|×(13﹣3)=3.∴|m ﹣1|=3.∴m 1=5,m 3=4.∴点E 的坐标为(0,5)或(0,4).(3)根据函数图象可得0m kx b x -+>的解集:02x <<或12x >;考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.16、(1)方程为;的方程为.【解析】(1)设,可知,,用待定系数法即可求出方程,得到解析式.(2)过作轴于点,可得,可以推出PC 为的中位线,可得,可得把A(2,0)和坐标代人可得直线的方程.【详解】(1)设,则,,设方程为,把代入方程得,把代入方程得再把代入得,方程为.(2)过作轴于点,则的坐标,为中点为的中位线,为中点,,设方程为,把和坐标代人可得的方程为.本题考查了用待定系数法函数解析式,解题的关键是找到函数图像上的点,将点代入得方程组,解方程即可得函数解析式.17、(1)见解析;(2)见解析.【解析】(1)根据平行四边形的性质可得AD =BC ,∠CBF =∠ADE ,再根据垂线的性质可得∠CFB =∠AED =90°,再根据全等三角形的判定(角角边)来证明即可;(2)根据全等三角形的性质可得AE =CF ,再由AE ⊥BD ,CF ⊥BD 可得AE ∥CF ,根据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠CBF =∠ADE ,∵AE ⊥BD ,CF ⊥BD ,∴∠CFB =∠AED =90°,∴△AED ≌△CFB (AAS ).(2)证明:∵△AED ≌△CFB ,∴AE =CF ,∵AE ⊥BD ,CF ⊥BD ,∴AE ∥CF ,∴四边形AFCE 是平行四边形.全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.18、(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【解析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD ,∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.一、填空题(本大题共5个小题,每小题4分,共20分)【解析】先根据三角形中位线定理求AC 的长,再由菱形的性质求出OA ,OB 的长,根据勾股定理求出AB 的长即可.【详解】∵E 、F 分别是AB 、BC 边的中点,∴EF 是△ABC 的中位线∵∴AC=2.∵四边形ABCD 是菱形,BD=4,∴AC ⊥BD,OA=12,OB=12BD=2,∴AB ===..此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.20、(-32,0)【解析】根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D′的坐标,结合点C 、D′的坐标求出直线CD′的解析式,令y=0即可求出x 的值,从而得出点P 的坐标.【详解】作点D 关于x 轴的对称点D′,连接CD′交x 轴于点P ,此时PC+PD 值最小,如图所示.令y=23x+4中x=0,则y=4,∴点B 的坐标为(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=-6,∴点A 的坐标为(-6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴点C (-3,1),点D (0,1).∵点D′和点D 关于x 轴对称,∴点D′的坐标为(0,-1).设直线CD′的解析式为y=kx+b ,∵直线CD′过点C (-3,1),D′(0,-1),∴有232k b b -+-⎧⎨⎩==,解得:423k b --⎧⎪⎨⎪⎩==,∴直线CD′的解析式为y=-43x-1.令y=-43x-1中y=0,则0=-43x-1,解得:x=-32,∴点P的坐标为(-32,0).故答案为:(-32,0).本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.21、1【解析】根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.【详解】解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,故答案为1.本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.22、12 5【解析】根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【详解】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP 的值最小时,AM 的值就最小,∴当AP ⊥BC 时,AP 的值最小,即AM 的值最小.∵12AP×BC=12AB×AC ,∴AP×BC=AB×AC ,在Rt △ABC 中,由勾股定理,得=10,∵AB=6,AC=8,∴10AP=6×8,∴AP=245∴AM=125,故答案为:125.考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式23、AC=DF(或∠A=∠F 或∠B=∠E)【解析】∵BD=CE ,∴BD-CD=CE-CD ,∴BC=DE ,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A FBC DE∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E).二、解答题(本大题共3个小题,共30分)24、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】(1)设大货车用x 辆,小货车用y 辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(8-x )辆,前往A 村的小货车为(10-x )辆,前往B 村的小货车为[7-(10-x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15{128152x y x y +=+=解得:8{7x y ==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x )+400(10-x )+600[7-(10-x )]=100x+1.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10-x )≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y 随x 的增大而增大,∴当x=5时,y 最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A 村;3辆大货车、2辆小货车前往B 村.最少运费为9900元.25、(1)25y x =+;(2)274.【解析】(1)首先利用待定系数法求出C 点坐标,然后再根据D 、C 两点坐标求出直线l 2的解析式;(2)首先根据两个函数解析式计算出A 、B 两点坐标,然后再利用三角形的面积公式计算出△ABC 的面积即可.【详解】(1)∵直线1l :2y x =-+经过点C (﹣1,m ),∴m =1+2=3,∴C (﹣1,3),设直线2l 的解析式为y kx b =+,∵经过点D (0,5),C (﹣1,3),∴53b k b =⎧⎨=-+⎩,解得:25k b =⎧⎨=⎩∴直线2l 的解析式为25y x =+;(2)当y =0时,2x +5=0,解得52x =-,则A (52-,0),当y =0时,﹣x +2=0解得x =2,则B (2,0),∴1527(2)3224ABC S ∆=⨯+⨯=.此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.26、(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.【解析】()1根据题意得:两块矩形绿地的长为302324(-⨯=米),宽为10226(-⨯=米),可求得面积;() 2设人行通道的宽度为x 米,则两块矩形绿地的长为()303(x -米),宽为()102(x -米),根据题意得:()()303102216x x --=,解方程可得.【详解】解:()1根据题意得:两块矩形绿地的长为302324(-⨯=米),宽为10226(-⨯=米),面积为246144(⨯=米2),答:修建的两块矩形绿地的面积共为144平方米,()2设人行通道的宽度为x 米,则两块矩形绿地的长为()303(x -米),宽为()102(x -米),根据题意得:()()303102216x x --=,解得:114(x =舍去),21x =,答:人行通道的宽度为1米.本题考核知识点:一元二次方程应用.解题关键点:根据题意列出方程.。

开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(四)一、单选题(共8小题,满分40分,每小题5分)1、设集合A ={3,5,6,8},集合4 ={45,7,8},则等于()A. {5,8}B. {3…6}C. {4,7}D. {3,568}【答案】A【解析】集合A ={3,5,6,8},集合8 ={4,5,7,8},又集合A与集合4中的公共元素为5,8 ,二. Ac3 = {5,8},故选A.2、已知命题〃:V X£R,X2—X+I>O,则一y,()A. ±wR, x2 -x + l<0B. VxwR,x2 -x + l<0C. HrwR, x2-x + l>0D. YxeR,x2 -x + l>0【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题〃:V XE RV—X +I,。

,则「P:3xwR, x2 -x+l<0 » 故选A.3、如果/(戈)=以2-(2—〃)1+1在区间(7,1上为减函数,则。

的取值()A. (0,1]B. [0,1)C. [0,1]D. (0,1)【答案】C【解析】由题意,当4=0时,可得,(x) = -2x + l,在尺上是单调递减,满足题意,当“<0时,显然不成立:当。

>0时,要使/(X)在(一8,;上为减函数,则三;之:,解得:综上:可得0<a<\,故选:C.4、关于x的不等式产十这一3<0,解集为(一3』),则不等式以2+工一3<0的解集为()1 3A.(1,2)B.(-12)C.(――1)D.(一二1)2 2【答案】D【解析】由题/ = -3/ = 1是方程/+统一3 = 0的两根,可得-3+1 = -〃,即。

=2,z 3所以不等式为2/+工_3<0,即(2x + 3)(x—l)〈0、所以—故选:D5、(2020・重庆巴蜀中学高一期末)若八J7+l) =X+ J7,则/(X)的解析式为()A. f(x) = x2-xB. f (x) = x2 - x(x > 0)C. f(x) = x2-x[x>\)D. f(x) = A2 + X【答案】c【解析】/( 4+1)=x+y/x,设4+l=f,色1,则x= (L 1) 2,:J (f) = (/- 1)4-1=F - r,役1,・••函数f(X)的解析式为=X2-A-(X>1).故选:C.6、若。

2024-2025学年四川省成都市树德中学(光华校区)高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市树德中学(光华校区)高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市树德中学(光华校区)高一新生入学分班质量检测数学试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列条件:①两组对边分别平行②两组对边分别相等③两组对角分别相等④两条对角线互相平分其中,能判定四边形是平行四边形的条件的个数是()A .1B .2C .3D .42、(4分)如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A 点时,一共走的路程是()A .140米B .150米C .160米D .240米3、(4分)如图,在平面直角坐标系中,OAB ∆为Rt ∆,90OAB ∠=︒,OA 与x 轴重合,反比例函数()20=>y x x 的图象经过OB 中点E 与AB 相交于点D ,E 点的横坐标为1,则BD 的长()A .4B .3C .2D .14、(4分)如图,在▱ABCD 中,若∠A+∠C=130°,则∠D 的大小为()A .100°B .105°C .110°D .115°5、(4分)关于x 的方程2(m 2)210x x --+=有实数解,那么m 的取值范围是()A .2m ≠B .3m C .3m D .3m 且2m ≠6、(4分)估计的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间7、(4分)如图,在四边形ABCD 中,AD =BC ,点E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,则对四边形EFGH 表述最确切的是()A .四边形EFGH 是矩形B .四边形EFGH 是菱形C .四边形EFGH 是正方形D .四边形EFGH 是平行四边形8、(4分)如图,已知△ABC 的周长为20cm ,现将△ABC 沿AB 方向平移2cm 至△A ′B ′C ′的位置,连结CC ′.则四边形AB ′C ′C 的周长是()A .18cm B .20cm C .22cm D .24cm 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.10、(4分)如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.11、(4分)矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.12、(4分)平面直角坐标系中,点M (-3,-4)到x 轴的距离为______________________.13、(4分)一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形ABCD 是正方形,点E 是BC 边上的点,∠AEF=90°,且EF 交正方形外角的平分线CF 于点F .(1)如图①,当点E 是BC 边上任一点(不与点B 、C 重合)时,求证:AE=EF .(2)如图②当点E 是BC 边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E 是BC 边上任一点(不与点B 、C 重合)时,若已知AE=EF ,那么∠AEF 的度数是否发生变化?证明你的结论.15、(8分)为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:结合以上信息,回答问题:(1)a=______,b=______,c=______.(2)请你补全频数分布直方图.(3)试估计该年级女同学中身高在160~165cm 的同学约有多少人?16、(8分)如图,⊙O 为∆ABC 的外接圆,D 为OC 与AB 的交点,E 为线段OC 延长线上一点,且∠EAC =∠ABC .(1)求证:直线AE 是⊙O 的切线;(2)若D 为AB 的中点,CD =3,AB =8.①求⊙O 的半径;②求∆ABC 的内心I 到点O 的距离.17、(10分)如图,在平面直角坐标系中,O 为坐标原点,▱AOBC 的顶点A 、C 的坐标分别为A (﹣2,0)、C (0,3),反比例函数的图象经过点B .(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B 、D (m ,1),根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.18、(10分)===,…(1)请观察规律,并写出第④个等式:;(2)请用含n (n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)20、(4分)如果a -b =2,ab =3,那么a 2b -ab 2=_________;21、(4分)如图,菱形ABCD 的边长为4,∠BAD=120°,点E 是AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值是.22、(4分)方程3640x -=的根是__________.23、(4分)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知:在平行四边形ABCD 中,AB=2,AD=4,∠ABC=60°,E 为AD 上一点,连接CE ,AF ∥CE 且交BC 于点F .(1)求证:四边形AECF 为平行四边形.(2)证明:△AFB ≌△CE D .(3)DE 等于多少时,四边形AECF 为菱形.(4)DE 等于多少时,四边形AECF 为矩形.25、(10分)如图,C 地到A ,B 两地分别有笔直的道路CA ,CB 相连,A 地与B 地之间有一条河流通过,A ,B ,C 三地的距离如图所示.(1)如果A 地在C 地的正东方向,那么B 地在C 地的什么方向?(2)现计划把河水从河道AB 段的点D 引到C 地,求C ,D 两点间的最短距离.26、(12分)计算:(1-(2)已知x y ==,求2233x y xy x y +---的值.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】直接利用平行四边形的判定方法分别分析得出答案.【详解】解:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④两条对角线互相平分的四边形是平行四边形;故选:D .本题主要考查了平行四边形的判定,正确把握判定方法是解题关键.2、B 【解析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B .本题考查多边形内角与外角,熟记公式是关键.3、B 【解析】把E 点的横坐标代入2y x =,确定E 的坐标,根据题意得到B 的坐标为(2,4),把B 的横坐标代入2y x =求得D 的纵坐标,就可求得AD ,进而求得BD.【详解】解:反比例函数()20=>y x x 的图象经过OB 中点E ,E 点的横坐标为1,2y 21∴==,∴E (1,2),∴B (2,4),∵△OAB 为Rt △,∠OAB=90°,∴AB=4,把x=2代入()20=>y x x 得2y 12==,∴AD=1,∴BD=AB-AD=4-1=3,故选:B .此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B 、D 的纵坐标.4、D 【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD 中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.5、B 【解析】由于x 的方程(m-2)x 2-2x+1=0有实数解,则根据其判别式即可得到关于m 的不等式,解不等式即可求出m 的取值范围.但此题要分m=2和m≠2两种情况.【详解】(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;(2)当m≠2时,原方程是一元二次方程,∵有实数解,∴△=4-4(m-2)≥0,∴m≤1.所以m 的取值范围是m≤1.故选:B .此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.6、C 【解析】因为3的平方是9,4的平方是16,即=3,=4,所以估计的值在3和4之间,故正确的选项是C.7、B 【解析】根据三角形中位线定理得到EH=12BC ,EH ∥BC ,得到四边形EFGH 是平行四边形,根据菱形的判定定理解答即可.【详解】解:∵点E 、H 分别是AB 、AC 的中点,∴EH=12BC ,EH ∥BC ,同理,EF=12AD ,EF ∥AD ,HG=12AD ,HG ∥AD ,∴EF=HG ,EF ∥HD ,∴四边形EFGH 是平行四边形,∵AD=BC ,∴EF=EH ,∴平行四边形EFGH 是菱形,故选B .本题考查的是中点四边形的概念和性质、掌握三角形中位线定理、菱形的判定定理是解题的关键.8、D【解析】根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【详解】解:由题意,平移前后A 、B 、C 的对应点分别为A ′、B ′、C ′,所以BC=B ′C ′,BB ′=CC ′,∴四边形AB ′C ′C 的周长=CA+AB+BB ′+B ′C ′+C ′C =△ABC 的周长+2BB ′=20+4=24(cm),故选D.本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】延长AD 到点E ,使DE =AD =6,连接CE ,可证明△ABD ≌△CED ,所以CE =AB ,再利用勾股定理的逆定理证明△CDE 是直角三角形,即△ABD 为直角三角形,进而可求出△ABD 的面积.【详解】解:延长AD 到点E ,使DE =AD =6,连接CE ,∵AD 是BC 边上的中线,∴BD =CD ,在△ABD 和△CED 中,BD CD ADB EDC AD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CED (SAS ),∴CE =AB =5,∠BAD =∠E ,∵AE =2AD =12,CE =5,AC =13,∴CE 2+AE 2=AC 2,∴∠E =90°,∴∠BAD =90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=1.故答案为1.本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.10、67.1.【解析】由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=41°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.1°.故答案为:67.1.此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.11、7.2cm或cm【解析】①边长3.6cm为短边时,∵四边形ABCD为矩形,∴OA=OB,∵两对角线的夹角为60°,∴△AOB为等边三角形,∴OA=OB=AB=3.6cm,∴AC=BD=2OA=7.2cm;②边长3.6cm 为长边时,∵四边形ABCD 为矩形∴OA=OB ,∵两对角线的夹角为60°,∴△AOB 为等边三角形,∴OA=OB=AB ,BD=2OB ,∠ABD=60°,∴OB=AB=5==,∴BD =1235;故答案是:7.2cm 或5cm .12、1【解析】根据点到x 轴的距离是其纵坐标的绝对值解答即可.【详解】点P (﹣3,-1)到x 轴的距离是其纵坐标的绝对值,所以点P (﹣3,-1)到x 轴的距离为1.故答案为:1.本题考查了点的坐标的几何意义,明确点的坐标与其到x 、y 轴的距离的关系是解答本题的关键.13、3【解析】试题分析:∵一组数据2,3,x ,5,7的平均数是4∴2+3+5+7+x=20,即x=3∴这组数据的众数是3考点:1.平均数;2.众数三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.【解析】(1)在AB 上取点G ,使得BG=BE ,连接EG ,根据已知条件利用ASA 判定△AGE ≌△ECF ,因为全等三角形的对应边相等,所以AE=EF ;(2)在BA 的延长线上取一点G ,使AG=CE ,连接EG ,根据已知利用ASA 判定△AGE ≌△ECF ,因为全等三角形的对应边相等,所以AE=EF ;(3)在BA 边取一点G ,使BG=BE ,连接EG .作AP ⊥EG ,EQ ⊥FC ,先证AGP ≌△ECQ 得AP=EQ ,再证Rt △AEP ≌Rt △EFQ 得∠AEP=∠EFQ ,∠BAE=∠CEF ,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【详解】(1)证明:在BA 边取一点G ,使BG=BE ,连接EG ,∵四边形ABCD 是正方形,∴∠B=90°,BA=BC ,∠DCM═90°,∴BA-BG=BC-BE ,即AG=CE .∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE .∵BG=BE ,CF 平分∠DCM ,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE ≌△ECF (ASA ),∴AE=EF .(2)成立,理由:在BA 的延长线上取点G ,使得AG=CE ,连接EG .∵四边形ABCD 为正方形,AG=CE ,∴∠B=90°,BG=BE ,∴△BEG 为等腰直角三角形,∴∠G=45°,又∵CF 为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB ,又∵∠BAE=90°-∠AEB ,∴∠FEM=∠BAE ,∴∠GAE=∠CEF ,在△AGE 和△ECF 中,∵G CEFAG CE GAE CEF∠∠⎧⎪⎨⎪∠∠⎩===,∴△AGE ≌△ECF (ASA ),故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA 边取一点G ,使BG=BE ,连接EG .分别过点A 、E 作AP ⊥EG ,EQ ⊥FC ,垂足分别为点P 、Q ,∴∠APG=∠EQC=90°,由(1)中知,AG=CE ,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP ≌△ECQ (AAS ),∴AP=EQ ,∴Rt △AEP ≌Rt △EFQ (HL ),∴∠AEP=∠EFQ ,∴∠BAE=∠CEF ,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.15、(1)6,12,0.30;(2)见解析;(3)36(1)根据频率分布表中的各个数据之间的关系,或者,调查总人数乘以本组的所占比可以求出a ;从40人中减去其它各组人数即可,12占40的比就是C ,(2)根据缺少的两组的数据画出直方图中对应直条,(3)用样本估计总体,根据该年级的总人数乘以身高在160~165cm 的同学所占比.【详解】解:(1)6120.3040×0.15=6人,a=6,b=40-6-2-14-6=12,12÷40=0.30,即c=0.30,答:a=6,b=12,c=0.30,(2)补全频率分布直方图如图所示:(3)120×0.30=36人,答:该年级女同学中身高在160~165cm 的同学约有36人.本题考查频率分布直方图和频率分布表所反映数据的变化趋势,理解表格中各个数据之间的关系是解决问题的关键.16、(1)见解析;(2)①⊙O 的半径;②∆ABC 的内心I 到点O 的距离为.【解析】(1)连接AO ,证得∠EAC =∠ABC=,,则∠EAO=∠EAC+∠CAO=,从而得证;(2)①设⊙O 的半径为r,则OD=r-3,在△AOD 中,根据勾股定理即可得出②作出∆ABC 的内心I ,过I 作AC,BC 的垂线,垂足分别为F,G.设内心I 到各边的距离为a ,由面积法列出方程求解可得答案.【详解】(1)如图,连接AO 则∠EAC =∠ABC=.又∵AO=BO,∴∠ACO=∠CAO=∴∠EAO=∠EAC+∠CAO=∠AOC +=∴EA ⊥AO ∴直线AE 是⊙O 的切线;(2)①设⊙O 的半径为r,则OD=r-3,∵D 为AB 的中点,∴OC ⊥AB ,∠ADO=,AD=4∴,即解得②如下图,∵D 为AB 的中点,∴且CO 是的平分线,则内心I 在CO 上,连接AI,BI,过I 作AC,BC 的垂线,垂足分别为F,G.易知DI=FI=GI,设其长为a.由面积可知:即解得∴∴∆ABC 的内心I 到点O 的距离为本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.17、(1)y=6x ;(2)当0<x <2或x >6时,反比例函数的值大于一次函数的值.【解析】(1)根据平行四边形的性质求得点B 的坐标为(2,3),代入反比例函数的解析式ky x =即可求得k 值,从而求得反比例函数的表达式;(2)先求得m 的值,根据图象即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴OA=BC ,OA ∥BC ,而A (﹣2,0)、C (0,3),∴B (2,3);设所求反比例函数的表达式为y=(k≠0),把B (2,3)代入得k=2×3=6,∴反比例函数解析式为y=;(2)把D (m ,1)代入y=得m=6,则D (6,1),∴当0<x <2或x >6时,反比例函数的值大于一次函数的值.本题主要考查了反比例函数点的坐标与反比例函数解析式的关系及平行四边形的性质,关键是熟练掌握凡是反比例函数图象经过的点都能满足解析式.解决第(2)问时,利用了数形结合的数学思想.18、(1)=;(2)(n =+;(3)详见解析.【解析】试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;(2)根据规律写出含n 的式子即可;(3)结合二次根式的性质进行化简求解验证即可.试题解析:=(n =+(3)=(n ==+故答案为(1)=一、填空题(本大题共5个小题,每小题4分,共20分)19、①③④【解析】根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x≤60),y 2=100x ﹣4000(40≤x≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x=47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确,综上可得①③④正确.20、6【解析】首先将a 2b -ab 2提取公因式,在代入计算即可.【详解】解:22=()ab a b ab a b --代入a -b =2,ab =3则原式=326⨯=故答案为6.本题主要考查因式分解的计算,关键在于提取公因式,这是基本知识点,应当熟练掌握.21、.【解析】试题分析:首先连接DB ,DE ,设DE 交AC 于M ,连接MB ,DF .证明只有点F 运动到点M 时,EF+BF 取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB ,DE ,设DE 交AC 于M ,连接MB ,DF ,延长BA ,DH ⊥BA 于H ,∵四边形ABCD 是菱形,∴AC ,BD 互相垂直平分,∴点B 关于AC 的对称点为D ,∴FD=FB ,∴FE+FB=FE+FD≥DE .只有当点F 运动到点M 时,取等号(两点之间线段最短),△ABD 中,AD=AB ,∠DAB=120°,∴∠HAD=60°,∵DH ⊥AB ,∴AH=AD ,DH=AD ,∵菱形ABCD 的边长为4,E 为AB 的中点,∴AE=2,AH=2,∴EH=4,DH=,在RT △EHD 中,DE=∴EF+BF 的最小值为.【考点】1.轴对称-最短路线问题;2.菱形的性质.22、4x =【解析】首先移项,再两边直接开立方即可【详解】3640x -=,移项得364x =,两边直接开立方得:4x =,故答案为:4x =.此题考查解一元三次方程,解题关键在于直接开立方法即可.23、k <0【解析】根据图象在坐标平面内的位置关系确定k 的取值范围,从而求解.【详解】解:∵一次函数y =kx +3的图象不经过第三象限,∴经过第一、二、四象限,∴k<0.故答案为:k<0.本题考查了一次函数图象与系数的关系.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)见解析;(3)DE=2;(4)DE=1.【解析】(1)根据两组对边分别平行的四边形是平行四边形进行证明即可得;(2)根据ABCD 为平行四边形,可得AB=CD ,AD=BC ,再根据AECF 为平行四边形,可得AF=CE ,AE=FC ,继而可得DE=BF ,根据SSS 即可证明△AFB ≌△CED ;(3)当DE=2时,AECF 为菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC 为等边三角形,继而可得到AE=EC ,根据邻边相等的平行四边形是菱形即可得;(4)当DE=1时,AECF 为矩形,理由:若AECF 为矩形则有∠DEC=90°,再根据DC=2,∠D=60°,则可得∠DCE=30°,继而可得DE=1.【详解】(1)∵ABCD 为平行四边形,∴AD BC ,即AE FC ,又∵AF CE (已知),∴AECF 为平行四边形;(2)∵ABCD 为平行四边形,∴AB CD =,AD BC =,∵AECF 为平行四边形,∴AF CE AE FC ==,,∴DE AD AE BC CF BF =-=-=,在AFB 与CED 中,AB CD AF CE BF DE =⎧⎪=⎨⎪=⎩,∴AFB CED ≌;(3)当DE 2=时,AECF 为菱形,理由如下:∵AB DC 2ABC EDC 60,∠∠====︒,∴EDC 为等边三角形,EC 2=,AE AD ED 2=-=,即:AE EC =,∴平行四边形AECF 为菱形;(4)当DE 1=时,AECF 为矩形,理由如下:若AECF 为矩形得:DEC 90∠=︒,∵DC 2=,D 60∠=︒,∴DCE 30∠=︒,∴DE 1=.本题考查了平行四边形的判定与性质、菱形的判定、矩形的判定与性质等,熟练掌握相关的性质与定理是解题的关键.25、(1)B 地在C 地的正北方向;(2)4.8km 【解析】(1)首先根据三地距离关系,可判定其为直角三角形,然后即可判定方位;(2)首先作CD AB ⊥,即可得出最短距离为CD ,然后根据直角三角形的面积列出关系式,即可得解.【详解】(1)∵2226810+=,即222BC AC AB +=,∴ABC 是直角三角形∴B 地在C 地的正北方向(2)作CD AB ⊥,垂足为D ,∴线段CD 的长就是C ,D 两点间的最短距离.∵ABC 是直角三角形∴1122ABC AB CD AC BC S ∆⋅=⋅=∴所求的最短距离为86 4.8km 10AC BC CD AB ⋅⨯===此题主要考查直角三角形的实际应用,熟练运用,即可解题.26、(1)2+2;【解析】(1)先进行二次根式的乘除法,然后化简,最后合并即可;(2)将所求式子进行变形,然后再将x 、y 值代入进行计算即可.【详解】(1)原式+2-=2+2;(2)∵x y =+=,∴22x y xy 3x 3y +---=(x-y)2+xy-3(x+y)+)2+)()本题主要考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.。

四川省成都市成都七中八一学校2024-2025学年高一新生入学分班质量检测数学试题【含答案】

四川省成都市成都七中八一学校2024-2025学年高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市成都七中八一学校高一新生入学分班质量检测数学试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若=,则的值是()A .B .C .D .2、(4分)如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =7,EF =3,则BC 的长为( )A .9B .10C .11D .123、(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ).A .50元,30元B .50元,40元C .50元,50元D .55元,50元4、(4分)将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( )a b 25a b b 75353257A .B.C .D .5、(4分)如图,四边形是矩形,,,点在第二象限,则点的坐标是 A .B .C .D .6、(4分)如图,矩形ABCD 的两条对角线相交于点O ,CE 垂直平分DO ,,则BE 等于 A .B .C .D .27、(4分)化简的结果是( )A .a-bB .a+bC .D .8、(4分)下面哪个点不在函数y=-2x+3的图象上( )3cm 6cm cm cm OABC (2,1)A (0,5)B C C ()(1,3)-(1,2)-(2,3)-(2,4)-AB 1=()3243232b a ba a a ⎛⎫--÷ ⎪⎝⎭1a b -1a b+A .(-5,13)B .(0.5,2)C .(1,2)D .(1,1)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.10、(4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,若AC=8,BD=6,则该菱形的周长是___.11、(4分)如图,△ABC 中,∠C=90°,AC=BC , AD 平分∠BAC 交 BC 于点 D ,DE ⊥AB ,垂足为 E ,且 AB=10cm ,则△DEB 的周长是_____cm .12、(4分)直角三角形的三边长分别为、、,若,,则__________.13、(4分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x ,10,8,若这组数据的中位数和平均数相等,那么x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?15、(8分)在△ABC 中,AM 是中线,D 是AM 所在直线上的一个动点(不与点A 重合),DE ∥AB 交AC 所在直线于点F ,CE ∥AM ,连接BD ,AE .a b c 3a =4b =c =(1)如图1,当点D 与点M 重合时,观察发现:△ABM向右平移BC 到了△EDC 的位置,此时四边形ABDE 是平行四边形.请你给予验证;(2)如图2,图3,图4,是当点D 不与点M 重合时的三种情况,你认为△ABM 应该平移到什么位置?直接在图中画出来.此时四边形ABDE 还是平行四边形吗?请你选择其中一种情况说明理由.16、(8分)甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h ,并且甲车途中休息了0.5h ,如图是甲乙两车行驶的距离y (km)与时间x (h)的函数图象.(1)直接写出图中m ,a 的值;(2)求出甲车行驶路程y (km)与时间x (h)的函数解析式,并写出相应的x 的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km ?17、(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生 人,并将条形图补充完整;(2)捐款金额的众数是 ,中位数是 ;12(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?18、(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知矩形的边将矩形的一部分沿折叠,使点与点重合,点的对应点为,则的长是______将绕看点顺时针旋转角度得到直线分别与射线,射线交于点当时,的长是___________.ABCD 6,8AB BC ==EF D B C G EF BEF V B ()0<180.a a ︒<11BE F V 11E F EF ED ,M N EN MN =FM20、(4分)如图,一次函数y=﹣x﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组的解集为_____.21、(4分)在矩形ABCD 中,AB=4,AD=9点F 是边BC 上的一点,点E 是AD 上的一点,AE:ED=1:2,连接EF 、DF,若则CF 的长为______________。

区高一新生入学分班考试数学试题及答案

区高一新生入学分班考试数学试题及答案

区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列运算正确的是()。

A。

a·a=aB。

a÷a4=a2C。

a3+a3=2a6D。

(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。

x2=1,k=4B。

x2=-1,k=-4C。

x2=2/3,k=6D。

x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。

2/3B。

1/2C。

1/3D。

1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。

(-2,6),x=-2B。

(2,6),x=2C。

(2,-6),x=-2D。

(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。

2aB。

2bC。

2cD。

06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。

是矩形但不是菱形;B。

是菱形但不是矩形;C。

既是菱形又是矩形;D。

既非矩形又非菱形。

9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。

2024年秋季高一入学分班考试数学试题与答案

2024年秋季高一入学分班考试数学试题与答案

(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。

2021年秋季高一新生入学分班考试数学试卷(上海专用)01(原卷+解析版)

2021年秋季高一新生入学分班考试数学试卷(上海专用)01(原卷+解析版)

2021年秋季高一新生入学分班考试数学试卷(上海专用)01考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.不等式2311x x +<-的解集是_____.2.(2020·上海高一开学考试)分解因式:2441x x -+__________.3.(2020·上海交大附中高一开学考试)已知集合11,2,2A ⎧⎫=⎨⎬⎩⎭,集合{}2,B y y x x A ==∈,则A B = ____________.4.(2020·上海交大附中高一开学考试)设全集为R ,集合()1,3A =,则A =R ð____________.5.(2020·上海交大附中高一开学考试)设集合{}{}|12,B |04A x x x x =-≤≤=≤≤,则A B = ____________.6.已知{1x ∈,2,2}x x -,则实数x 为________.7.(2020·上海交大附中高一开学考试)已知,a b 为常数,若0ax b +>的解集是1,3⎛⎫-∞ ⎪⎝⎭,则0-<bx a 的解集是____________.8.(2020·上海交大附中高一开学考试)设集合[][]1,3,1,24A B m m ==++,若A B ⊆,则实数m 的取值范围是____________.9.已知0a >,0b >,且21a b +=+的最大值为________.10.(2020·上海交大附中高一开学考试)已知函数()[]():3,1,:3f x p x q f x m =∈--<,若p 是q 的充分条件,则实数m 的取值范围为____________.11.(2020·上海交大附中高一开学考试)设全集(){},|,U x y x y R =∈,集合()(){}3,|1,,|12y M x y N x y y x x -⎧⎫===≠+⎨⎬-⎩⎭,那么()()U U M N ⋂=痧____________.12.(2020·上海交大附中高一开学考试)设1234,,,a a a a 是4个互不相同的实数,且{}{}|,1411,21,30,39,49ijx x a a i j =+≤<≤=,则集合{}1234,,,a a a a =____________.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(2020·上海高一开学考试)已知0,0,1x y x y >>+=,则11x y+的最小值是()A .2B.C .4D.14.(2020·上海高一开学考试)下列命题正确的是()A .若>a b ,则11a b<B .若>a b ,则22a b >C .若>a b ,c d <,则>a c b d--D .若>a b ,>c d ,则>ac bd15.(2020·上海高一开学考试)不等式2560x x +->的解集是A .{}23x x x -或B .{}23x x -<<C .{}61x x x -或D .{}61x x -<<16.(2020·上海交大附中高一开学考试)已知,,,,a b c d e 均为正整数,且满足15.18111a b c d e=++++,则a b c d e ++++=()A .13B .14C .15D .16三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知集合{}213A x x =-<+<,集合B 为整数集,令C A B = .(1)求集合C ;(2)若集合{}1,D a =,{2,1,0,1,2}C D =-- ,求实数a 的值.18.若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值;(Ⅱ)求关于x 的不等式()0f x <的解集.19.解关于x的不等式.(1)x2<2x+3;(2)4x−2x−2>0.20.(2020·上海交大附中高一开学考试)某校为美化校园,计划对面积为18002m的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独m区域的绿化时,甲队比乙队少用4天.立完成面积为4002m?(1)求甲、乙两工程队每天能完成绿化的面积分别是多少2(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?21.(2020·上海高一开学考试)已知函数2()4(0,,)f x ax x b a a b R =++<∈,设关于x 的方程()0f x =的两实根为12,x x ,方程f (x )=x 的两实根为,αβ.(1)若||1αβ-=,求a 与b 的关系式;(2)若,a b 均为负整数,且||1αβ-=,求f (x )的解析式;2021年秋季高一新生入学分班考试数学试卷(上海专用)01考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.不等式2311x x +<-的解集是_____.【答案】(-4,1)【分析】不等式等价于401x x +<-,即()()410x x +-<,即可解出.【详解】不等式2311x x +<-即23101x x +-<-,即401x x +<-,等价于()()410x x +-<,解得41x -<<,故不等式的解集为:(4,1)-.故答案为:(4,1)-.2.(2020·上海高一开学考试)分解因式:2441x x -+__________.【答案】()221x -【分析】利用完全平方公式()2222a b a ab b ±=±+分解因式【详解】解:2441x x -+=()221x -故答案为:()221x -【点睛】此题考查公式法分解因式,属于基础题.3.(2020·上海交大附中高一开学考试)已知集合11,2,2A ⎧⎫=⎨⎬⎩⎭,集合{}2,B y y x x A ==∈,则A B = ____________.【答案】{}1【分析】求出集合B ,利用交集的定义可求得集合A B .【详解】11,2,2A ⎧⎫=⎨⎬⎩⎭,{}21,,1,44B y y x x A ⎧⎫==∈=⎨⎬⎩⎭,因此,{}1A B ⋂=.故答案为:{}1.【点睛】本题考查交集的计算,考查计算能力,属于基础题.4.(2020·上海交大附中高一开学考试)设全集为R ,集合()1,3A =,则A =R ð____________.【答案】(][),13,-∞+∞ 【分析】直接根据补集的定义即可得结果.【详解】因为()1,3A =,所以(][),13,A =-∞+∞R ð,故答案为:(][),13,-∞+∞ .【点睛】本题主要考查了补集的运算,属于基础题.5.(2020·上海交大附中高一开学考试)设集合{}{}|12,B |04A x x x x =-≤≤=≤≤,则A B = ____________.【答案】[]1,4-【分析】直接根据并集的定义运算即可.【详解】因为{}{}|12,B |04A x x x x =-≤≤=≤≤,所以[]1,4A B =- ,故答案为:[]1,4-.【点睛】本题主要考查了并集的运算,属于基础题.6.已知{1x ∈,2,2}x x -,则实数x 为________.【答案】0或1【分析】分别令1x =,2x =和2x x x =-,并将x 的值代入集合检验是否符合元素的互异性,进而可得实数x 的值.【详解】当1x =时,2110x x -=-=,符合题意;当2x =时,2422x x -=-=,舍去;当2x x x =-时,解得0x =或2(舍),则0x =,符合题意;则实数x 为0或1故答案为:0或1【点睛】本题考查集合元素的性质,考查互异性的应用,属于基础题.7.(2020·上海交大附中高一开学考试)已知,a b 为常数,若0ax b +>的解集是1,3⎛⎫-∞ ⎪⎝⎭,则0-<bx a 的解集是____________.【答案】(),3∞--【分析】由题意知0a <,0b >,3ab =-即可求0-<bx a 的解集;【详解】由0ax b +>的解集是1,3⎛⎫-∞ ⎪⎝⎭,知:0a <且13b a =-,∴0b >且3ab=-,即可知0-<bx a 的解集为3x <-,故答案为:(),3∞--【点睛】本题考查了求含参的一元一次不等式的解法,由已知不等式的解集判断参数的符号及数量关系,进而求由原参数重构后新不等式的解集;8.(2020·上海交大附中高一开学考试)设集合[][]1,3,1,24A B m m ==++,若A B ⊆,则实数m 的取值范围是____________.【答案】1,02⎡⎤-⎢⎥⎣⎦【分析】根据子集的定义得出不等关系后求解.【详解】∵A B ⊆,∴11243m m +≤⎧⎨+≥⎩,解得102m -≤≤.故答案为:1,02⎡⎤-⎢⎥⎣⎦.【点睛】查考集合包含关系,掌握子集的定义是解题关键.9.已知0a >,0b >,且21a b +=+的最大值为________.=,由基本不等式计算可得结果,验证等号成立即可得解.【详解】因为0a >,0b >,且21a b +=,===≤==,当且仅当2a b =即11,42a b ==时,等号成立,..【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.(2020·上海交大附中高一开学考试)已知函数()[]():3,1,:3f x p x q f x m =∈--<,若p 是q 的充分条件,则实数m 的取值范围为____________.【答案】(0,3)【分析】求出[3,1]x ∈-时,()f x 的范围,再求出q 为真时,()f x 的范围,由充分条件对应的集合包含关系可得m 的范围.【详解】p 为真时,[3,1]x ∈-,29[0,9]x -∈,()[0,3]f x ∈,q 为真时,()3f x m -<,3()3m f x m -<<+,p 是q 的充分条件,则3033m m -<⎧⎨+>⎩,解得03m <<.故答案为:(0,3),【点睛】本题考查充分条件,考查充分条件与集合包含之间的关系,解题关键是问题转化为集合包含关系.11.(2020·上海交大附中高一开学考试)设全集(){},|,U x y x y R =∈,集合()(){}3,|1,,|12y M x y N x y y x x -⎧⎫===≠+⎨⎬-⎩⎭,那么()()U U M N ⋂=痧____________.【答案】(){}2,3【分析】分析出集合M ,N 的各自意义,进而可知,U UM N 痧的各自意义,从而可求出()()U U M N 痧.【详解】解:由312y x -=-可得+1,2y x x =≠,即M 表示直线+1y x =除去()2,3的点集,N 表示平面内不在直线=1y x +上的点集,则U N ð表示平面内在直线=1y x +上的点集,U M ð表示不在直线+1y x =上的点和点()2,3的集合,所以(){}()()2,3U U M N = 痧.故答案为:(){}2,3.【点睛】本题考查补集的求法,考查交集、补集等基础知识,考查运算求解能力.12.(2020·上海交大附中高一开学考试)设1234,,,a a a a 是4个互不相同的实数,且{}{}|,1411,21,30,39,49ijx x a a i j =+≤<≤=,则集合{}1234,,,a a a a =____________.【答案】{}1,10,20,29【分析】不妨设1234a a a a <<<,集合{}|,14i j x x a a i j =+≤<≤中至多有6个数,确定i j a a +中的最小和最大的数,再确定次小与次大的数,然后还有两个相等为中间的数,由此可得解.【详解】不妨设1234a a a a <<<,则在集合{}|,14i j x x a a i j =+≤<≤中,12a a +最小,34a a +最大,即1211a a +=,3449a a +=,第二小的数是13a a +,第二大的数是24a a +,即1321a a +=,2439a a +=,从而有142330a a a a +=+=,由1211a a +=,3449a a +=,1321a a +=,2439a a +=,142330a a a a +=+=,可解得11a =,210a =,320a =,429a =,故答案为:{}1,10,20,29【点睛】本题考查求集合中的元素,解题时根据集合的定义,把i j a a +排列,再根据集合的定义得出结论后可求解.考查了逻辑推理能力,运算求解能力.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(2020·上海高一开学考试)已知0,0,1x y x y >>+=,则11x y+的最小值是()A .2B .C .4D .【答案】C【分析】先将11x y+乘以“1”,结合1x y +=,化简使用基本不等式,即求得结果.【详解】()1111224y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭(当且仅当y x x y =,即12x y ==时取等号)11x y∴+的最小值为4.故选:C.【点睛】本题考查了基本不等式中“1”的妙用,属于常考题.14.(2020·上海高一开学考试)下列命题正确的是()A .若>a b ,则11a b<B .若>a b ,则22a b >C .若>a b ,c d <,则>a c b d --D .若>a b ,>c d ,则>ac bd【答案】C【分析】利用不等式的性质,对四个选项逐一判断,即可得出正确选项.【详解】若>0>a b ,则11a b>,故选项A 不正确;若0>a b >,则22a b <,故选项B 不正确;若c d <,则c d ->-,因为>a b 所以>a c b d --,故选项C 正确;当>0a b >,>0c d >时,才有>ac bd 成立,故选项D 不正确;故选:C【点睛】本题主要考查了不等式的性质,属于基础题.15.(2020·上海高一开学考试)不等式2560x x +->的解集是A .{}23x x x -或B .{}23x x -<<C .{}61x x x -或D .{}61x x -<<【答案】C【分析】先分解因式再解不等式.【详解】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,选C.【点睛】本题考查解一元二次不等式,考查基本求解能力,属基础题.16.(2020·上海交大附中高一开学考试)已知,,,,a b c d e 均为正整数,且满足15.18111a b c d e=++++,则a b c d e ++++=()A .13B .14C .15D .16【答案】D【分析】根据表达式进行转化.【详解】9111115.1850.185555555051115055559119911515144=+=+=+=+=+=+=++++++++,∴5,5,1,1,4a b c d e =====,∴16a b c d e ++++=.故选:D .【点睛】本题考查小数与分数的转化,掌握分数的变形是解题基础.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知集合{}213A x x =-<+<,集合B 为整数集,令C A B = .(1)求集合C ;(2)若集合{}1,D a =,{2,1,0,1,2}C D =-- ,求实数a 的值.【答案】(1){2,1,0,1}--;(2)2a =.【分析】(1)首先得到{}32A x x =-<<,再求C A B = 即可.(2)根据{}2,1,0,1,2C D =--即可得到答案.【详解】(1){}{}21332A x x x x =-<+<=-<<,因为集合B 为整数集,所以{}2,1,0,1C A B -=-= .(2)因为{}2,1,0,1C -=-,{}1,D a =,{}2,1,0,1,2C D =--,所以2a =.18.若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值;(Ⅱ)求关于x 的不等式()0f x <的解集.【答案】(Ⅰ)4a =;(Ⅱ)答案见解析.【分析】(Ⅰ)14,1为方程()0f x =的两个根,用韦达定理构建方程解出来即可.(Ⅱ)(1)(1)0ax x -->,分0a <、0a =、01a <<、1a =和1a >五种情况讨论即可【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩.解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x >当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=.当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a =时,原不等式为()210x -<,不等式的解集为∅.综上:当0a =时,不等式的解集为{}1x x >;当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或;当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭;当1a =时,不等式的解集为∅.19.解关于x 的不等式.(1)x 2<2x +3;(2)4x −2x −2>0.【答案】(1){}13x x -<<;(2){}1x x >.【分析】(1)直接解一元二次不等式即可.(2)先换元,将不等式转化成一元二次不等式,解得22x >,再解指数不等式即得结果.【详解】解:(1)2223,230x x x x <+∴--< ;令2230,1x x x --=∴=-或3x =;∴不等式的解集为{}13x x -<<;(2)4220x x -->;令220,20x t t t =>∴-->;1t ∴<-(舍)或2t >,即22,1x x >∴>∴不等式的解集为{}1x x >.20.(2020·上海交大附中高一开学考试)某校为美化校园,计划对面积为18002m 的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为4002m 区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少2m ?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)甲:1002m ,乙:502m ;(2)10天.【分析】(1)设乙工程队每天能完成绿化的面积为x 2m ,根据在独立完成绿化的面积时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y 天,根据这次绿化的面积总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积为x 2m ,根据题意得:40040042x x-=,解得:50x =,经检验50x =是原方程的解,则甲工程队每天能完成绿化的面积是2502100m ⨯=答:甲工程队每天能完成绿化的面积分别是1002m ,乙工程队每天能完成绿化的面积分别是502m (2)设应安排甲队工作y 天,根据题意得:18001000.40.25850yy -+⨯≤,解得:10y ≥答:至少应安排甲队修建10天.【点睛】本题考查不方程和不等式在实际问题中的应用,考查分析问题的能力,属于基础题.21.(2020·上海高一开学考试)已知函数2()4(0,,)f x ax x b a a b R =++<∈,设关于x 的方程()0f x =的两实根为12,x x ,方程f (x )=x 的两实根为,αβ.(1)若||1αβ-=,求a 与b 的关系式;(2)若,a b 均为负整数,且||1αβ-=,求f (x )的解析式;【答案】(1)249(0,,)a ab a a b R +=<∈;(2)2()42f x x x =-+-.【分析】(1)根据根与系数的关系,以及||1αβ-=,得到a 与b 的关系式;(2)由(1)中得到的关系,和,a b 均为负整数,求得,a b ,得到()f x 的解析式.【详解】(1)由()f x x =得23(0,,)ax x b a a b R ++<∈有两个不等实根为,αβ,∴3940,,b ab a aαβαβ∆=->+=-=由||1αβ-=得2()1αβ-=,即2294()41b a aαβαβ+-=-=,∴249(0,,)a ab a a b R +=<∈.(2)由(1)得(4)9a a b +=,而,a b 均为负整数,∴149a a b =-⎧⎨+=-⎩或941a a b =-⎧⎨+=-⎩或343a ab =-⎧⎨+=-⎩显然后两种情况不合题意,应舍去,从而有149a a b =-⎧⎨+=-⎩∴12a b =-⎧⎨=-⎩故所求函数解析式为2()42f x x x =-+-.【点睛】本题考查了一元二次方程的根与系数的关系,考查了学生分析观察能力,推理能力,属于中档题.。

新高一入学分班考数学卷(参考答案)

新高一入学分班考数学卷(参考答案)

新高一入学分班考数学卷(名校版)参考答案一、选择题1.当m<﹣1时,方程(m3+1)x2+(m2+1)x=m+1的根的情况是()A.两负根B.两异号根,且正根的绝对值较大C.两正根D.两异号根,且负根的绝对值较大【分析】首先将方程整理为一般形式,进而利用根据根与系数的关系以及因式分解的应用,分析各式子的符号,进而得出答案.【解答】解:∵(m3+1)x2+(m2+1)x=m+1,∴(m3+1)x2+(m2+1)x﹣(m+1)=0,∴x1x2====,∵m<﹣1,∴m2﹣m+1>0,∴x1x2<0,∴方程由两异号根,∵x1+x2=﹣=,∵m<﹣1,∴m2﹣m+1>0,m+1<0,﹣(m2+1)<0,∴x1+x2>0,∴正根的绝对值较大.故选:B.2.对于数x,符号[x]表示不大于x的最大整数例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[]=4的整数根有()A.4个B.3个C.2个D.1个【分析】根据取整函数的定义可知,4≤<5,解此方程组即可.【解答】解:∵[]=4,∴4≤<5,∴,∴,即7≤x<,故x的正数值为7,8,9.故选B.3.+的最小值为()A.B. C. D.均不是【分析】根据题意结合两点之间距离求法,利用轴对称求出最短路线进而得出答案.【解答】解:原式=+,即x轴上的点到(﹣1,1)和(2,4)的距离之和的最小值画图可知,点(4,2)关于x轴的对称点(4,﹣2)与(﹣1,1)连线与x轴的交点即为所求,此时最小值为:=.故选:B.4.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()A.B.C.D.【分析】A、阴影部分是长方形,所以长方形的面积等于长和宽的乘积;B、如图,设阴影部分等腰直角的腰为x,根据勾股定理求出x的值,所以,阴影部分的面积等于正方形的面积减去俩个空白三角形的面积;C、图C,逆时针旋转90°从后面看,可与图D对比,因为图C阴影部分的倾斜度比图D阴影部分的倾斜度小,所以,图C中四边形的底比图D中四边形的底小,两图为等高不等底,所以图C阴影部分的面积小于图D阴影部分的面积;D、图D,设阴影部分平行四边形的底为x,根据正方形的面积=阴影部分的面积+两个空白三角形的面积,求出x的值,再得出阴影部分的面积;图A、图C、图D中阴影部分四边形为等高不等底,因为倾斜度不同,所以图D中阴影部分的底最大,面积也就最大;因此,只要比较图B和图D阴影的面积大小,可得到图B阴影部分的面积最大.【解答】解:A、S阴影=2×4=8(cm2);5.(2016•衡水校级模拟)设全集U=R,集合A={x|},B={x|1<2x<8},则(C U A)∩B等于()A.[﹣1,3)B.(0,2]C.(1,2]D.(2,3)【分析】分别解出集合A,B,然后根据集合的运算求解即可.【解答】解:因为集合A={x|}=(﹣∞,﹣1]∪(2,+∞),B={x|1<2x<8}=(0,3),又全集U=R,∴C U A=(﹣1,2],∴(C U A)∩B=(0,2],故选B.6.已知函数f(x)=,则f(f(2))等于()A.B.2 C.﹣1 D.1【分析】先由解析式求得f(2),再求f(f(2)).【解答】解:f(2)=,f(﹣1)=2﹣1=,所以f(f(2))=f(﹣1)=,故选A.7.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a>0的解集是()A.x>B.x<﹣C.x>﹣D.x<8.对于任意的两个实数对(a,b)和(c,d),规定:①(a,b)=(c,d),当且仅当a=c,b=d;②运算“⊗”为:(a,b)⊗(c,d)=(ac+bd,bc﹣ad);③运算“θ”为:(a,b)θ(c,d)=(a﹣c,b﹣d).设p,q∈R,若(1,2)⊗(p,q)=(11,2),则(1,2)θ(p,q)()A.(﹣2,﹣2)B.(3,4)C.(2,1)D.(﹣1,﹣2)【分析】先根据(1,2)⊗(p,q)=(11,2),列方程组求p、q的值,再由规定运算“θ”求(1,2)θ(p,q)的结果.【解答】解:由规定②,得(1,2)⊗(p,q)=(p+2q,2p﹣q),∵(1,2)⊗(p,q)=(11,2),∴(p+2q,2p﹣q)=(11,2),由规定①,得,解得,由规定③,可知(1,2)θ(p,q)=(1,2)θ(3,4)=(1﹣3,2﹣4)=(﹣2,﹣2).故选A.二、填空题9.已知a2+4a+1=0,且,则m=.【分析】由a2+4a+1=0,得a2=﹣4a﹣1,代入所求的式子化简即可.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.10.已知(x﹣3)2+(y﹣4)2=4,则x2+y2的最大值为49.【分析】运用几何意义解答,x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,从而可得出答案.【解答】解:x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,连接坐标原点与圆心(3,4)所得的直线与圆的交点,则(x2+y2)min时,|ON|取最小,(x2+y2)max时,|OM|取最大,∵原点与圆心(3,4)的距离+半径(PM)=+2=7,∴(x2+y2)max=72=49.故答案为:49.11.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.【分析】先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.【解答】解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.12.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.13.函数f(x)=λx2+(λ﹣3)x+1对于任意实数x都有f(x)≤f(λ),则函数f(x)的最大值是.【分析】根据函数有最值,首先判断出λ<0,进而利用二次函数的最值得出f(x)的最大值,使这个最大值与f(λ)相等,解方程即可得出λ的值,进而代入求出f(x)最大值.【解答】解:由题意得,f(x)有最大值,则可得λ<0,又∵f(x)=λ(x+)2+1﹣,∴f(x)的最大值为1﹣,又∵f(x)≤f(λ),∴f(λ)=λ3+(λ﹣3)λ+1=1﹣,解得:λ=1(舍去)或λ=﹣,将λ=﹣,代入可得f(x)的最大值为.故答案为:.三、解答题14.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC 和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.2.(2013•济宁)阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.16问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).【分析】(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;(2)经济时速就是耗油量最小的形式速度.【解答】解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.∴y=x×(+)=(70≤x≤110);(2)根据材料得:当时有最小值,解得:x=90∴该汽车的经济时速为90千米/小时;当x=90时百公里耗油量为100×(+)≈11.1升.17.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.。

2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列式子正确的是()A .若x y a a <,则x <y B .若bx >by ,则x >y C .若x y a a =,则x=y D .若mx=my ,则x=y 2、(4分)如图,在菱形ABCD 中,A 60∠=,AD 8=.P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为()A .8B .C .4D .3、(4分)若分式2x 9x 3--的值为0,则x 的值等于()A .0B .3C .3-D .3±4、(4分)下列各点在反比例函数5y x =-图象上的是()A .()5,1B .()1,5C .()1,5-D .()5,5--5、(4分)巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是()A .45.2分钟B .48分钟C .46分钟D .33分钟6、(4分)将0.000008这个数用科学记数法表示为()A .8×10-6B .8×10-5C .0.8×10-5D .8×10-77、(4分)不等式组2232x x x x +>⎧⎨<+⎩的解集是()A .x >-2B .x <1C .-1<x <2D .-2<x <18、(4分)无论取什么数,总有意义的分式是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB =CD ,EF =GH .(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.10、(4分)若分式293x x --的值为0,则x 的值为_______.11、(4分)已知=0,则(a ﹣b )2的平方根是_____.12、(4分)若直角三角形两边的长分别为a 、b +|b -4|=0,则第三边的长是_________.13、(4分)方程x =-的解是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC 是等边三角形,点D ,E 分别在BC ,AC 上,且BD=CE ,AD 与BE 相交于点F.(1)试说明△ABD ≌△BCE ;(2)△AEF 与△BEA 相似吗?请说明理由;(3)BD 2=AD·DF 吗?请说明理由.15、(8分)(1)如图1,将一矩形纸片ABCD 沿着EF 折叠,CE 交AF 于点G ,过点G 作GH ∥EF ,交线段BE 于点H .①判断EG 与EH 是否相等,并说明理由.②判断GH 是否平分∠AGE ,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC ,其它条件不变.①判断EG 与EH 是否相等,并说明理由.②判断GH 是否平分∠AGE ,如果平分,请说明理由;如果不平分,请用等式表示∠EGH ,∠AGH 与∠C 的数量关系,并说明理由.16、(8分)已知:AC 是平行四边形ABCD 的对角线,且BE ⊥AC ,DF ⊥AC ,连接DE 、BF .求证:四边形BFDE 是平行四边形.17、(10分)如图,在平行四边形AECF 中,B ,D 是直线EF 上的两点,BE =DF ,连接AB ,BC ,AD ,DC .求证:四边形ABCD 是平行四边形.18、(10分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为1S ,2 S ,3S .若12318S S S ++=,则正方形EFGH 的面积为_______.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:2331212a a a -+-=______.20、(4分)如图,四边形ABCD 是菱形,点A ,B ,C ,D 的坐标分别是(m ,0),(0,n ),(1,0),(0,2),则mn=_____.21、(4分)在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_____.22、(4分)如图所示,将直角三角形,,,沿方向平移得直角三角形,,阴影部分面积为_____________.23、(4分)如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,AE ∥BD ,OE 与AB 交于点F.(1)试判断四边形AEBO 的形状,并说明理由;(2)若OE=10,AC=16,求菱形ABCD 的面积.25、(10分)如图1,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,与直线OC :y x =交于点C .(1)若直线AB 解析式为212y x =-+,①求点C 的坐标;②求△OAC 的面积.(2)如图2,作AOC ∠的平分线ON ,若AB ⊥ON ,垂足为E ,OA =4,P 、Q 分别为线段OA 、OE 上的动点,连结AQ 与PQ ,试探索AQ +PQ 是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.26、(12分)当a在什么范围内取值时,关于x的一元一次方程2132x a x++=的解满足11x -≤≤参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】A选项错误,x ya a<,若a>0,则x<y;若a<0,则x>y;B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;C选项正确;D选项错误,当m=0时,x可能不等于y.故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.2、C【解析】如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.【详解】如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵60A,∠=∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴1 4.2EF BD==故选:C.考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.3、C【解析】直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.【详解】分式2x9x3--的值为0,2x90∴-=,x30-≠,解得:x3=-,故选C.本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.4、C【解析】由5yx=-可得,xy=-5,然后进行排除即可.【详解】解:由5yx=-,即,xy=-5,经排查只有C符合;故答案为C.本题考查了反比例函数的性质,即对于反比例函数kyx=,有xy=k是解答本题的关键.5、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.6、A 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.000008用科学计数法表示为8×10-6,故选A.本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D 【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:2232x x x x +⎧⎨+⎩>①<②,解①得:x >﹣2,解②得:x <1,则不等式组的解集是:﹣2<x <1.故选D .点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8、A【解析】根据偶次幂具有非负性可得x +3>0,再由分式有意义的条件可得答案.【详解】∵x ⩾0,∴x +3>0,∴无论x 取什么数时,总有意义的分式是,故选:A.此题考查分式有意义的条件,解题关键在于掌握其性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解析】(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C 为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.10、-1【解析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩,解得:x=-1.故答案为:-1.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.11、±1.【解析】根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.【详解】根据题意得a-1=2,且b-5=2,解得:a=1,b=5,则(a-b )2=16,则平方根是:±1.故答案是:±1.本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.12、2或【解析】首先利用绝对值以及算术平方根的性质得出a ,b 的值,再利用分类讨论结合勾股定理求出第三边长.【详解】+|b -4|=0,∴b =4,a =1.当b =4,a =1时,第三边应为斜边,;当b =4,a =1=2.故答案为:2.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13、3x =-【解析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x =-,∴1-2x=x 2,∴x 2+2x-1=0,∴(x+1)(x-1)=0,解得,x1=-1,x2=1,经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,故原方程的根是x=-1,故答案为:x=-1.本题考查无理方程,解答本题的关键是明确解无理方程的方法.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)见解析;【解析】(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△BEA相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴BD DF AD BD=,即BD2=AD•DF.本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.15、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.【解析】(1)①由题意可证四边形GHEF 是平行四边形,可得∠GHE =∠GFE ,由折叠的性质和平行线的性质可证∠GEF =∠HGE ,可得结论;②由平行线的性质可得∠AGH =∠GHE =∠HGE ,即可得结论;(2)①由折叠的性质可得∠CEF =∠C 'EF ,∠C =∠C ',由平行线的性质可得结论;②∠AGH =∠HGE +∠C ,由三角形的外角性质可得结论.【详解】(1)①EG =EH ,理由如下:如图,∵四边形ABCD 是矩形∴AD ∥BC ∴AF ∥BE ,且GH ∥EF ∴四边形GHEF 是平行四边形∴∠GHE =∠GFE ∵将一矩形纸片ABCD 沿着EF 折叠,∴∠1=∠GEF ∵AF ∥BE ,GH ∥EF∴∠1=∠GFE ,∠HGE =∠GEF∴∠GEF =∠HGE∴∠GHE =∠HGE∴HE =GE②GH 平分∠AGE∵AF ∥BE ∴∠AGH =∠GHE ,且∠GHE =∠HGE ∴∠AGH =∠HGE ∴GH 平分∠AGE (2)①EG =EH 理由如下,如图,∵将△ABC 沿EF 折叠∴∠CEF =∠C 'EF ,∠C =∠C '∵GH ∥EF ∴∠GEF =∠HGE ,∠FEC '=∠GHE ∴∠GHE =∠HGE ∴EG =EH ②∠AGH =∠HGE +∠C 理由如下:∵∠AGH =∠GHE +∠C '∴∠AGH =∠HGE +∠C本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.16、见解析【解析】根据平行四边形的性质得出AB=CD ,AB ∥CD ,求出△BAE ≌△DCF ,求出BE=DF ,根据平行四边形的判定得出即可.证明:∵BE ⊥AC ,DF ⊥AC ,∴BE ∥DF ,∠AEB=∠DFC=90°,∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠BAE=∠DCF ,在△BAE 和△DCF 中AEB CFD BAE DCF AB CD ∠∠⎧⎪∠∠⎨⎪⎩===∴△BAE ≌△DCF (AAS ),∴BE=DF ,∵BE ∥DF ,∴四边形BFDE 是平行四边形.本题考查了平行四边形的性质和判定、平行线的性质和全等三角形的性质和判定,能求出BE=DF 和BE ∥DF 是解此题的关键.17、见解析.【解析】连接AC 交BD 与点O.由四边形AECF 是平行四边形,可证OA=OC,OE=OF,又BE=DF ,所以OB=OD ,根据对角线互相平分的四边形是平行四边形可证结论成立.【详解】证明:连接AC 交BD 与点O.∵四边形AECF 是平行四边形,∴OA=OC,OE=OF,∵BE=DF ,∴OE+BE=OF+DF,∴OB=OD,∴四边形ABCD 是平行四边形.本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.18、1【解析】设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,构建方程组,利用整体的思想思考问题,求出x+4y 即可.【详解】解:设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,∵正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=18,∴得出S 1=x ,S 2=4y+x ,S 3=8y+x ,∴S 1+S 2+S 3=3x+12y=18,故3x+12y=18,x+4y=1,所以S 2=x+4y=1,即正方形EFGH 的面积为1.故答案为1本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、23(12)a a --【解析】根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.【详解】2331212a a a -+-,=()23144a a a --+,=23(12)a a --,故答案为:2 3(12)a a --.本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.20、1.【解析】分析:根据菱形的对角线互相垂直平分得出OA=OC ,OB=OD ,得出m 和n 的值,从而得出答案.详解:∵四边形ABCD 是菱形,∴OA=OC ,OB=OD ,∴m=-1,n=-1,∴mn=1.点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC ,OB=OD 是解题的关键.21、2.1【解析】根据已知得当AP ⊥BC 时,AP 最短,同样AM 也最短,从而不难根据相似比求得其值.【详解】连结AP ,在△ABC 中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE ⊥AB ,PF ⊥AC ,∴四边形AFPE 是矩形,∴EF=AP .∵M 是EF 的中点,∴AM=12AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM 也最短,∴当AP⊥BC时,△ABP∽△CAB,∴AP:AC=AB:BC,∴AP:8=6:10,∴AP最短时,AP=1.8,∴当AM最短时,AM=AP÷2=2.1.故答案为2.1解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.22、1【解析】根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.【详解】∵△ACB平移得到△DEF,∴CE=BF=2,DE=AC=6,∴GE=DE-DG=6-3=3,由平移的性质,S△ABC=S△DEF,∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.故答案为:1.本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.【解析】首先利用勾股定理得出BO的长,再利用A点的位置得出答案.【详解】解:∵AB ⊥OA ∴∠OAB=90°,∵OA=3、AB=2,OC OB ∴===则数轴上表示点C 本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)四边形AEBO 为矩形,理由见解析(2)96【解析】(1)根据有3个角是直角的四边形是矩形即可证明;(2)根据矩形的性质得出AB=OE=10,再根据勾股定理求出BO ,即可得出BD 的长,再利用菱形的面积公式进行求解.【详解】(1)四边形AEBO 为矩形,理由如下:∵菱形ABCD 的对角线AC 、BD 相交于点O ∴AC ⊥BD ,∵BE ∥AC ,AE ∥BD ,∴BE ⊥BD ,AE ⊥AC ,∴四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形∴AB=OE=10,∵AO=AC=8,∴OB=∴BD=12,故S 菱形ABCD =AC×BD=×16×12=96此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定与性质及菱形的性质定理.25、(1)①C (4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C 的坐标;②欲求△OAC 的面积,结合图形,可知,只要得出点A 和点C 的坐标即可,点C 的坐标已知,利用函数关系式即可求得点A 的坐标,代入面积公式即可;(2)在OC 上取点M ,使OM=OP ,连接MQ ,易证△POQ ≌△MOQ ,可推出AQ+PQ=AQ+MQ ;若想使得AQ+PQ 存在最小值,即使得A 、Q 、M 三点共线,又AB ⊥OP ,可得∠AEO=∠CEO ,即证△AEO ≌△CEO (ASA ),又OC=OA=4,利用△OAC 的面积为6,即可得出AM=1,AQ+PQ 存在最小值,最小值为1.(1)①由题意,解得4,{ 4.x y ==所以C (4,4);②把0y =代入212y x =-+得,6x =,所以A 点坐标为(6,0),所以164122OAC S =⨯⨯=;(2)由题意,在OC 上截取OM =OP ,连结MQ∵OQ 平分∠AOC ,∴∠AOQ=∠COQ ,又OQ=OQ ,∴△POQ ≌△MOQ (SAS ),∴PQ=MQ ,∴AQ+PQ=AQ+MQ ,当A 、Q 、M 在同一直线上,且AM ⊥OC 时,AQ+MQ 最小.即AQ+PQ 存在最小值.∵AB ⊥ON ,所以∠AEO=∠CEO ,∴△AEO ≌△CEO (ASA ),∴OC=OA=4,∵△OAC 的面积为12,所以AM=12÷4=1,∴AQ+PQ 存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.26、12a 【解析】先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.【详解】解:解方程2132x a x ++=得:32x a =-,关于x 的一元一次方程2132x a x ++=的解满足11x - ,∴1321a -- ,解得:12a ,所以当12a 时,关于x 的一元一次方程2132x a x ++=的解满足11x - .本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于a 的不等式组是解此题的关键.。

四川成都新津区实验高级中学2024-2025学年高一新生入学分班质量检测数学试题【含答案】

四川成都新津区实验高级中学2024-2025学年高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川成都新津区实验高级中学高一新生入学分班质量检测数学试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为()A.B.C.D.2、(4分)把边长为3的正方形绕点A顺时针旋转45°得到正方形,边与交于点O,则四边形的周长是()A.6B.C.D.3、(4分)如图,在中,,,,则()A.3B.C.D.64、(4分)下列方程没有实数根的是( )A()4,0B()0,3A AB x C C()1,0()1,0-()5,0-()5,0ABCD AB C D'''BC D C''ABOD'3+A .x 3+2=0B .x 2+2x +2=0C=x ﹣1D .=05、(4分)一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h ;④慢车速度为46km/h ;⑤A 、B 两地相距828km ;⑥快车从A 地出发到B 地用了14小时A .2个B .3个C.4个D .5个6、(4分)如图,平行四边形的对角线和相交于点为边中点,,则的长为( )A.B .C .D .7、(4分)如图,长方形的高为,底面长为 ,宽为,蚂蚁沿长方体表面,从点到(点 见图中黑圆点)的最短距离是( )A B C .D .211x x x ---ABCD AC BD O E ,CD 8BC cm =OE 3cm 4cm 5cm 2cm 3cm 1cm 1A 2C 12A C 、8、(4分)点A ,B ,C ,D 在数轴上的位置如图所示,对应的点可能是 A .点A B .点B C .点C D .点D 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.10、(4分)已知等腰三角形的两条边长分别是3cm 、7cm ,那么这个等腰三角形的周长是________cm .11、(4分)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,P 为AB 边上(不与A 、B 重合的一动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 的最小值是_____.12、(4分)将直线y =2x 向上平移3个单位所得的直线解析式是_____.13、(4分)小明参加岗位应聘中,专业知识、工作经验、仪表形象三项的得分分别为:分、分、分.若这三项的重要性之比为,则他最终得分是_________分.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC 中,∠ACB =90°,BC =AC =6,D 是AB 边上任意一点,连接CD ,以CD 为直角边向右作等腰直角△CDE ,其中∠DCE =90°,CD =CE ,连接BE .2 ()1616135:3:2(1)求证:AD =BE ;(2)当△CDE 的周长最小时,求CD 的值;(3)求证:.15、(8分)如图,在▱ABCD 中,点O 是对角线AC 、BD 的交点,AD ⊥BD ,且AB =10,AD =6,求AC的长.(结果保留根号)16、(8分)已知一次函数的图象经过A (﹣2,﹣3),B(1,3)两点,求这个一次函数的解析式.17、(10分)如图,在四边形ABCD 中,AB =AD =4,∠A=60°,BC CD =1.(1)求∠ADC 的度数;(2)求四边形ABCD 的面积.18、(10分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)实数在数轴上的对应点的位置如图所示,则__________.2222AD DB CE +=ABCD CDEF AEFB ,a b =20、(4分)如图,函数与的图象交于点,那么不等式的解集是______.21、(4分)已知反比例函数的图象在第二、四象限,则取值范围是__________22、(4分)如图,在四边形中,,,,,且,则______度.23、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.二、解答题(本大题共3个小题,共30分)24、(8分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.(1)若每件童装降价元,每天可售出 件,每件盈利 元(用含的代数式表示);每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.25、(10分)如图,△ABC 中,A (-1,1),B (-4,2),C (-3,4).y kx =3y x b 2=-+()M 2,1-3kx x b 2>-+5m y x -=m ABCD 2AB =2BC =3CD =1DA =90ABC ∠=︒BAD ∠=221231x x x x -+=-21x y x -=y 601003013x x ()21800(1)在网格中画出△ABC 向右平移5个单位后的图形△A 1B 1C 1;(2)在网格中画出△ABC 关于原点O 成中心对称后的图形△A 2B 2C 2;(3)请直接写出点B 2、C 2的坐标.26、(12分).)2(21-参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】先根据勾股定理求出AB 的长,由于AB=AC ,可求出AC 的长,再根据点C 在x 轴的负半轴上即可得出结论.【详解】解:∵点A 的坐标为(4,0),点的坐标为(0,3),∴OA=4,OB=3,∴,∵以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,∴AC=5,∴OC=1,∴点C 的坐标为(-1,0).故选B.本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC 的长是解答此题的关键.2、B 【解析】由边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO ,OD′,从而可求四边形ABOD′的周长.【详解】连接BC′,B∵旋转角∠BAB′=45∘,∠BAD′=45°,∴B 在对角线AC′上,∵B′C′=AB′=3,在Rt △AB′C′中∴−3,在等腰Rt△OBC′中−3,在直角三角形OBC′中,,∴,∴四边形ABOD′的周长是:.故选:B.此题考查正方形的性质,旋转的性质,解题关键在于利用勾股定理的知识求出BC′的长3、A 【解析】根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.【详解】解:∵在△ABC 中,∠C=90°,∠A=30°,∴BC= AB= ×6=3,故选:A .本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.4、B【解析】根据立方根的定义即可判断A ;根据根的判别式即可判断B ;求出方程x 2-3=(x-1)2的解,即可判断C ;求出x-2=0的解,即可判断D .【详解】A 、x 3+2=0,x 3=﹣2,xB 、x 2+2x +2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C =x ﹣1,两边平方得:x 2﹣3=(x ﹣1)2,解得:x =2,经检验x =2是原方程的解,即原方程有实数根,故本选项不符合题意;D 、=0,去分母得:x ﹣2=0,解得:x =2,经检验x =2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B .本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.5、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误.211x x x ---④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B .本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.6、B 【解析】先证明是的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】的对角线、相交于点,,点是的中点,,是的中位线,,.故选:.本题考查了平行四边形的性质、三角形中位线定理,熟练掌握平行四边形的性质,证出是的中位线是解决问题的关键.7、D 【解析】分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)OE ABC △ ABCD Y AC BD O ∴OB OD = E CD ∴CE DE =∴OE BCD V 8BC cm =∴142OE BC cm ==B OE BCD V根据他们相应的展开图分别计算比较:图①:;图②:;图③:.故应选D.点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.8、B 【解析】的大小,根据数的大小,可得答案.【详解】,,对应的点可能是B 点,故选B .本题考查了实数与数轴,利用被开方数越大算术平方根越大得出是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、两组对边分别相等的四边形是平行四边形.【解析】根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.故答案是:两组对边分别相等的四边形是平行四边形.10、1【解析】解∵等腰三角形的两条边长分别是3cm 、7cm ,∴当此三角形的腰长为3cm 时,3+3<7,不能构成三角形,故排除,12A C cm ==12A C ==12A C ==>>23<< 021<-<∴2-23<<∴此三角形的腰长为7cm ,底边长为3cm ,∴此等腰三角形的周长=7+7+3=1cm ,故答案为:1.11、2.1.【解析】连接CP ,利用勾股定理列式求出AB ,判断出四边形CFPE 是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP ⊥AB 时,线段EF 的值最小,然后根据三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP .∵∠ACB=90°,AC=3,BC=1,∴,∵PE ⊥AC ,PF ⊥BC ,∠ACB=90°,∴四边形CFPE 是矩形,∴EF=CP ,由垂线段最短可得CP ⊥AB 时,线段EF 的值最小,此时,S △ABC =BC•AC=AB•CP ,即×1×3=×5•CP ,解得CP=2.1.∴EF 的最小值为2.1.故答案为2.1.12、y=2x+1.【解析】根据“上加下减”的原则进行解答.5==12121212【详解】直线y=2x 向上平移1个单位所得的直线解析式是y=2x+1.故答案为y=2x+1.本题考查了一次函数的平移,熟练掌握平移原则是解题的关键.13、15.1【解析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】根据题意得:(分),答:他最终得分是15.1分.故答案为:15.1.本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(1);(3)见解析【解析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(1)先判断出CD ,进而得出△CDE 的周长为()CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 1+DB 1=DE 1,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,16516313215.4532⨯+⨯+⨯=++∴∠1+∠3=90°,∠1+∠3=90°,∴∠1=∠1.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(1)∵∠DCE =90°,CD =CE .∴由勾股定理可得CD.∴△CDE 周长等于CD +CE +DE ==.∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =.此时AD =CD =∴当CD 时,△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:.在Rt △CDE 中:.∴.此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB时,CD 最短是解本题的关键.15、AC =.【解析】首先利用勾股定理求得对角线的长,然后求得其一半的长,再次利用勾股定理求得的长后乘以2即可求得的长.2CD (2CD 1122BD AB ==⨯==222BE BD DE +=222AD BD DE ∴+=222CD CE DE +=222CE CE DE ∴+=2222AD BD CE +=BD OD AO AC【详解】解:,,,,四边形是平行四边形,,,,本题考查了平行四边形的性质,解题的关键是两次利用勾股定理求解相关线段的长.16、y=2x+1【解析】设一次函数的解析式为y=kx+b ,然后将A 、B 两点代入解析式列式计算即可.【详解】解:设一次函数的解析式为y=kx+b ,因为一次函数的图象经过A (﹣2,﹣3),B (1,3)两点所以, 解得:k=2,b=1. ∴函数的解析式为:y=2x+1.本题考查的是待定系数法求解一次函数解析式,能够掌握待定系数法求解解析式的方法是解题的关键.17、 (1) 150°;(2)【解析】(1)连接BD ,首先证明△ABD 是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC 是直角三角形,进而可得答案;(2)过B 作BE ⊥AD ,利用三角形函数计算出BE 长,再利用△ABD 的面积加上△BDC 的面积可得四边形ABCD 的面积.【详解】(1)连接BD ,AD BD ⊥ 10AB =6AD =8BD ∴== ABCD 4OD OB ∴==OA OC =AO ∴==2AC AO ∴==233k b k b -+=-⎧⎨+=⎩∵AB=AD,∠A=60°,∴△ABD 是等边三角形,∴∠ADB=60°,DB=4,∵42+12=(2,∴DB 2+CD 2=BC 2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B 作BE⊥AD,∵∠A=60°,AB=4,,∴四边形ABCD 的面积为:AD•EB+DB•CD=+2.18、详见解析【解析】首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形12121212//AB CD AB CD =//EF CD EF CD =//AB EF AB EF =ABCD //AB CD AB CD=CDEF //EF CD EF CD =//AB EF AB EF=AEFB此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】首先根据数轴的含义,得出,然后化简所求式子,即可得解.【详解】根据数轴,可得∴原式故答案为.此题主要考查绝对值的性质,熟练掌握,即可解题.20、【解析】函数与的图象的交点由图象可直接得到答案,以交点为分界,交点左边,结合图象可得答案.【详解】解:由图象可得:函数与的图象交于点,关于x 的不等式的解集是.故答案为:.此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息,掌握数形结合思想的应用.21、m >52b +0,20a b a +-<>,02b a a ><<0,20a b a +-<>222a a b a a b b =--+=-++=+2b +x 2<-y kx =3y x b 2=-+3kx x b 2>-+y kx =3y x b 2=-+()M 2,1-3kx x b 2>-+x 2<-x 2<-【解析】已知反比例函数的图象在第二、四象限,所以,解得m >5,故答案为:m >5.本题考查反比例函数的性质,掌握反比例函数的性质是解本题的关键22、1【解析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴,,∠BAC=45°,∵12+()2=32,∴∠DAC=90°,∴∠BAD=90°+45°=1°,故答案是:1.考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.23、【解析】将分式方程中的换,则=,代入后去分母即可得到结果.【详解】解:根据题意得:,去分母得:.故答案为:.此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,5m y x -=50m ->=2320y y -+=21x y x -=221x x -2y 2y 3y +=2320y y -+=2320y y -+=根据方程特点设出相应未知数,解方程能够使问题简单化.二、解答题(本大题共3个小题,共30分)24、 (1);(2)每件童装降价元时,平均每天盈利元.【解析】(1)根据每降价1元,可多售出3件,降价x 元,则可多售出3x 件,由此即可求得答案;(2)根据总利润=单件利润×数量列出方程,解方程即可得答案.【详解】(1)若每件童装降价元,每天可售出(30+3x)件,每件盈利(100-60-x)元,故答案为:;由题意得:,化简得:,解得:,要让利顾客,取,答:每件童装降价元时,平均每天盈利元.本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.25、(1)见解析 (2)见解析 (3)B 2(4,-2)、C 2(3,-4)【解析】(1)首先将A 、B 、C 点的坐标向右平移5单位,在将其连接即可.(2)首先将A 、B 、C 点的坐标关于原点的对称点,在将其连接即可.(3)观察直角坐标写出坐标.【详解】(1)首先将A 、B 、C 点的坐标向右平移5单位,并将其连接如图所示.(2)首先将A 、B 、C 点的坐标关于原点的对称点,在将其连接如图所示.(3)根据直角坐标系可得B 2(4,-2)、C 2(3,-4)()30310060x x +--(),201800x ()()303x 10060x +--,()2()()303x 10060x 1800+--=2x 30x 2000-+=12x 10x 20==, x ∴20201800本题主要考查直角坐标系的综合题,应当熟练掌握.26、【解析】先根据平方差和完全平方公式化简,再进行加减运算即可.【详解】解:原式===本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.3-+()()4331---+14-+3-+。

浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)

浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)

效实中学新高一数学能力测试试题卷一、填空题1. 已知 0x 是关于 x 的方程 210x ax −−=的根. 当 32a =− 时, 0x = ___; 当2a =时,3001x x −=_______ 【答案】 ①. 12或2− ②. 8+或8− 【解析】【分析】直接解方程可得第一空,利用整体的思想及方程的思想可先化简代数式,并代入方程的根计算即可得第二空.【详解】显然32a =−时,方程可化为()()22320212x x x x +−==−+, 解之得012x =或02x =−; 2a =时,有202101x x x −−=⇒=+01x =,且20021x x =+, 对于()()()()2200030000011222141xx x x x x x x x −++−===+,当01x =+时,0448x +=+当01x =时,0448x +=−. 故答案为:12或2−;8+8−. 2. 已知实数a ,b ,c 满足2221a b c ++=,则ab bc ca ++的最小值为___,此时 22a b ab ++=______ 【答案】 ①. 12−##0.5− ②. 12##0.5 【解析】【分析】由()20a b c ++≥求出ab bc ca ++的最小值,此时()c a b =−+,再将两边平方,代入2221a b c ++=求出22a b ab ++. 【详解】因为()()222220a b c ab bc ca a b c +++++=++≥,所以()2221122ab bc ca a b c ++≥−++=−,当且仅当0a b c ++=时取等号,所以ab bc ca ++的最小值为12−, 此时()c a b =−+,则()()2222212c a b a ab b =−×+=++, 则222222212a ab b b a b c a +++++=+=, 所以2212a b ab ++=.故答案为:12−;123. 对实数m ,n .定义运算 “⊗”为: m n mn n ⊗=+. 已知关于x 的方程()14x a x ⊗⊗=−.若该方程有两个相等的实数根,则实数a 的值是___,若该方程有两个不等负根,则实数a 的取值范围是___. 【答案】 ①. 0 ②. 0a > 【解析】【分析】首先化简()x a x ⊗⊗,即可得到方程()()2414110a x a x ++++=,再根据()410Δ0a +≠= 计算第一空,由根判别式及韦达定理得到不等式组,即可得到第二空. 【详解】因为a x ax x ⊗=+,所以()()()()()()211x a x x ax x x ax x ax x a x a x ⊗⊗=⊗+=+++=+++,又()14x a x ⊗⊗=−,所以()()211104a x a x ++++=, 即()()2414110a x a x ++++=, 若该方程有两个相等的实数根,则()()()2410Δ1611610a a a +≠ =+−+= ,解得0a =; 若该方程有两个不等负根,则()()()()2410Δ16116101041a a a a+≠=+−+> >+ ,解得0a >, 所以实数a 的取值范围是0a >. 故答案为:0;0a >4. 如图,AB 是半圆O 的直径,弦AD ,BC 相交于点P , 60DPB ∠= ,D 是弧BC 的中点. 则ACAB的值为_______的【答案】12##0.5 【解析】【分析】依题意可得90ACB ∠= ,即可求出30CAD ∠= ,再由D 是弧BC 的中点,得到CAD BAD ∠=∠,即可求出CAB ∠【详解】∵AB 是半圆O 的直径, ∴90ACB ∠= ,∵60APC DPB ∠=∠= , ∴30CAD ∠= ,∵D 是 BC的中点, ∴30∠=∠= CAD BAD , ∴60CAB ∠= , ∴1cos cos 602AC CAB AB ∠===. 故答案为:12. 5. 记()()2211xyx y A xy−−=. 若a b c abc ++=,则abbc ca A A A A =++的值为_________【答案】4 【解析】【分析】依题意a 、b 、c 均不为0,根据所给定义表示出ab A ,bc A ,ca A ,再通分计算可得. 【详解】依题意a 、b 、c 均不0,又()()222222111aba b a b a b A abab−−−−+==,为()()222222111bcb c c b c cb A bcb −−−−=+=,()()222222111cac a c a c ca A caa −−−−=+=,且a b c abc ++=, 所以222222222222111ab bc ca bc ac a b a b c b c b c a c a A A A A ab −−−+++−−−=++=++222222222222a a a b b babc abc c a c b c a b c a c b c b b c a c a abc −−+−−−+−+++= 222222222222a a cc a c b c a b c a c b c b b c a c a a b b ab b−−++−−−−=+++ ()()()222222a a cabc a c b c ab a b c c b cb a b c c a ca b b a b c a b −−+++−−+++−−+++=222222222222abc a c b c a b ab abc c b abc b c c b c a ca abc c aabca ab b −−+++−−=++++−−++ 44abcabc=. 故答案为:46. 若一条直线过ABC 的内心,且平分ABC 的周长. 则该直线分ABC 所成的两个图形的面积之比为_______ 【答案】1:1 【解析】【分析】设ABC 的内心为O ,内切圆的半径为r ,作出图形,再由面积公式计算可得. 【详解】设ABC 的内心为O ,内切圆的半径为r ,内切圆与三边的切点分别为D 、E 、F , 则OE OF OD r ===,且OE BC ⊥,OF AC ⊥,OD AB ⊥,过ABC 的内心,且平分ABC 的周长的直线m ,与BC 交于点M ,AC 交于点N , 则AB AN BM CN CM ++=+,又()12ABMN ANO ABO BMO S S S S AN AB BM r =++=++ , ()12CMN CNO CMO S S S CN CM r =+=+ , 所以ABMN CMN S S = ,即该直线分ABC 所成的两个图形的面积之比为1:1. 故答案为:1:17. 如果甲的身高数或体重数至少有一项比乙大. 则称甲不亚于乙. 在 100 个小伙子中, 如果某人不亚于其他 99 人, 就称他为棒小伙子, 那么 100 个小伙子中的棒小伙子最多可能有 _________人. 【答案】100 【解析】【分析】先讨论有两个、三个小伙子时棒小伙子的最多个数,再设想100个人时的极端情况,分类讨论即可. 【详解】先考虑两个小伙子的情形,如果甲的身高>乙的身高,且乙的体重>甲的体重,可知“棒小伙子”最多有2人.再考虑三个小伙子的情形,如果甲的身高>乙的身高>丙的身高,且丙的体重>乙的体重>甲的体重,可知“棒小伙子”最多有3人.由此可以设想,当有100个小伙子时,设每个小伙子为()1,2,,100i A i = ,其身高为i x ,体重为i y , 当121100i i x x x x x +>>>>>> 且1009911 i i y y y y y +>>…>>…>> 时, 由身高看,i A 不亚于12100,,i i A A A ++ ,由体重看,i A 不亚于1121,,,i i A A A − , 所以,i A 不亚于其他99人,i A 为“棒小伙子”, 因此,100个小伙子中的“棒小伙子”最多可能有100个. 故答案为:100.8. 如果直角三角形的三边都是 200 以内的正整数, 且较长的两边长相差 1 . 那么这样的直角三角形有____________个. 【答案】9 【解析】【分析】利用勾股定理及数的性质计算即可.【详解】不妨设该直角三角形的是三边长依次为,,1x y y +,其中200,N x y x y ∗≤<∈、, 由勾股定理知()2222121x y y x y +=+⇒=+,显然21y +为大于1且小于401的奇数,所以x 为大于1且小于20的奇数,则3,5,7,9,11,13,15,17,19x =,即满足题意的直角三角形有9个. 故答案为:99. 用()S n 表示自然数n 的数字和. 例如: ()10101S =+=,()90990918S =++=.若对任意自然数n ,都有()n S n x +≠. 则满足这个条件的最大的两位整数x 的值是_________. 【答案】97 【解析】【分析】列出90,,80n = 时()n S n +的值,再判断80n <且n 为自然数时()n S n +的取值情况,即可得解.【详解】因()909099S +=,()8989106S +=,()8888104S +=, ()8787102S +=,()8686100S +=,()858598S +=,()848496S +=, ()838394S +=,()828292S +=,()818190S +=,()808088S +=, 当80n <且n 为自然数时,()797995n S n +≤++=, 当90n >且n 为自然数时,nn +SS (nn )>99, 所以若对任意自然数n ,都有()n S n x +≠, x 的值为97. 故答案为:9710. 把一副扑克牌从上到下按照大王、小王、黑桃 A 、红桃 A 、方块 A 、梅花 A 、黑桃 2 、 红桃 2、方块 2、梅花 2、...、黑桃 K 、红桃 K 、方块 K 、梅花 K 的顺序依次叠成一叠,然后执行步骤①: 把整叠牌最上面一张丢掉, 再执行步骤②: 把整叠牌最上面一张移到整叠牌的最下面, 再执行步骤①, 再执行步骤②, ...... 步骤①和步骤②依次执行直至整叠牌只剩下一张,请问:最后剩下的这张牌是_________. 【答案】红桃J 【解析】【分析】根据规律分析每轮丢掉的牌与剩下的牌,即可分析出最后剩下的牌. 【详解】不妨将54张牌按照上述顺序依次标号为1,2, ,54, 第一轮将丢掉1,3,5, ,53;第二轮将丢掉2,6,10, ,54,此时需将4号移到整叠牌的最下面,剩下的牌从上到下按顺序依次为8,12,16,20,24,28,32,36,40,44,48,52,4; 第三轮将丢掉:8,16,24,32,40,48,4,此时需将12号移到整叠牌的最下面, 为剩下的牌从上到下按顺序依次为20,28,36, 44,52,12;第四轮将丢掉:20,36, 52,剩下的牌从上到下按顺序依次为28,44,12; 第五轮将丢掉:28,12,故最后剩下的为44; 又241042+×=,所以第44张为红桃J , 故最后剩下的这张牌是红桃J . 故答案为:红桃J11. 若实数 a b , 满足a b +=,则 a 的取值范围为_________. 【答案】0a ≥ 【解析】【分析】利用根式的意义先确定0a ≥,再利用换元法及反比例函数、二次函数的性质计算即可.【详解】由题意易知00a b a b +≥ −≥ ,所以0a ≥,①显然0a =时,0b =,②当0a >时,不妨设b ta =, 此时()()101110a b t a t a b t a +=+≥⇒−≤≤−=−≥,则()()()21141t a t a t +=⇒+=−若1t =,则00a b a b −=⇒== 若1t =−,则00a b a b +=⇒==,也不符合题意,所以11t −<<,即()()()()()2222418418411181142111t t a t t t t t −−+ ===−=−− ++ +++, 易知11t −<<时1101221t t<+<⇒<+, 令11m t =+,则211842a m =−− ,由二次函数的性质可知211180242a >−−= , 综上,0a ≥. 故答案为:0a ≥.12. 已知()()21R f x ax x =−∈,若关于 x 的方程 ()f x x = 与 ()()f f x x = 都有解,且两个方程的解完全相同,则实数 a 的取值范围是_________. 【答案】1344a −≤≤ 【解析】【分析】分0a =与0a ≠进行讨论,当0a ≠时结合一元二次方程的根的判别式与条件两个方程可知2210a x ax a +−+=要么没有实根,要么实根是方程210ax x −−=的根,计算即可得. 【详解】由已知()210f x x ax x =⇒−−=,()()()22110f f x x a ax x =⇒−−−= ()()342222221110a x a x x a axx a x ax a ⇒−−+−=−−+−+=,由题意可知210ax x −−=有实根, ①当0a =时,有()1f x =−,即1x =−, 令()()f f x x =,即()11f x −=−=,符合要求;②当0a ≠时,()f x x =有解,则140a ∆=+≥,解得14a ≥−, 要满足题意,此时2210a x ax a +−+=要么没有实根, 要么实根是方程210ax x −−=的根,若2210a x ax a +−+=没有实根,则()22410a a a ∆=−−<,解得34a <; 若2210a x ax a +−+=有实根且实根是方程210ax x −−=的根,则由方程210ax x −−=,得22a x ax a +,代入2210a x ax a +−+=, 有210ax +=.由此解得12x a =−,再代入得111042a a +−=,由此34a =, 综上所述, a 的取值范围是1344a −≤≤.故答案为:1344a −≤≤.二、解答题13. 已知函数()22f x x bx c =−++在1x =时有最大值1. (1)求实数⋅b c 的值;(2)设0m n <<,若当m x n ≤≤时,()f x 最小值为1n ,最大值为1m,求m ,n 的值. 【答案】(1)4− (2)1m =,n =【解析】的【分析】(1)依题意可得()1411b f = =,即可求出b 、c 的值;(2)由(1)可得()()2211f x x =−−+,即可得到1m ≥,从而得到()1f m m =且()1f n n=,从而得到m ,n 是关于x 的方程()21211x x−−+=的两个解,即可求出m 、n 的值.【小问1详解】因()22f x x bx c =−++在1x =时有最大值1, 则()14121bf b c = =−++=,解得41b c = =− ,所以4b c ⋅=−;【小问2详解】由(1)可得()()22241211f x x x x =−+−=−−+, 则()1f x ≤,又0m n <<,所以11m≤,则1m ≥, 所以当m x n ≤≤时()f x 单调递减,所以()()21211f m m m=−−+=,且()()21211f n n n=−−+=, 所以m ,n 是关于x 的方程()21211x x−−+=的两个解,即()()212210x x x −−−=, 解方程得11x =,2x =3x =, 又1m n ≤<,所以1m =,n =.为。

湖南省长沙市2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷含答案

湖南省长沙市2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷含答案

2024级高一综合能力检测试卷数学(答案在最后)时量:90分钟满分100分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1⨯万1⨯亿.若1兆10m=,则m 的值为()A.4B.8C.12D.16【答案】D 【解析】【分析】由指数幂的运算性质即可求解.【详解】1万=410,所以1亿=810,所以1兆=8816101010⨯=,所以16m =.故选:D2.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16D.14【答案】D 【解析】【分析】根据概率的计算公式即可求解.【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为61244=,故选:D3.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为()A.2B.101- C.5D.51【答案】B 【解析】【分析】利用勾股定理和数轴的知识求得正确答案.【详解】由于223110AC =+=,所以点M 所表示的数为)2103101+=.故选:B4.若关于x 的不等式组()532223x x x x a +⎧≥-⎪⎨⎪+<+⎩恰好只有四个整数解,则a 的取值范围是()A.53a <-B.5433a -≤<-C.523a -<-≤ D.523a -<<-【答案】C 【解析】【分析】化简不等式组,由条件列不等式求a 的取值范围.【详解】解不等式532x x +≥-,得11x ≤,解不等式()223x x a +<+,得23x a >-,由已知可得7238a ≤-<,所以523a -<-≤.故选:C.5.在ABC V ,3AC =,4BC =,5AB =,点P 在ABC V 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是()A.内含B.相交C.外切D.相离【答案】B 【解析】【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得.【详解】由圆A 与圆P 内切,则312PA =-=,5AB =,又点P 在ABC V 内,则PA PB AB +>,且PB AB <,所以523PB AB PA >-=-=,且5PB <,则3232PB -<<+,由圆B 的半径为2,圆P 的半径为3,所以圆P 与圆B 相交.故选:B.6.对于正整数k 定义一种运算:1()[][]44k k f k +=-,例:313(3)[[44f +=-,[]x 表示不超过x 的最大整数,例:[3.9]3=,[1.8]2-=-.则下列结论错误的是()A.()10f =B.()0f k =或1C.()()4f k f k +=D.()()1f k f k +≥【答案】D 【解析】【分析】根据给定的定义,逐项计算判断即可.【详解】对于A ,11(1)[][]00024f =-=-=,A 正确;对于B ,取4,1,2,3,4k n i i =+=,n 为自然数,当4i =时,1()[1][1][1]044f k n n =++-+==,当3i =时,33()[1][]1([])144f k n n n n =+-+=+-+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+-+=+-+=,B 正确;对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+-+=+-+=,C 正确;对于D ,414313(31)[[0,(3)[][]14444f f +++=-==-=,即(31)(3)f f +<,D 错误.故选:D7.如图,点A 为反比例函数()10y x x=-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40y x x=>的图象交于点B ,则AO BO 的值()A.12B.14C.33D.13【答案】A 【解析】【分析】设121214,,,A x B x x x ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AE EO AOOF BF BO,可得答案.【详解】设()12121214,,,0,0A x B x x x x x ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF ,所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214--=x x x x ,即22124x x =,所以122x x =-,所以12121211==-==-=A Ex x x O A BO OF x .故选:A.8.若二次函数的解析式为()()()2215y x m x m =--≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是()A.124q -≤≤B.50q -≤≤ C.54q -≤≤ D.123q -≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =--+,可求q 的取值范围.【详解】因为二次函数的解析式为()()()2215y x m x m =--≤≤,所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称,所以412p p m ++=+,所以1[0,4]p m =-∈,又()()()()2222121223(1)4q p m p m m m m m m =--=----=-++=--+,当1m =,max 4q =,当5m =,min 12q =-,所以124q -≤≤.故选:A.二、填空题:本题共4小题,每小题4分,共16分.9.分解因式:432449a a a -+-=______.【答案】2(23)(1)(3)a a a a -++-【解析】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.【详解】43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a -+-=--=-+--=-++-.故答案为:2(23)(1)(3)a a a a -++-10.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】先求得2l 的倾斜角,进而求得直线2l 对应的函数表达式.【详解】直线1:1l y x =-与x 轴交于点()1,0A ,直线1:1l y x =-的斜率为1,倾斜角为45︒,所以2l 的倾斜角为60︒所以直线2l 对应的函数表达式是)1y x =-=-.故答案为:y =-11.若关于x 的分式方程22411x a x ax x --+-=-+的解为整数,则整数a =______.【答案】1±【解析】【分析】由分式方程有意义可知1x ≠且1x ≠-,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程22411x a x a x x --+-=-+可知,1x ≠且1x ≠-.方程可化为222211x a x a x x --+-=+-+,即2211a ax x -+=-+,解得2x a=,由1x ≠且1x ≠-,所以2a ≠且2a ≠-.由a 为整数,且x 为整数,则当1a =-,2x =-,或当1a =,2x =时满足题意.所以1a =±.故答案为:1±.12.如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【解析】【分析】因为BH CD ⊥于点H ,所以点H 在以BE 为直径的圆上运动,当AH 与圆O 相切时,BAH ∠最大,据此在OHA 求解即可.【详解】12//,//,AC BD l l ∴四边形ACBD 是平行四边形12AE BE AB ∴==A 为定点,且2//AB l AE ∴为定值,BH CD ⊥ 90BHE ∠∴= ,如图,取BE 的中点O ,则点H 在以BE 为直径的圆上运动,此时1123OE BE OA ==,当AH 与圆O 相切时,BAH ∠最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13.某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86889091919191929298b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委9191m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上:根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②<(2)甲;92【解析】【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案;(2)根据方差的定义和平均数的意义求解即可.【小问1详解】①由题意得,教师评委打分中91出现的次数最多,故众数91m =;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则1(8890919191919292)90.758x =⨯+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925⨯++++=,乙选手的平均数为1(9192929292)91.85⨯++++=,因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数,因为5名专业评委给乙选手的打分为91,92,92,92,92,乙选手的方差2221[4(9291.8)(9191.8)]0.165S =⨯⨯-+-=乙,5名专业评委给丙选手的打分为90,94,90,94,k ,所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>,k 为整数,k ∴的值为92.14.根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=︒时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求:(1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)任务:(1)根据素材求底座半径OA ;(2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m )②设计一种符合要求的方案.【答案】(1)125厘米;(2)19.6厘米(3)①64.580FC ≤<;②70cm ,90cm (答案不唯一).【解析】【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =-=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =-,即可得0.60.28(160)12x x --≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =-=(厘米);(答案不唯一,只要在FC 的长度范围内即可).【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=-=-厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OG r =-厘米,由勾股定理得:222OA OG AG =+,即:222(5)35r r =-+,解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--,在Rt ABK △中,cm,=70cm AK h AB =,由勾股定理得:2222270BK AB AK h =-=-,在Rt OBK 中,()125cm,125cm OK h OB =-=,由勾股定理得:22222125(125)BK OB OK h =-=--,222270125(125)h h ∴-=--,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB Q ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米,在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===,cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米,∴设椅背FC x =厘米,则坐垫(160)EC x =-,椅背长度小于坐垫长度,160x x ∴<-,解得:80x <,在Rt CQE △中,cos 0.28CQ QCD CE∠==,0.280.28(160)CQ CE x ∴==-厘米,在Rt CFP △中,cos CP OCF CF∠=,cos cos530.6CP CF OCF x x ∴=⋅∠=⋅︒≈(厘米),F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴-≥,即:()12AC CP AC CQ +-+≥,12CP CQ ∴-≥,0.60.28(160)12x x ∴--≥,解得:64.5x ≥,又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15.定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x ⎧+≥⎪=⎨-+<⎪⎩(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =-++关于直线x m =的“迭代函数”图象经过()1,0-,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a -,(),C a a --,(),D a a -,其中0a >.①若函数6y x =关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值;②若6a =,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥⎧=⎨-+<⎩(2)12m -=或172m +=,(3)①3;②()5,1,12⎛⎫-∞-⋃- ⎪⎝⎭.【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0-与函数243y x x =-++的图象的关系,再求()1,0-关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x =关于直线2x =-的“迭代函数”的解析式,作函数图象,观察图象确定a 的值;②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.【小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N ,点()2,3M 关于直线1x =的对称点为0,3,点()3,4N 关于直线1x =的对称点为()1,4-,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<,则34b k b =⎧⎨-+=⎩,解得13k b =-⎧⎨=⎩,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥⎧=⎨-+<⎩;【小问2详解】取1x =-可得,2431432y x x =-++=--+=-,故函数243y x x =-++的图象不过点()1,0-,又点()1,0-关于直线x m =的对称点为()21,0m +,由已知可得()()20214213m m =-++++,1m >-,所以12m -=或12m +=,【小问3详解】①当0x >或20x -≤<时,函数6y x =关于直线2x =-的“迭代函数”的图象的解析式为6y x =,当2x <-时,设点s 在函数6y x =关于直线2x =-的“迭代函数”的图象上,则点()4,x y --在函数6y x =的图象上,所以64y x =--,所以函数6y x =关于直线2x =-的“迭代函数”的解析式为[)()()6,2,00,6,,24x x y x x∞∞⎧∈-⋃+⎪⎪=⎨⎪∈--⎪--⎩,作函数6y x=关于直线2x =-的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x =,当0x <或0x n <<时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x=的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为()()()6,,6,,00,2x n x y x n n x∞∞⎧∈+⎪⎪=⎨⎪∈-⋃⎪-⎩,当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线=0的“迭代函数”的解析式为6,06,0x x y x x⎧>⎪⎪=⎨⎪-<⎪⎩,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=,当x n <时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x =的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n x y x n n x ∞∞⎧∈⋃+⎪⎪=⎨⎪∈-⎪-⎩,当10n -<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有6个公共点,当52n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当7522n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当72n =-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当762n -<<-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞⎛⎫--⋃- ⎪⎝⎭,.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值;(2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)45【解析】【分析】(1)把点()1,0A -,()3,0B 代入抛物线方程,解出抛物线的解析式,设(0,)P p ,求出直线AP 解析式为y px p =+,联立方程223y px p y x x =+⎧⎨=-++⎩,可得2(3,4)E p p p --+,同理可得234(,)393p p p D --+,即可得1S ,2S ,化简可得结果;(2)作点N 关于直线l 的对称点N ',连接MN ',过M 点作MF NN '⊥于F ,求出(1,0)K ,设直线MN 解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =-,设2(,23)M m m m -++,2(,23)N n n n -++,求出2(,25)N n n n '-+,可得QM QN QM QN MN ''+=+≥,结合2(,23)F n m m -++,可得222421780MN MF N F k k =+=++'',从而得到QM QN +的最小值.【小问1详解】把点()1,0A -,()3,0B 代入抛物线方程2y x bx c =-++得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,所以抛物线方程为:223y x x =-++,设(0,)P p ,直线AP 解析式为11y k x b =+,把点()1,0A -,(0,)P p 代入得:1110k b b p -+=⎧⎨=⎩,所以线AP 解析式为y px p =+,联立223y px p y x x =+⎧⎨=-++⎩,解得:10x y ⎧⎨⎩=-=或234x p y p p =-⎧⎨=-+⎩,所以2(3,4)E p p p --+,设直线BP 解析式为22y k x b =+把点()3,0B ,(0,)P p 代入得:22230k b b p +=⎧⎨=⎩,直线BP 解析式为3p y x p =-+联立2323p y x p y x x ⎧=-+⎪⎨⎪=-++⎩,解得:30x y =⎧⎨=⎩或233493p x p p y -⎧=⎪⎪⎨⎪=-+⎪⎩可得234(,)393p p p D --+,所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p ⎛⎫=-=⋅-=-+-=- ⎪⎝⎭ ,()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =-=⋅-=-+-=- ,所以2122192(3)92(3)S p p S p p -=-=【小问2详解】作点N 关于直线l 的对称点N ',连接MN ',过M 点作MF NN '⊥于F ,如图:因为2223(1)4y x x x =-++=--+,所以抛物线223y x x =-++的对称轴为1x =,所以(1,0)K ,设直线MN 解析式为y kx d =+,把点(1,0)K 代入得:=0k d +,所以=d k -,所以直线MN 的解析式为y kx k=-设2(,23)M m m m -++,2(,23)N n n n -++,联立223y x x y kx k⎧=-++⎨=-⎩,可得2(2)30x k x k +---=则2m n k +=-,3mn k =--,因为N ,N '关于直线l :4y =对称,所以2(,25)N n n n '-+,则QM QN QM QN MN ''+=+≥,又2(,23)F n m m -++,所以222()2N F m n m n =+-++',FM m n =-,在Rt MFN ' 中,2222222()2()2MN MF N F m n m n m n ⎡⎤=+=-++-++⎣'⎦',222()4()22()2m n mn m n mn m n ⎡⎤=+-++--++⎣⎦222(2)4(3)(2)2(3)2(2)2k k k k k ⎡⎤=----+------+⎣⎦421780k k =++所以当0k =时,2MN '最小为80,此时MN '=所以QM QN +≥,即QM QN +的最小值为。

2024-2025学年四川省成都市锦江区师一学校高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市锦江区师一学校高一新生入学分班质量检测数学试题【含答案】

2024-2025学年四川省成都市锦江区师一学校高一新生入学分班质量检测数学试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A .15°或30°B .30°或45°C .45°或60°D .30°或60°2、(4分)将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是()A .B .C .D .3、(4分)如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展平后再一次折叠,使点D 落到MN 上的点F 处,则FAB 的度数是()A .25°B .30°C .45°D .60°4、(4分)如图,平行四边形的对角线交于点,且,的周长为25,则平行四边形的两条对角线的和是()A .18B .28C .38D .465、(4分)(2016广西贵港市)则x 的取值范围是()A .x <1B .x ≤1C .x >1D .x ≥16、(4分)无论x 取什么值,下面的分式中总有意义的是()A .1x x -B .22-x x 1+C .21x x +D .()22x x 1+7、(4分)如果平行四边形一边长为12cm ,那么两条对角线的长度可以是()A .8cm 和16cm B .10cm 和16cm C .8cm 和14cm D .10cm 和12cm 8、(4分)如图,ABCD 的对角线AC 、BD 交于点O ,顺次联结ABCD 各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①AC ⊥BD ;②ABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是()A .1个;B .2个;C .3个;D .4个.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.10、(4分)已知ABC ∆中,90ACB ︒∠=,点D 为AB 边的中点,若6CD =,则AB 长为__________.11、(4分)若分式11x x --的值为零,则x 的值为______.12、(4分)x 的取值范围是_____.13、(4分)一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是.三、解答题(本大题共5个小题,共48分)14、(12分)因式分解:(1)m 2n ﹣2mn+n ;(2)x 2+3x(x ﹣3)﹣915、(8分)如图所示,点O 是矩形ABCD 对角线AC 的中点,过点O 作EF ⊥AC ,交BC 交于点E ,交AD 于点F ,连接AE 、CF ,求证:四边形AECF 是菱形.16、(8分)(问题原型)在图①的矩形MNPQ 中,点E 、F 、G 、H 分别在NP 、PQ 、QM 、MN 上,若1234∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形;(操作与探索)在图②,图③的矩形ABCD 中,4AB =,8BC =,点E 、F 分别在BC 、CD 边的格点上,试利用正方形网格分别在图②、图③上作矩形ABCD 的反射四边形EFGH ;(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形MNPQ 中,3MN =,4NP =,则其反射四边形EFGH 的周长为______.17、(10分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,1;2班:70,80,80,80,60,90,90,90,1,90;3班:90,60,70,80,80,80,80,90,1,1.整理数据:分数人数班级6070809011班016212班113a 13班11422分析数据:平均数中位数众数1班8380802班83c d 3班b 8080根据以上信息回答下列问题:(1)请直接写出表格中,,,a b c d 的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?18、(10分)如图,直线3y kx =+与x 轴、y 轴分别相交于E F 、.点E 的坐标为()40-,,点P 是线段EF 上的一点.(1)求k 的值;(2)若OPE ∆的面积为2,求点P 的坐标.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,四边形ABCD 中,AC m =,BD n =,且AC BD ⊥,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点得到四边形2222A B C D ,如此进行下去,得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积是________.20、(4分)在Rt △ABC 中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D ,则CD 的长是______.21、(4分)小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.22、(4分)如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.23、(4分)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是_____________________.(只需填上一个正确的条件)二、解答题(本大题共3个小题,共30分)24、(8分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A 、B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样.(1)求A 、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800元,B 型电动自行车每辆售价为3500元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.25、(10分)如图,在边长为1的小正方形组成的方格纸中,△ABC 的顶点都在方格纸的格点上,经过平移,△ABC 的顶点C 移到了点C ′的位置.(1)画出平移后的△A ′B ′C ′(点A ′与点A 对应,点B ′与点B 对应)(2)指出平移的方向和平移的距离.26、(12分)某次世界魔方大赛吸引世界各地共900名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到30个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A 区域30名爱好者完成时间统计图,(1)填空:A 区域3×3阶魔方爱好者进入下一轮角逐的有______人.(2)填空:若A 区域30名爱好者完成时间为9秒的人数是7秒人数的3倍,①a =______,b =______;②完成时间的平均数是______秒,中位数是______秒,众数是______秒.(3)若3×3阶魔方赛各个区域的情况大体一致,则根据A 区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的约有多少人?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】试题分析:∵四边形ABCD是菱形,∴∠ABD=12∠ABC,∠BAC=12∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.考点:剪纸问题2、C【解析】根据多边形的内角和定理即可判断.【详解】A.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;B.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;C.剪开后的两个图形都是四边形,它们的内角和都是360°;故此选项符合题意;D.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;故选:C.此题考查多边形的内角和定理,解题关键在于根据剪开后得到的两个图形来判断.3、B【解析】由折叠的性质可得AM=DM=12AD,AD⊥MN,AD=AF,可得AF=2AM,由含30度直角三角形性质可得∠MFA=30°,即可求解.【详解】解:∵对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,∴AM=DM=12AD,AD⊥MN,∴MN∥AB由折叠的性质可得:AD=AF,∴AF=2AM在直角三角形AFM中,有∴∠MFA=30°∵MN∥AB∴∠FAB=∠MFA=30°,故选择:B.本题考查了翻折变换,含30度直角三角形的性质,平行线的性质,证明AF=2AM是本题的关键.4、C【解析】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线作为一个整体求出.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为25,∴OD+OC=25−6=19,∵BD=2OD,AC=2OC,∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=1.故选:C.本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.5、C 【解析】依题意得:100x -≥⎧⎪≠,解得x >1,故选C .6、B 【解析】根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可【详解】解:A.当x =0时,分式无意义,故本选项错误;B.对任意实数,x 2+1≠0,分式有意义,故本选项正确;C.当x=0时,分母都等于0,分式无意义,故本选项错误;D.当x=-1时,分式无意义,故本选项错误.故选B 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.7、B 【解析】根据平行四边形对角线的性质、三角形三边关系定理逐项判断即可得.【详解】如图,设四边形ABCD 是平行四边形,边AB 长为12cm ,对角线AC 、BD 相交于点O 则11OA AC,OB BD22==A 、若8,16AC cm BD cm ==,则4,8OA cm OB cm ==,4812+=不满足三角形的三边关系定理,此项不符题意B 、若10,16AC cm BD cm ==,则5,8OA cm OB cm ==,5812+>满足三角形的三边关系定理,此项符合题意C 、若8,14AC cm BD cm ==,则4,7OA cm OB cm ==,4712+<不满足三角形的三边关系定理,此项不符题意D 、若10,12AC cm BD cm ==,则5,6OA cm OB cm ==,5612+<不满足三角形的三边关系定理,此项不符题意故选:B .本题考查了平行四边形的对角线性质、三角形的三边关系定理,掌握理解平行四边形的性质是解题关键.8、C 【解析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①∵AC ⊥BD ,∴新的四边形成为矩形,符合条件;②∵四边形ABCD 是平行四边形,∴AO=OC ,BO=DO .∵C △ABO =C △CBO ,∴AB=BC .根据等腰三角形的性质可知BO ⊥AC ,∴BD ⊥AC .所以新的四边形成为矩形,符合条件;③∵四边形ABCD 是平行四边形,∴∠CBO=∠ADO .∵∠DAO=∠CBO ,∴∠ADO=∠DAO .∴AO=OD .∴AC=BD ,∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO ,BO=DO ,∴AO ⊥BD ,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、1m 【解析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,4OA ==,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.10、12【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D 为AB 的中点,∴AB=2CD=1,故答案为:1.本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.11、-1【解析】试题分析:因为当10{-10-=≠x x 时分式11x x --的值为零,解得1x =±且1x ≠,所以x=-1.考点:分式的值为零的条件.12、x >2019【解析】根据二次根式的定义进行解答.【详解】x-2019≥0,所以x 的取值范围是x ≥2019.本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.13、3【解析】试题分析:∵一组数据2,3,x ,5,7的平均数是4∴2+3+5+7+x=20,即x=3∴这组数据的众数是3考点:1.平均数;2.众数三、解答题(本大题共5个小题,共48分)14、(1)n(m-1)1;(1)(x -3)(4x +3)【解析】分析:(1)先提取公因式n ,再根据完全平方公式进行二次分解.(1)利用平方差公式及提公因式法分解即可.详解:(1)原式=n (m 1-1m +1)=n (m -1)1.(1)原式=x 1-9+3x (x -3)=(x +3)(x -3)+3x (x -3)=(x -3)(x +3+3x )=(x -3)(4x +3).点睛:此题考查了提公因式法和运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键.完全平方公式:a 1±1ab+b 1=(a±b )1.15、答案见解析【解析】分析:由过AC 的中点O 作EF ⊥AC ,根据线段垂直平分线的性质,可得AF=CF ,AE=CE ,OA=OC ,然后由四边形ABCD 是矩形,易证得△AOF ≌△COE ,则可得AF=CE ,继而证得结论.详解:∵O 是AC 的中点,且EF ⊥AC ,∴AF=CF ,AE=CE ,OA=OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO=∠CEO ,在△AOF 和△COE 中,AFO CEO AOF COE OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOF ≌△COE (AAS ),∴AF=CE ,∴AF=CF=CE=AE ,∴四边形AECF 是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF ≌△COE 是关键.16、操作与探索:见解析:发现与应用:10.【解析】(1)根据网格作出相等的角即可得到反射四边形;(2)延长GH 交PN 的延长线与点A ,证明△FPE ≌△FPB ,根据全等三角形的性质得到AB=2NP,再证明GA=GB,过点G 作GK ⊥NP 于K ,根据等腰三角形的性质求出KB=12AB=4,再利用勾股定理求出GB 的长,即可求出四边形EFGH 的周长.【详解】(1)作图如下:(2)延长GH 交PN 的延长线与点A ,过点G 作GK ⊥NP 于K ,∵∠1=∠2,∠1=∠5,∴∠2=∠5,又PF=PF,∠FPE=∠FPB ,∴△FPE ≌△FPB ,∴EF=BF,EP=PB,同理AH=EH,NA=EN,∴AB=2NP=8,∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,∴∠A=∠B ,∴GA=GB,则KB=12AB=4,∴GB=5=∴四边形EFGH 的周长为2GB=10.此题主要考查矩形的性质,解题的关键是熟知全等三角形的判定与性质.17、(1)4a =,83b =,85,90c d ==;(2)2班成绩比较好;理由见解析;(3)估计需要准备76张奖状.【解析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【详解】(1)由题意知4a =,1906070808080809010010083 () 10b=⨯+++++++++=,2班成绩重新排列为60,70,80,80,80,90,90,90,90,1,∴809085,902c d+===;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)45707630⨯=(张),答:估计需要准备76张奖状.本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.18、(1)k=34(2)(-83,1)【解析】(1)将点E的坐标代入一次函数解析式中,即可得出关于k的一元一次方程,解方程即可得出结论;(2)结合(1)中得k值可得出一次函数解析式,由点E的坐标可得出线段OE的长度,根据三角形的面积公式可求出点P的纵坐标,将点P的纵坐标代入一次函数解析式中即可求出点P的横坐标,由此即可得出结论【详解】(1)将点E(-4,0)代入到y=kx+3中,得:0=-4k+3=0,解得:k=3 4(2)∵k=3 4∴直线EF的解析式为334y x =+∵点E的坐标为(-4,0),∴△OPE=12OP ・1422E E y y =⨯=∴E y =1令334y x =+中y=1,则3134x =+,解得:x=-83故当△OPB 的面积为2时,点P 的坐标为(-83,1)此题考查一次函数图象上点的坐标特征,解题关键在于将已知点代入解析式一、填空题(本大题共5个小题,每小题4分,共20分)19、12n mn +【解析】根据四边形n n n n A B C D 的面积与四边形ABCD 的面积间的数量关系来求其面积.【详解】解:∵四边形ABCD 中,m AC =,n BD =,且AC BD ⊥mn 2=四边形ABCD ∴S 由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDm 的面积是12n mn +.故答案为:12n mn +.本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.20、85或【解析】分两种情况:①当作斜边AB 的垂直平分线PQ ,与BC 交于点D 时,连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,根据AD 2=AC 2+CD 2构建方程即可解决问题;②当作直角边的垂直平分线PQ ,与斜边AB 交于点D 时,连接CD ,根据直角三角形斜边上的中线性质求得CD .解:当作斜边AB 的垂直平分线PQ ,与BC 交于点D 时,连接AD .∵PQ 垂直平分线段AB ,∴DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,AD 2=AC 2+CD 2,∴x 2=32+(1-x )2,解得x=175,∴CD=BC-DB=1-175=85;当作直角边的垂直平分线PQ 或P′Q′,都与斜边AB 交于点D 时,连接CD ,则D 是AB 的中点,∴CD=12AB==综上可知,CD=85.故答案为:85.本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、13随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为615673=++,故答案为:13.本题考查了概率,正确利用概率公式计算是解题的关键.22、135【解析】试题分析:如图,连接EE′,∵将△ABE 绕点B 顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.∴EE′=3,∠BE′E=45°.∵E′E 3+E′C 3=8+1=3,EC 3=3.∴E′E 3+E′C 3=EC 3.∴△EE′C 是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.23、AD ⊥BC 【解析】根据等腰三角形“三线合一”,即可得到答案.【详解】∵在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=.故答案为:AD BC ⊥.本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”,是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)A 、B 两种型号电动自行车的进货单价分别为2500元3000元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20时,y 有最大值,最大值为11000元.【解析】(1)设A 、B 两种型号电动自行车的进货单价分别为x 元、(x+500)元,根据用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样,列分式方程即可解决问题;(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题.【详解】解:(1)设A 、B 两种型号电动自行车的进货单价分别为x 元、(x+500)元,由题意:50000x =60000x+500,解得:x=2500,经检验:x=2500是分式方程的解,答:A 、B 两种型号电动自行车的进货单价分别为2500元3000元;(2)y=300m+500(30﹣m )=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m )=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y 有最大值,最大值为11000元.本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.25、(1)见解析;(2).【解析】(1)直接利用平移的性质得出对应点位置;(2)利用平移的性质结合勾股定理得出平移距离.【详解】(1)如图所示:△A ′B ′C ′即为所求;(2)如图连接CC ′,平移方向是点C 到点C ′的方向,平移距离为:CC '==.此题主要考查了平移变换,正确得出点的平移规律是解题关键.26、(1)4;(2)①1,9;②8.8,9,10;(3)估计在3×3阶魔方赛后进入下一轮角逐的约有120人.【解析】(1)由图知1人6秒,3人1秒,小于8秒的爱好者共有4人;(2)①根据A 区域30名爱好者完成时间为9秒的人数是1秒人数的3倍,可得b=3×3=9,再用数据总数30减去其余各组人数得出a 的值;②利用加权平均数的计算公式列式计算求出平均数,再根据中位数、众数的定义求解;(3)先求出样本中进入下一轮角逐的百分比,再乘以900即可.【详解】解:(1)A 区域3×3阶魔方爱好者进入下一轮角逐的有1+3=4(人).故答案为4;(2)①由题意,可得b=3×3=9,则a=30-4-9-10=1.故答案为1,9;②完成时间的平均数是:61738799101030⨯+⨯+⨯+⨯+⨯=8.8(秒);按从小到大的顺序排列后,第15、16个数据都是9,所以中位数是992+=9(秒);数据10秒出现了10次,此时最多,所以众数是10秒.故答案为8.8,9,10;(3)900×430=120(人).本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了平均数、中位数、众数的意义以及利用样本估计总体.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B .4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。

已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。

二、填空题(每题5分,共50分)9.已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+ 的值等于10.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为m ,3的对面的数字为n ,则方程1x m n +=的解x 满足1+<<k x k ,k 为整数,则k11.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8,则AB 的长为11题图 52 3 3 2 1 2 6 1 甲 乙 丙10题图12.记函数y 在x 处的值为()f x (如函数2y x =也可记为2()f x x =,当1x =时的函数 值可记为(1)1f =)。

已知||)(x xx f =,若c b a >>且0=++c b a ,0≠b ,则 )()()(c f b f a f ++的所有可能值为13.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是14.如图,三棱柱111C B A ABC -中,底面2,1==BC AB ,三个侧面都是矩形,31=AAM 为线段1BB 上的一动点,则当1MC AM +最小时,BM =15.如图,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中C ,D ,E 在AB 上,F ,N 在半圆上。

若AB=10,则正方形CDMN 的面积与正方形DEFG 的面积之和是16.如图,CD 为直角ΔABC 斜边AB 上的高,BC 长度为1,DE ⊥AC 。

设ΔADE ,ΔCDB ,ΔABC 的周长分别是12,,p p p 。

当12p p p+取最大值时,AB= 17. 如图放置的等腰直角∆ABC 薄片(2,900==∠AC ACB )沿x 轴滚动,点A 的运动轨迹曲线与x 轴有交点,则在两个相邻交点间点A 的轨迹曲线与x 轴围成图形面积为 ___ 18. 如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第11行第7个数为 (用具体数字作答)1 2 3 4 5 6 7…3 5 7 9 11 13… 8 12 16 20 24… 20 28 36 44… 48 64 80…题图15oxy C AB题图17题图16题图13AB C M 1A 1B 1C 题图14注意:请将填空题的答案填在下面的横线上。

9. 10. _ _ 11. 12.13. _ 14. _ _ _15. _ 16. _ 17. 18.三、解答题(共60分)19. (本小题满分12分)如图,抛物线1417452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N 。

设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 能否为菱形?请说明理由.20. (本小题满分12分)函数)(x f ,若自变量x 取值范围内存在0x ,使00)(x x f =成立,则称以00(,)x x 为坐标的点为函数()f x 图像上的不动点。

()(x f 的定义...见第..12..题.) (1)若函数bx ax x f ++=3)(有两个关于原点对称的不动点,求a ,b 应满足的条件; (2)在(1)的条件下,若a=2,直线1)1(:-+-=b x a y l 与y 轴、x 轴分别相交于A 、B 两点,在xby =的图象上取一点P (P 点的横坐标大于2),过P 作PQ ⊥x 轴,垂足是Q ,若四边形A BQP 的面积等于2,求P 点的坐标(3)定义在实数集上的函数)(x f ,对任意的x 有)()(x f x f -=-恒成立。

下述命题“若函数)(x f 的图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给予证明;若不正确,举反例说明。

21. (本小题满分12分)已知圆O 圆心为坐标原点,半径为34,直线l:4)y x =+交x 轴负半轴于A 点,交y 轴正半轴于B 点 (1)求BAO ∠(2)设圆O 与x 轴的两交点是12,F F ,若从1F 发出的光线经l 上的点M 反射后过点2F ,求光线从1F 射出经反射到2F 经过的路程(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标22.(本小题满分12分)在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起.(1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层,(Ⅰ)共有几种不同的方案?(Ⅱ)已知每根圆钢的直径为10cm,为考虑安全隐患,堆放高度不得高于4m,则选择哪个方案,最能节省堆放场地?)图(1)图(223. (本小题满分12分)试求出所有正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.数学试卷答案一、选择题(每题5分,共40分)三、填空题(每题5分,共50分)9. 1- 10. 0 11. 6 12. 1或-1 13. 6 14. 1 15. 25 16. 2 17. 24+π 18. 12288三、解答题(共60分)19.解:(1)易知A(0,1),B(3,2.5),可得直线AB 的解析式为y =121+x …………… 3分(2))121(1417452+-++-=-==t t t MP NP MN s)30(415452≤≤+-=t tt ………………6分(3)若四边形BCMN 为平行四边形,则有MN =BC ,此时,有25415452=+-t t ,解得11=t ,22=t所以当t =1或2时,四边形BCMN 为平行四边形. ………………8分①当t =1时,23=MP ,4=NP ,故25=-=MP NP MN ,又在Rt △MPC 中,2522=+=PC MP MC ,故MN =MC ,此时四边形BCMN 为菱形 …………10分②当t =2时,2=MP ,29=NP ,故25=-=MP NP MN ,又在Rt △MPC 中,522=+=PC MP MC ,故MN ≠MC ,此时四边形BCMN 不是菱形. …………12分20.解:(1)由题得x bx ax =++3有两个互为相反数的根0x ,0x -)0(0≠x即)(0)3(2b x a x b x -≠=--+有两个互为相反数的根0x ,0x - ……1分根带入得⎪⎩⎪⎨⎧=---+=--+0))(3(0)3(020020a x b x a x b x ,两式相减得0)3(20=-x b ,3=∴b ……3分方程变为)3(02-≠=-x a x 90≠>∴a a 且 …………4分 (2)由(1)得3,2==b a ,所以2:+-=x y l ,即A (0,2) B(2,0) ……5分设x y 3=上任意一点)2)(3,(>t tt P ,所以)2)(0,(>t t Q ……6分 又因为2-=∆AOB AOQP S S 四边形,所以22221)32(21=⨯⨯-+t t 25=∴t ……8分)56,25(P ∴ ……………………9分(3)正确①在)()(x f x f -=-令0=x 得)0()0(f f -=所以0)0(=f所以)0,0(为函数的不动点 ……………………10分 ②设00(,)x x 为函数()f x 图像上的不动点,则00)(x x f = 所以000)()(x x f x f -=-=-,所以),(00x x --也为函数()f x 图像上的不动点 ……………………12分21.解:(1)由题|OA|=4,|OB|=334,所以33tan =∠BAO ,所以030=∠BAO 2分 (2)如图(1)由对称性可知,点1F 关于l 的对称点/1F 在过点()4,0A -且倾斜角为060的直线/l 上在/21AF F ∆中,0'160=∠AO F ,3811'1=-==O F AO AF AF ,3162=AF 所以/21AF F ∆为直角三角形,02'190=∠F AF 。

相关文档
最新文档