液-液换热器传热性能测试与计算方法( )
换热器的传热及阻力计算
与顺流类似,逆流时:
1 exp NTU (1 Cr ) (1 Cr ) exp NTU (1 Cr )
当冷热流体之一发生相变时,相当于 Wmax ,即
CrLeabharlann Wm in Wm ax
0
,于是上面效能公式可简化为
1 exp NTU
当两种流体的热容相等时,即 公式可以简化为
q qm ax
W1t1 t1 Wmint1 t2
t1 t1 t1 t2
t1 t1 (t1 t2 ) ①
根据热平衡式得:W1(t1 t1) W2 (t2 t2 )
热容比
于是
t2
t2
W1 W2
(4) 对于有相变的换热器,如蒸发器和冷凝器,发生相变的 流体温度不变,所以不存在顺流还是逆流的问题。
T
TCond
x In 冷凝 Out
T
TEvap x In 蒸发 Out
利用平均温差法设计计算的步骤:
1、设计计算
(1)初步布置换热面,并计算出相应的总传热系数k (2)根据给定条件,由热平衡式求出进、出口温度中的那个
(a)由换热器冷热流体的进出口温度,按照逆流方式 计算出相应的对数平均温差;
(b)从修正图表由两个无量纲数查出修正系数
P t2 t2 、R t1 t1
t1 t '2
t2 t2
(c) 最后得出叉流方式的对数平均温差
tm (tm)
1-2、1-4等多流程管壳式换热器的修正系数 2-4、2-8等多流程管壳式换热器的修正系数
2、两种设计方法
(1)平均温差法 (2)效率单元数法(-NTU)法
5.3 换热器的传热计算
dS m dS o
dm do
工程上大多以外表面积为基准,故后面讨论中,
除非特别说明,都是基于外表面积的总传热系数。
10
二、总传热系数K
总传热系数 K 表示单位传热面积,冷、热流体 单位传热温差下的传热速率,它反映了传热过程 的强度。 K 是评价换热器性能的一个重要参数,也是对
换热器进行传热计算的依据。 K 的数值取决于流
若传热面为平壁或薄管壁
1 K 1
i
Rsi
b
Rso
1
o
当管壁热阻和污垢热阻均可忽略时
1 1 1 K i o
若
i o
K o
管壁外侧对流传热控制
14
二、总传热系数
若 若
i o
K i
管壁内侧对流传热控制
i ,o
相当
管壁内、外侧对流传热控制
①传热为稳态操作过程;
②两流体的定压比热容均为常量;
③总传热系数为常量;
④忽略热损失。
24
一、平均温度差法
1.恒温传热时的平均温度差
换热器中间壁两侧的流体均存在相变时,两
流体温度可以分别保持不变,这种传热称为恒温 传热。
QT KS t KS (T - t )
热流体 温度 冷流体 温度
25
体的物性、传热过程的操作条件及换热器的类型 等,可通过计算、实验测定或查阅相关手册得到。
11
二、总传热系数
1.总传热系数的计算 设计中应考虑污垢热阻的影响
do 1 do bdo 1 Rsi Rso K 0 i di di d m o
总传热系数计算式
管壁外表 面污垢热 阻
换热器设计与性能评估
换热器设计与性能评估换热器是热工设备中一种重要的设备,它能够实现热量的传递,在工业生产、能源利用以及环境保护等方面都发挥着重要作用。
本文旨在探讨换热器的设计原理以及性能评估方法,帮助读者更好地了解换热器并提升设计与评估能力。
一、换热器的设计原理换热器的设计原理是基于热传导的基本规律。
热传导是通过不同温度物体间的能量传递方式,换热器利用热传导将高温物体的热量传递给低温物体,实现热量的平衡。
换热器设计的关键是要确保热量能够有效传递,同时满足流体流动和布局的要求。
换热器设计的第一步是确定所需换热面积。
换热面积主要取决于传热系数、温差和传热需求。
传热系数是衡量传热效果的指标,它与流体的性质、流速以及管壁材料等因素有关。
温差是指两侧流体温度的差值,决定着换热过程中的热能转化效率。
传热需求是指设备需要传递的热量或吸收的热量,根据这个需求确定换热器所需的面积。
在确定换热面积后,接下来需要确定传热系数。
传热系数是换热器性能的关键参数,它决定了热量传递的效率。
传热系数的大小受到流体性质、流速、管子尺寸以及换热器的形式等多种因素的影响。
通过选择合适的材料和调整流体的流动状态,可以提高传热系数,优化换热效果。
换热器的最后一步是确定流体流动方式和布局。
流体流动方式有多种形式,包括直流、逆流和交叉流等。
不同的流动方式对换热效果有着不同的影响,需要根据具体情况选择合适的方式。
布局是指换热器内部各个组件的安排和排列方式。
合理的布局可以提高流体的流动性能,增强传热效果。
二、换热器的性能评估方法换热器的性能评估是为了检验其设计是否合理以及换热效果是否达到预期目标。
常用的性能评估方法主要包括实验法和计算方法两种。
实验法是通过搭建实验装置,测量和记录实际换热器的工作参数,来评估其性能。
实验法的优点是直观、准确,可以获取真实的换热器性能数据。
但是,实验过程复杂、费时费力,并且需要专业设备和技术支持。
计算方法是通过数学模型和计算软件对换热器进行模拟和计算,来评估其性能。
换热器性能综合测试实验
换热器性能综合测试实验....第一章实验装置说明第一节系统概述一、装置概述目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。
本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。
二、系统特点1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。
2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。
3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。
三、技术性能1.输入电源:三相五线制AC380V±10%50Hz2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m3.装置容量:<4kVA4.套管式换热器:换热面积0.14m25.螺旋板式换换热器:换热面积1m26.列管式换热器:换热面积0.5m27.钎焊板式换热器:0.144m28.电加热器总功率:<3.5kW9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。
四、系统配置1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。
2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。
第二节换热器的认识一、换热器的形式能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。
换热器的形式有很多,用.........途也很广泛。
诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;燃机的冷却水箱属于交叉流间壁式换热器的一种。
化工原理实验思考题
离心泵特性能曲线与串并联总特性曲线的测定1、流体流经离心泵所获能量以何种方式存在:1、动能2、位能3、静压能2、开启离心泵有时候不出水,为什么?怎么办?不能形成真空,发生气缚,打开所有开关,灌水排气。
3、试述离心泵并联线路及仪表作用。
(对照装置)4、试述离心泵并联线路及仪表作用。
(对照装置)5、离心泵并联时两泵相同的参数是什么?扬程―出口压力6、离心泵串联时两泵相同的参数是什么?流量7.为什么在启动时要关闭出口阀门?离心泵在零载荷启动时功率最小,从而保护电机。
8.流量如何测得?用体积法,见装置9、阀门何方向为开启逆时针1、在进行测试系统排气时,是否应该关闭系统的出口的阀门?为什么?在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。
2、如何检测测试系统内的空气已经被排除干净?可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。
5、用出口阀来调节流量的原理是什么?它有什么优缺点?原理同“离心泵的流量为什么可以通过出口阀门的调节加以改变”。
它的优缺点:优点为调节流量快捷简便,且流量可连续变化,适合于化工连续生产的特点;缺点:当阀门关小时,因流动阻力加大,需要额外多消耗一部分能量,不经济。
6、正常工作的离心泵,在进口处设置阀门是否合理。
为什么?不合理,因为在离心泵启动前,若进口阀打开,泵内的流体会流回储液槽,启动离心泵后易发生气缚现象。
7、为什么在离心泵的进口管下安装底阀,安装底阀后,管路的阻力损失是否会加大?你可否能提出更好的方案?离心泵的底阀是单向阀,可防止启动前灌入的液体从泵内流出,安装底阀后,管路的流动阻力将增大,可将离心泵安装在液面以下。
1、离心泵的启动过程:打开灌水阀和排气阀以灌水排气,关闭出口阀门并启动离心泵,调节出口阀门的开度即可控制流量2.离心泵启动时,打不出水是什么原因?什么叫”气缚”?什么叫”气蚀”?如何避免这些现象的发生?离心泵启动时,打不出水有如下原因:(1)启动前没有灌水排气(2)排出管路阀门关闭(3)吸入管路阀门关闭气缚:如果离心泵在启动前泵壳和吸入管道内未充满液体,即存有空气,因空气的密度比液体的密度小得多,不能形成足够大的真空度,低位槽内液体不能被吸入泵内,这种现象叫气缚。
实验一换热器性能实验
实验一换热器性能实验1、水-水换热器性能实验一、实验目的通过本实验加深学生对水-水换热器的认识,了解对该类型的换热器的测试方法。
二、实验的主要内容本实验通过测量数据:1)冷、热流体的体积流量;2)冷、热流体的进、出口温度; 冷、热流体的进出口压力降。
计算传热系数,分析水-水换热器的传热性能。
三、实验设备和工具冷水机组,冷却塔,水-水换热器,涡轮流量计,水泵,冷媒泵,恒温器,温度传感器, 压力传感器。
四、实验原理右图表示通过平壁的传热方式,平壁左侧的高温流体经平壁把热量传递给平壁右侧的低温流体。
一般来说,传热过程中传递的热量正比于冷、热流体的温差及传热面积,它们之间的关系可用传热方程式表示:Q = K F - :t W式中Q ----- 单位时间通过平壁的传热量,W ;2F——传热面积,m ;•迸一一冷、热流体间的温差,C;K __传热系数,W(m2 ©)2 2当F=1m ,^t=「c时,Q=K,表明传热系数在数值上等于温差为1C,面积为1m时的传热率。
传热系数是热交换设备的一个重要指标,传热系数愈大,传热过程愈激烈。
本实验原理图如图所示:五、实验方法和步骤怜测71)-------- [5] TI21实验方法在实验开始前,应检查设备、管线及测量仪表的可靠性。
开始运行后,应及时排净设备内的气体,使设备在完全充满实验流体的条件下运行并调节至试验工况(或指定工况),即需要调节换热器两侧流体的进口温度稳定在设定值附近,这两个参数允许的偏差范围按如下规定:实验中,冷侧流体进口温度通过恒温器2电加热器控制,热侧流体进口温度通过恒温器1电加热器控制。
在每个测定工况(或指定工况)下,均应稳定运行30min后,方可测定数据。
在每个测定工况(或指定工况)下,热平衡的相对误差均不得大于5%。
热侧流体换热量为:Q i =Cp i G i T i(t 13)i式中,Q i――换热器热侧换热量(kW);Cp i——热侧流体的比热容(kJ (kg K));G i――由涡轮流量计i测得的热侧流体体积流量(m3J s);;?i ――热侧流体密度(kg / m);T|3 ――热侧流体进口温度(C);T4 ――热侧流体出口温度(C)。
换热器的热性能测试与模拟分析
换热器的热性能测试与模拟分析换热器是工业生产中常用的设备之一,它将两种介质之间的热能传递。
它的主要作用是在热能转移方面起到一个桥梁作用,以实现冷却或加热设备,从而保持设备的温度控制。
为了保证换热器的热性能,需要对其进行热性能测试与模拟分析。
本文将从这两个方面分别进行阐述。
一、热性能测试热性能测试是指通过实验方法来研究换热器热传递能力的性能参数,如传热系数、压降等。
常用的测试方法主要有三种:1. 水流式热性能测试法水流式热性能测试法是通过调节水的流量和温度等参数,来确定换热器传热系数的测试方法。
该方法操作简单、测试精度高,但其测试方法较为耗时且需要考虑到水的流量及温度控制,可能会影响测试结果。
2. 蒸汽流式热性能测试法蒸汽流式热性能测试法是通过在测试过程中使用蒸汽代替水来进行测试。
该方法的优点在于测试结果更具有代表性,但测试操作更为复杂,需要考虑更多的参数,如蒸汽的压力和温度、气路流量控制等。
3. 风流式热性能测试法风流式热性能测试法是通过将空气代替水进行测试的一种测试方法。
该方法相较于水流式热性能测试法与蒸汽流式热性能测试法的优点是无需考虑流量,但需要考虑到空气压降较大,可能会影响到测试结果。
二、模拟分析模拟分析是指通过计算机模拟软件,对换热器的热性能进行分析。
其优点在于无需进行真实的物理试验,节省了时间和物力,成本更低。
常用的模拟分析技术常见有两种:1. 有限元法有限元法是将热性能模型建立为一个复杂的三维模型,通过建立数学模型,进而对其进行计算机模拟和数值计算。
该方法的精度更高,但对于数据处理的比较长,因此常用于换热器设计的初期研发。
2. 计算流体力学计算流体力学是一种应用数学、物理学和计算机科学于液态和气态流体力学问题的计算方法。
在换热器热性能的仿真分析中,计算流体力学技术主要用于流体的流场分析与换热器传热系数的计算。
总之,换热器的热性能测试与模拟分析对于换热器的设计和应用十分关键,不同的方法对应不同的情况,需要结合具体情况进行选择和应用。
第三节_换热器计算方法..
2、计算管程、壳程压强降
根据初定的设备规格,计算管程、壳程流体的流速和压 强降。验算结果是否满足工艺要求。若压强降不符合要求, 要调整流速,再确定管程数或折流板间距,或选择另一规 格的换热器,重新计算压强降直至满足要求。
3、核算总传热系数
计算管程、壳程对流传热系数,确定污垢热阻,再计算 总传热系数K’,比较K的初设值和计算值,若 K’/K=1.15~1.25,则初选的换热器合适。否则需另设K值, 重复以上计算步骤。
实例
设计任务书
将6000kg/h的植物油从140℃冷却到40℃,井水进、
出口温度分别为20℃和40℃。要求换热器的管程和壳
程压强降均不大于35kPa。
工艺设计计算
一、确定设计方案
1.选择换热器的类型 两流体的变化情况:热流体进口温度140℃,出口温度40℃; 冷流体进口温度20℃,出口温度40℃。 考虑冷热流体间温差大于50℃,初步确定选用浮头式换热器。 2.流程安排 与植物油相比,井水易于结垢,如果其流速太小,会加快 污垢增长速度使换热器传热速率下降。植物油被冷却,走壳 程便于散热。因此,冷却水走管程,植物油走壳程。
壳体上常安有放气孔和排液孔,排出不冷凝气体和冷 凝液等。
5.接管
换热器中流体进、出口的接管直径按下式计算,即
4Vs d u
Vs——流体的体积流量,u——流体在接管中的流速
流速u的经验值可取为: 对液体 u =1.5~2m/s;对蒸气u =20~50m/s ; 对气体u =(0.15~0.2)p/ρ (p为压强,kPa; ρ为气体密度)。来自12 14八、主要附件
1.封头
方形:用于直径小的壳体(<400mm); 圆形:用于大直径的壳体。
2.缓冲挡板
实验一 液体流量的测定 和流量计的校正
A1u1 A2u2
u2
1
1A2/A12
2p1p2
u2 C0
2 p1构造原理
图1-2 文丘里 流量计构造原理
三、实验装置图
三、实验装置图
三、实验装置图
四. 实验操作步骤
1、 关闭上、下游阀门,启动水泵,缓慢打开流量阀门; 2、检查并驱赶系统和压差计中气泡(密度不同而影响误差); 3、找出Re=5000时流量所对应的孔板流量计压差示数(此时流量
7、结束试验。
(二)、两台泵的并联试验
1、单台泵I特性曲线(Q—H)I的测试。(参 看离心泵待特曲线测定试验的步骤)
2、单台泵II特性曲线(Q—H)II的测试。 (与上相同,只是所用阀门、压力表不尽 相同)
3、两台泵并联工况下 某些工作点的测定
①开启阀门 4,ll,14、关闭阀门10。
②接通电源,起动泵I和泵II。
性; 2、学习离心泵特性曲线的测定方法; 3.增进对离心泵并、串联运行工况及其特点
的感性认识; 4.绘制泵并、串工作的并、串联总特性曲线; 5.演示泵在运行时可能发生的汽蚀现象。
二、实验原理:
(1) 扬程He-Q图 (2) 有用功Ne-Q图
(3) 总效率图
He
p2p1
g
h0u222gu12
N eH 10 eM 00 gH 1 e0 Q 0 0gH 1 e 0 Q 2 K W
Ne N电
三、实验装置:
三、实验装置:
四、实验操作步骤
(一)、离心泵单泵特性曲线的测定 1、记录下试验台的一些参数,Z=360mm。 2、将蓄水箱充满水。 3、关闭阀门 10,14,打开阀门4,11,16 4、开动泵I,使泵I系统运转,此时关闭阀11,
(完整word版)换热器的传热系数K
介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。
水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003实际运行还少有保守。
有余量约10%冷流体热流体总传热系数K,W/(m2.℃)水水 850~1700水气体 17~280水有机溶剂 280~850水轻油 340~910水重油60~280有机溶剂有机溶剂115~340水水蒸气冷凝1420~4250气体水蒸气冷凝30~300水低沸点烃类冷凝 455~1140水沸腾水蒸气冷凝2000~4250轻油沸腾水蒸气冷凝455~1020不同的流速、粘度和成垢物质会有不同的传热系数。
K值通常在800~2200W/m2·℃范围内。
列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。
螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。
板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。
1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
釜液换热器的计算
釜液换热器的计算
釜液换热器一般用于加热釜中的液体。
换热器的设计需要计算液体的加热时间和换热量。
下面是液体加热时间和换热量的计算方法:
1. 加热时间的计算:
加热时间可以通过下面的公式来计算:
加热时间 = (液体的质量 * 比热容 * 温度差) / 加热功率
其中,液体的质量是指液体的重量,比热容是指液体单位质
量的温度升高所需的热量,温度差是指所需的温度升高量,加热功率是指加热设备的功率。
2. 换热量的计算:
换热量可以通过下面的公式来计算:
换热量 = 液体的质量 * 比热容 * 温度差
其中,液体的质量是指液体的重量,比热容是指液体单位质
量的温度升高所需的热量,温度差是指所需的温度升高量。
上述计算方法可以用于釜液换热器的设计和运行中,以确保液体能够达到所需的温度。
在实际应用中,还需要考虑其他因素,如换热器的效率、传热系数等。
因此,最好参考具体的换热器设计手册或咨询相关专业人士进行准确的计算和设计。
气液两相流传热实验
气液两相流传热实验一、实验目的1、通过测定换热器冷、热流体的流量,测定换热器的进、出口温度,熟悉换热器性能的测试方法;2、了解套管换热器的结构特点及性能。
3、通过测定参数计算换热器流体的热量;计算换热器的传热系数;并整理成准数关联式形式。
二、基本原理1、概述本换热器性能测试实验装置,主要对应用较广的套管式换热器进行其性能的测试。
其中,对套管式换热器可以进行顺流和逆流两种方式的性能测试。
换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡误差等,并对实验数据进行整理,分析流体无相变时的对流传热系数与Dittus-Boelter 关联式。
2、实验装置参数本实验所用的热水加热采用电加热方式,采用热水加热常温空气。
冷—热流体的进出口温度采用pt100加智能多路液晶巡检仪表进行测量显示,实验台参数如下:(1)电加热管总功率:3KW(2)冷热流体风机:允许工作温度:<80℃,额定流量:76 m 3/h 电机电压:220V 电机功率:750W(3)孔板流量计: 流量:8-30m 3/h 允许工作温度:0-80℃3、对流传热系数α的测定:根据传热总方程,用实验测定。
mQS t α=∆ 式中:α-管内流体对流传热系数,W/(m 2·℃);Q -传热速率W ;S -管内换热面积, m 2 ; ∆t m -对数平均温度差,℃。
本实验中,具体的计算过程如下:,,56()m h p h Q q c t t =-,热水的物性数据取定性温度562t t +下的数值,计算质量流量, /m c V t q q kg s ρ=。
换热面积2 o S d l m π=,此处管内径0.016m ,壁厚0.0015m ,管长1.3m 。
{}()2121/ln /T T T T t m ∆∆∆-∆=∆851t T T -=∆ 762t T T -=∆ t 5,t 6为热流体进出口温度, T 7,T 8为冷流体进出口温度。
最新传热学试卷及答案6套
传热学试卷1一、填空题(每小题2分,共16分)1、导温系数a 表征了物体 的能力;流体粘度ν和a的比值组成的无量纲数是 。
2、强化遮热板作用的方法是和 。
3、研究对流换热的一种方法是比拟法,它是指通过研究______传递和_____传递之间的共性,以建立表面传热系数与阻力系数相互关系的方法。
4、第一类边界条件是 。
5、若炉膛内的火焰温度在1400℃,则炉膛火焰中最大光谱辐射能量所对应的波长约为 。
6、一台换热器,冷流体的入口温度为20℃, 出口温度为50℃,热流体入口温度为100℃, 出口温度为60℃,则该换热器的效能为 。
7、当1Pr >时,热边界层的厚度 流动边界层的厚度。
8、一个含有内热源的大平板,其导热系数为()K m W ⋅/50,测得在稳定情况下,其内部温度分布为:2250050x t -=,则平板内的内热源生成率为________3/m W 。
二、单项选择题(每小题2分,共16分) 1、下列表述正确的是 。
A 、对漫射表面,光谱吸收比等于光谱发射率B 、吸收比等于发射率C 、定向辐射强度与空气方向无关 2、绝大多数情况下强制对流时的表面传热系数 自然对流的表面传热系数。
A 、小于B 、等于C 、大于D 、无法比较3、下列 材料表面的法向黑度为最小。
A 、水B 、镀锌的铁皮C 、各种颜色油漆D 、磨光的铬4、在其他条件相同的情况下,下列 物质的导热能力最差。
A 、合金钢 B 、空气 C 、水 D 、油5、格拉晓夫准则Gr 越大,则表征 。
A 、浮升力越大B 、粘性力越大C 、惯性力越大D 、动量越大6、当量直径P Ad e 4中P 表示 。
A 、长度B 、宽度C 、润湿周长D 、周长7、表面辐射热阻与 无关。
A 、表面粗糙度B 、表面温度C 、表面积D 、角系数8、水平圆筒外的自然对流换热的特性尺度应取。
A 、圆筒的长度B 、圆筒外径C 、圆筒内径D 、圆筒壁厚度三、简答与分析题(每小题5分,共20分)1、当采用肋片增强传热时,应把肋片加装在哪一侧?为什么?2、当大气中三原子气体比例增加时,会出现所谓大气温室效应,试说明其原 因?3、什么是沸腾换热的临界热流密度?为什么有些换热设备需在加热热流密度低于临界热流密度状态下工作?4、图1示出了常物性、有均匀内热源∙Φ、二维稳态导热问题局部边界区域的网格配置,试用热平衡法建立节点0的有限差分方程式(不需要整理)。
油水换热器计算
油水换热器计算0、热量计算需冷却水带走热量Q=W•C油•Δt油=1.19×103×0.5×(320-90)=136850 kcal/h 耗水量G=Q/(C水•Δt水) =136850/[1000×(45-32)]=10.5 m3/h平均温度差:油320→90水45←32275 58则Δtm=(275-58)/ln(275/58)=139.4℃总传热系数K的计算1、管内油对管壁的给热系数α1管径φ90×10的油流速ω=Ws/γAω=1.19/[3600×1×0.785×(0.07)2]=0.086 m/s油从320℃冷却至90℃的平均温度为t=(320+90)/2=205℃该温度下,油物理量如下:导热系数λ=0.085 kcal/m•h•℃重度γ=1000 kg/m3比热C=0.5 kcal/kg•℃粘度ν=0.0055 cm2/s则Z=ν(γ/g)=0.0055×(1000/9.8)=0.56 cp雷诺准数Re=1000dωγ/Z=1000×0.07×0.086×1000/0.56=10750介于2100至104之间,属于过渡流状态普兰特准数Pr=3.6CZ/λ=3.6×0.5×0.56/0.085=11.86校正系数=1-6×105/Re1.8=0.97给热系数α1=0.023(λ/d)Re0.8Pr0.4φ=0.023×(0.085/0.07)×107500.8×11.860.4×0.97=122kcal/m2•h•℃2、管外壁对冷却水所给热系数α2水的平均温度t水=(32+45)/2=38.5℃设管壁温度为tw=54℃管壁与水的平均温度tw=(54+38.5)/2=46.25℃管壁与水的温差Δt= tw- t水=54-38.5=15.5℃46.25℃时水的物理量如下:膨胀系数β=4.2×10-4 1/℃导热系数λ水=0.55 kcal/m2•h•℃粘度ν=0.61×10-6 m2/s Z=0.59 cp普兰特准数Pr=3.6CZ/λ=3.6×1×0.59/0.55=3.86格拉斯霍夫准数Gr=Δtβ(gdH3/ν2)=15.5×4.2×10-4×9.81×0.093/(0.61×10-6)2=1.25×108GrPr=1.25×108×3.86=4.83×108介于2×107至1×1013之间,故A=0.135,n=1/3努塞尔特准数Nu=A(Gr•Pr)n=0.135×(4.83×108)1/3=106给热系数α2=Nu(λ/dH)=106×(0.55/0.09)=648 kcal/m2•h•℃总传热系数K管壁厚δ=0.01m,铸铁导热系数λ=22kcal/m•h•℃,设管壁两侧水垢及油膜热阻为0.003 K=1/(1/110+0.003+0.01/22+1/648)=71 kcal/m2•h•℃管壁温度核算:K•Δtm =α2(tw-t水)tw= K•Δtm /α2+ t水=38.5+71×(139.4/648)=53.8℃与所设值54℃相差仅0.2℃,符合要求。
实验一 换热器性能实验
实验一 换热器性能实验1、 水-水换热器性能实验一、实验目的通过本实验加深学生对水-水换热器的认识,了解对该类型的换热器的测试方法。
二、实验的主要内容本实验通过测量数据:1)冷、热流体的体积流量;2)冷、热流体的进、出口温度;3)冷、热流体的进出口压力降。
计算传热系数,分析水-水换热器的传热性能。
三、实验设备和工具冷水机组,冷却塔,水-水换热器,涡轮流量计,水泵,冷媒泵,恒温器,温度传感器,压力传感器。
四、实验原理右图表示通过平壁的传热方式,平壁左侧的高温流体经平壁把热量传递给平壁右侧的低温流体。
一般来说,传热过程中传递的热量正比于冷、热流体的温差及传热面积,它们之间的关系可用传热方程式表示:Q K F t =⋅⋅∆ W式中 Q ——单位时间通过平壁的传热量,W ;F ——传热面积,2m ;t ∆——冷、热流体间的温差,℃;K ——传热系数,2(W m ⋅℃)当F=12m ,t ∆=1℃时,Q=K, 表明传热系数在数值上等于温差为1℃,面积为12m 时的传热率。
传热系数是热交换设备的一个重要指标,传热系数愈大,传热过程愈激烈。
本实验原理图如图所示:五、实验方法和步骤1、实验方法在实验开始前,应检查设备、管线及测量仪表的可靠性。
开始运行后,应及时排净设备内的气体,使设备在完全充满实验流体的条件下运行并调节至试验工况(或指定工况),即需要调节换热器两侧流体的进口温度稳定在设定值附近,这两个参数允许的偏差范围按如下规定:实验中,冷侧流体进口温度通过恒温器2电加热器控制,热侧流体进口温度通过恒温器1电加热器控制。
在每个测定工况(或指定工况)下,均应稳定运行30min 后,方可测定数据。
在每个测定工况(或指定工况)下,热平衡的相对误差均不得大于5%。
热侧流体换热量为:1111131()Q Cp G t t ρ=⋅⋅⋅- 式中,1Q ——换热器热侧换热量(kW );1Cp ——热侧流体的比热容 (()kJ kg K ⋅); 1G ——由涡轮流量计1测得的热侧流体体积流量(3m s ); 1ρ——热侧流体密度(3/kg m ); 13T ——热侧流体进口温度(℃); 14T ——热侧流体出口温度(℃)。
换热器及其基本计算
姓名:杜鑫鑫学号:0903032038合肥学院材料工程基础姓名:班级:09无机非二班学号:\课题名称:换热器及其基本计算指导教师:胡坤宏换热器及其基本计算一、换热器基础知识(1)换热器的定义:换热器是指在两种温度不同的流体中进行换热的设备。
(2)换热器的分类:由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。
二、几个不同的换热器(1)管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。
(2) 套管式换热器套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。
两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。
套管式换热器以同心套管中的内管作为传热元件的换热器。
两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。
热量通过内管管壁由一种流体传递给另一种流体。
通常,热流体由上部引入,而冷流体则由下部引入。
套管中外管的两端与内管用焊接或法兰连接。
内管与U形肘管多用法兰连接,便于传热管的清洗和增减。
每程传热管的有效长度取4~7米。
这种换热器传热面积最高达18平方米,故适用于小容量换热。
当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。
换热器2(温度差法)
由图可见,ϕ ∆t值恒小于1,一般 ϕ ∆t不宜小于0.8,否 则使 ∆tm过小,很不经济。若 ϕ∆t < 0.8 ,可改用多壳
程,通常是将多台换热器串联使用。
Xiamen University
Dept. of Chem. & Biochem. Eng.
6 PDF created with pdfFactory trial version
相等的。
逆流时:
∆tm
=
(T1 − t2 ) − (T2 − t1 ) ln T1 − t2
T2 − t1
T1 → T 2 t 2 ← t1 T1 − t2 T2 − t1
并流时:
∆tm
=
(T1
− t1 ) − (T2 ln T1 − t1
−
t2 )
T2 − t2
Xiamen University
Dept. of Chem. & Biochem. Eng.
例2 p416例6-5
Xiamen University
Dept. of Chem. & Biochem. Eng.
例3 一列管式换热器,由 φ 25× 2mm的136根不锈钢管组成。
平均比热为 4187J /(kg ⋅°C) 的某溶液在管内作湍流流动,
其流量为 15000kg / h ,并由15℃加热到100℃。温度为
Q
由假设③知 K = Const ,积分上式
Xiamen University
Dept. of Chem. & Biochem. Eng.
∫ ∫ 1
∆t2 d (∆t) = ∆t2 − ∆t1
S
dS
K ∆t1 ∆t
套管式换热器液气换热传热系数
套管式换热器是一种常见的热交换设备,广泛应用于化工、石油、电力等行业。
在工业生产中,液体和气体的换热传热系数对设备的性能和效率有着重要的影响。
研究套管式换热器的液气换热传热系数是非常有意义的。
一、套管式换热器液气换热传热系数的定义液气换热传热系数是指在套管式换热器中,液体和气体之间进行换热传热时的传热效率。
它反映了液体和气体之间热量传递的快慢和效率高低。
二、影响套管式换热器液气换热传热系数的因素1. 流体性质:液体和气体的物理性质和热物性对换热传热系数有着重要的影响。
流体的导热系数、粘度、密度等指标会直接影响传热系数的大小。
2. 换热器结构:套管式换热器的结构参数,如壁厚、管道长度、管道间距等都会影响换热传热系数。
合理的结构设计可以提高传热效率。
3. 流体流动状态:流体的流动状态对换热传热系数有着重要的影响。
湍流状态下的传热系数要高于层流状态。
4. 温度差:液体和气体之间的温度差也会影响换热传热系数,通常情况下,温度差越大,传热系数越高。
三、套管式换热器液气换热传热系数的计算方法1. 根据传热学的基本理论,可以利用换热传热系数的经验公式来计算。
对于对流换热,可以使用努塞尔数和普朗特数来计算传热系数。
2. 对于复杂的工况,可以采用数值模拟方法来计算。
通过建立数学模型,利用计算流体力学(CFD)软件对流态场和温度场进行数值模拟,最终求得换热传热系数。
3. 实验方法也是研究换热传热系数的常用手段。
通过设计合理的实验方案,利用实验设备和手段来测试不同工况下的换热传热系数。
四、套管式换热器液气换热传热系数的提高方法1. 优化换热器结构,增大换热面积,增加传热系数。
2. 选择合适的传热介质,提高流体的换热性能。
3. 控制流体的流动状态,促使流体达到湍流状态。
4. 控制温度差,避免温差过大影响传热效果。
五、结语套管式换热器液气换热传热系数是影响换热器性能的重要参数,研究和提高换热传热系数有着重要的理论意义和实际价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 规范性引用文件
…………………………………………………….……….1
3 总则 ……………………………………………………………………………1
4 术语和定义 ………………………………………………………………………1
5 测试
………………………………………………………………..1
6 换热器热负荷和传热性能指标计算 ………………………………………………2
Q/SH1020
中国石化集团胜利石油管理局企业标准
Q/SH1020 ××××-××××
液—液换热器传热性能测试 与计算方法
2005-××-××发布
2005-××-××实施
中国石化集团胜利石油管理局 发布
Q/SH1020××××-××××
目
次
前言
1 范围
…………………………………………………………….………… 1
温度计
±0.1℃
±0.1℃
6 二次侧进口、出口压力
压力表
±0.4%
7 环境温度
温度计
±0.1℃
±0.1℃
5.2 测试准备
5.2.1 制定测试方案。
5.2.2 测试使用的仪器、仪表检定合格,并在检定周期内。
5.2.3 测试前对设备、管线及测试仪表进行检查,测试过程安全措施按 HSE 有关规定执行。
5.3 测试前热工况稳定时间要求
查表
19 二次侧低温介质进口焓,kJ/kg
hc1
20 二次侧低温介质出口焓,kJ/kg
hc2
计算
21 换热器二次侧热负荷,kJ/h
Qc
22 热平衡相对误差,%
△Q 计算
(二)换热器对数平均温差
23 对数平均温差,℃ (三)换热器传热效率
△tm 计算
24 传热效率,%
ε
计算
(四)换热器传热系数
25 传热系数,W/(m2℃)
1
Q/SH1020××××-××××
5.1.1 测试热负荷和测试次数要求:一级测试分三个工况测试,65%~75%额定热负荷运行工况测
试一次;97%~105%额定热负荷运行工况测试二次;110%以上额定热负荷运行工况测试一次,如果
达不到该热负荷,不进行测试。二级测试为运行热负荷工况下测试一次。
5.1.2 在每个测试工况下,热平衡相对误差均不得大于 5%。
5.1.3 测试用仪器、仪表。见表 1。
表 1 测试用仪器、仪表
序 测试参数
号
测试仪器仪表名称
准确度要求
便携式仪表
在线仪表
1 一次侧流量
流量计
±1.5%
±0.5%
2 一次侧进口、出口温度
温度计
±0.1℃
±0.1℃
3 一次侧进口、出口压力
压力表
±0.4%
4 二次侧流量
流量计
±5%
±0.5%
5 二次侧进口、出口温度
有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的 各方,研究是否可使用这些文件的最新版本。
GB 151-1999 管壳式换热器 GB16409-1996 板式换热器 3 总则 3.1 换热器传热性能测试体系是由被测试换热器、冷热流体循环系统及测试仪表组成。 3.2 换热器型号表示方法符合 GB 151-1999 中 3.10 和 GB16409-1996 中 3.5 的规定。 3.3 换热器传热性能测试分级:一级测试为鉴定新投产换热器的测试,二级测试为换热器运行中的 测试。 4 术语和定义 下列术语和定义适用于本标准。 4.1 液-液换热器 指水-水、水-油、油-油等以液体与液体之间进行热交换的换热器。 4.2 换热器一次侧 指热量的提供侧,即高温介质端。 4.3 换热器二次侧 指热量的接收侧,即低温介质端。 4.4 换热器传热性能指标 4.4.1 对数平均温差 指冷热流体平均温差的表示,表征换热器传热的动力。 4.4.2 传热效率 指实际传热量与最大理论传热量之比值。 4.4.3 传热面积 指从放热介质中吸收热量并传递给受热介质的表面积。 4.4.4 传热系数 指单位传热面积上,冷热流体的平均温差为 1℃时,两流体通过换热器所传递的热量。 4.5 额定热负荷 指换热器使用设计的介质流体,在设计参数下运行,即在规定的介质流量、温差和一定的传热 效率下连续运行时,单位时间的传热量。 4.6 运行热负荷 指在换热器连续运行工况下,单位时间的传热量。 4.7 热平衡相对误差 指一次侧热负荷与二次侧热负荷之差值与一次侧热负荷之比。 4.8 传热系数误差 指在额定热负荷工况下测试两次所得的传热系数,两值之差与其中较大的传热系数之比。 5 测试 5.1 测试技术要求
5.6.3 在一次侧、二次侧进出口距换热器 0.5~1m 的管路上测试一次侧、二次侧进出口温度。使用
玻璃棒温度计测试时,玻璃棒温度计插孔安装要符合要求,测温点应布置在管道截面中心位置,且
要填充机油或煤油,填充液要没过玻璃棒温度计的测温包。
5.6.4 环境温度在距换热器外侧 0.8~1.2m 中心水平位置测定。
4
附录 A (资料性附录) 测试计算数据综合表
Q/SH1020××××-××××
表 A1 测试计算数据综合表
序号
名称
额定负荷
符
65%~75%
数据来源 97%~105%
号
负荷
12
(一)换热器热负荷
1 环境温度
t1 测试数据
2 一次侧高温介质进口压力,MPa
Ph1
3 一次侧高温介质出口压力,Mpa
Ph2
th1-tc1
…………………………………….(5)
6.6 对数平均温差按式(6)、式(7)或式(8)计算: 当 th1-tc2>th2-tc1 时, ( th1-tc2)—(th2-tc1) △tm = ——————————————……………………….(6)
th1-tc2
ln ————————
当 th1-tc2=th2-tc1 时,
II
Q/SH1020××××-××××
液-液换热器传热性能测试与计算方法
1 范围 本标准规定了液-液换热器传热性能的测试方法、技术要求、测试用仪器仪表、计算方法及测试
报告主要内容。 本标准适用于液-液换热器(以下简称换热器)。
2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所
I
Q/SH1020××××-××××
前
言
本标准的附录 A、附录 B 为资料性附录,附录 C 为提示性附录。 本标准由胜利石油管理局节能专业标准化委员会提出并归口。 本标准由中国石化集团胜利石油管理局批准。 本标准起草单位:中国石化胜利油田有限公司技术检测中心能源监测站。 本标准主要起草人:许涛、宋鑫、王强、王贵生、周长敬、李忠东、邓寿禄、冯国栋、郑召梅。
hh2
计算
11 换热器一次侧热负荷,kJ/h
Qh
12 二次侧低温介质进口压力,Mpa
Pc1
13 二次侧低温介质出口压力,Mpa
Pc2
14 二次侧低温介质进口温度,℃
tc1 测试数据
15 二次侧低温介质出口温度,℃
tc2
16 二次侧低温介质流量,kg/h
Gc
17 二次侧低温介质进口比热容,kJ(/ kg. ℃) Cc1 18 二次侧低温介质出口比热容,kJ(/ kg. ℃) Cc2
a)管壳式换热器不少于 1h;
b)板式换热器不少于 0.5h。
5.4 测试持续时间不少于 1h,各测试参数要同步进行测试。测试参数 10min 记录一次,不少于 6
组,以平均值做为测试结果。
5.5 测试参数
a)一次侧流量;
b)一次侧进口、出口温度;
c)一次侧进口、出口压力;
d)二次侧流量;
e)二次侧进口、出口温度;
K
计算
26 传热系数误差,%
△K 计算
——
110%以 上负荷
——
5
Q/SH1020××××-××××
名
称
环境温度 换热器热负荷 对数平均温差 传热效率,% 传热系数
附录 B (资料性附录) 测试结果汇总表
表 B1 测试结果汇总表
额定负荷
符号
单 位 97%~105%
12
65%~75% 负荷
110%以 上负荷
th2-tc1
△tm = th1-tc2…………………………………………….(7)
当 th1-tc2<th2-tc1 时, (th2-tc1) —( th1-tc2)
△tm = ——————————————……………………….(8)
th2-tc1
ln ————————
6.7 传热系数按式(9)的计算:
th1-tc2
Qh
K = ——————
A×△tm
……………………………………….(9)
3
Q/SH1020××××-×××× 7 测试报告主要内容 7.1 概况说明:包括任务来源、测试时间、测试地点、换热器生产制造厂商及型号规格和主要设计 参数、测试系统工况说明; 7.2 检测目的; 7.3 执行标准; 7.4 测试仪器仪表说明; 7.5 测试结果及结果分析 7.5.1 一级、二级测试参照附录 A 和附录 B 填写测试计算数据综合表和测试结果汇总表。 7.5.2 在 97%~105%额定热负荷下测试的传热系数 K 以两次测试的平均值做为测试结果,两次测试传 热系数误差不超过 6%。 7.5.3 测试结果中注明换热器运行热负荷下的传热效率、对数平均温差、传热系数。
f)二次侧进口、出口压力;
g)环境温度。
5.6 测点布置要求
5.6.1 采用流量计测试一次侧、二次侧介质流量,流量计安装在换热器一次侧、二次侧进口或出口