分类讨论思想方法共23页文档

合集下载

思想方法 第3讲 分类讨论思想

思想方法 第3讲 分类讨论思想

思想方法第3讲分类讨论思想 思想概述分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.方法一 由概念、公式、法则、计算性质引起的讨论 概念、定理分类整合即利用数学中的基本概念、定理对研究对象进行分类,如绝对值的定义、不等式的转化、等比数列{a n }的前n 项和公式等,然后分别对每类问题进行解决. 例1(1)(2022·滁州质检)已知过点P (0,1)的直线l 与圆x 2+y 2+2x -6y +6=0相交于A ,B 两点,则当|AB |=23时,直线l 的方程为( )A .x =0B .15x -8y -8=0C .3x -4y +4=0或x =0D .3x +4y -4=0或x =0________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________(2)已知数列{a n }满足a 1=-2,a 2=2,a n +2-2a n =1-(-1)n ,则下列选项不正确的是( )A .{a 2n -1}是等比数列B.∑i =15(a 2i -1+2)=-10C .{a 2n }是等比数列D.∑i =110a i =52________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 解题时应准确把握数学概念的本质,根据需要对所有情形分类.本例中,设直线方程需分斜率存在和不存在两种情况,数列中含(-1)n 需分奇偶两种情况,要注意分类讨论要有理有据、不重不漏.方法二 由图形位置或形状引起的讨论图形位置、形状分类整合是指由几何图形的不确定性而引起的分类讨论,这种方法适用于对几何图形中点、线、面的位置关系以及解析几何中直线与圆锥曲线的位置关系的研究. 例2设F 1,F 2为椭圆x 29+y 24=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|=________. ________________________________________________________________________ ________________________________________________________________________规律方法 圆锥曲线的形状、焦点位置不确定时要分类讨论;立体几何中点、线、面的位置变化,三角形和平行四边形的不确定性都要进行分类讨论.方法三 由参数变化引起的分类讨论某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,需对参数进行讨论,如含参数的方程、不等式、函数等.解决这类问题要根据需要合理确定分类标准,讨论中做到不重不漏,结论整合要周全.例3 (2022·湖北七市(州)联考)已知函数f (x )=x +1x (x >0),若f (x )[f (x )]2+a的最大值为25,则正实数a =________.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 若遇到题目中含有参数的问题,常常结合参数的意义和对结果的影响进行分类讨论,此类题目为含参型,应全面分析参数变化引起的结论的变化情况,在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,杜绝无原则的分类讨论.。

分类讨论的思想方法

分类讨论的思想方法

分类讨论的思想方法知识点导读也是科学研究中最常用、最基本的方法.数学中的分类讨论贯穿知识的各个部分,形式多样、综合性强、逻辑严谨,在解数学题中,分类讨论是一种十分常见和重要的思想方法.那么,什么是数学中的分类讨论呢?一般来说,当一个问题所给的对象不宜进行统一的研究或推理,只有按某一个标准用分组的形式才能方便地表示出来,那么就需要对研究的对象进行分类(即分组),并对其中的每一类分别进行研究,最后综合各类的结果得到整个问题的结果.它是逻辑划分思想在解决数学问题中的具体运用,它将一个数学问题化整为零,把一个复杂的问题转化为单一的问题,从而“各个击破”,最终使整个问题得以顺利解决.高中数学中经常遇到需要进行分类讨论的问题,归纳起来有以下几种常见类型:一、由数学概念引起的分类有许多数学概念本身就是分类定义的,例如数的绝对值的概念:|a |=⎩⎪⎨⎪⎧a (当a ≥0时)-a (当a <0时)这样,当我们遇到求解与绝对值|a |有关的问题时,就要分a ≥0和a <0两种情况讨论.二、由有关数学的性质、运算法则、定理、公式引起的分类如在判断两直线是否相互垂直时,要讨论其斜率是否存在;又如指数、对数函数的性质在应用时,要分别针对它们底数的取值进行讨论等.再如等比数列a, aq, aq 2, …, aq n -1,…的前n 项和公式为S n =⎩⎪⎨⎪⎧a (1-q n )1-q (当q ≠1时)na (当q =1时)因此,遇到公比q 是字母或含字母的表达式时,就要讨论公比等于1及公比不等于1的两种情形.三、涉及有关不确定的情况时引起的分类如分段函数、图形、特殊要求等在计算或列式时需要分类讨论,一般是综合的题型.四、由参数变化而引起的分类运用分类讨论的思想解数学题时,一般分为以下四个步骤: (1) 确定讨论的对象和所要讨论对象的范围.(2) 合理分类就是将讨论对象的范围划分子区域,划分子区域时应符合以下三个条件: ① 确定分类的标准一致,不重复、不遗漏; ② 划分子区域只能按同一标准进行; ③ 区域分类应逐级进行.(3) 严格按层次逐级或逐段讨论,不能越级.(4) 归纳总结,综合出结论.其中,确定分类的标准是分类讨论的关键. 范例分类与解题分析【例1】 已知集合A ={1, x 2},集合B ={1, 3, x },且A B ,求x 的值.【解】 ①当x 2=3,即x =±3时,A B .②当⎩⎪⎨⎪⎧x 2=x x ≠1即x =0时,A B .所以x =±3或x =0.【点评】 注意真子集概念中“B 中至少有一个元素不属于A ”,可以认为A 的元素个数至少比B 的元素个数少1个,又集合的元素具有互异性,即同一个元素在集合中只出现一次,故在第2种情形中要求x ≠1.二、根据运算的要求进行分类【例2】 解关于x 的不等式:2(a +1)x -2a >ax +4.【分析】 原不等式可化为(a +2)x >2(a +2),因为x 的系数中含有字母a (a 称为参数),所以应分成a +2>0,a +2=0,a +2<0三种情况来解答.【解】 原不等式可化成(a +2)x >2(a +2). ①当a >-2时,不等式解集为{x |x >2}; ②当a =-2时,原不等式为0·x >0,原不等式解集为∅; ③当a <-2时,不等式解集为{x |x <2}. 【点评】 数学中的某些运算有着严格的运算要求.如实数集中偶次根式的被开方数必须非负,方程或不等式的两边同乘(同除)的一个数不能为零,不等式两边同乘(同除)一个负数不等号要改变方向等.凡涉及到运算要求的问题,求解时应按照运算的要求进行分类讨论.三、根据定理、公式、法则的限制条件进行分类【例3】 设{a n }是以d 为公差的等差数列,求3a 1+ 3a 2+3a 3+…+3a n .【分析】 当数列为等比数列且其公比不确定时,在求前n 项和时,必须对公比是否为1分成两种情况进行讨论.【解】 设b n =3a n ,∵ b n +1b n =3a n +13a n=3a n +1-a n =3d∴ {b n }是以b 1=3a 1为首项,以q =3d 为公比的等比数列 当q =3d =1,即d =0时, 3a 1+3a 2+3a 3+…+3a n =3a 1·n ,(n ∈N +)当q =3d≠1,即d ≠0时,3a 1+3a 2+3a 3+…+3a n =3a 1(1-3nd )1-3d,(n ∈N +).【点评】 数学中的某些定理、公式、法则等均受到一些条件的限制,如复数的模为非负实数;公式S n =a 1(1-q n )1-q中,q ≠1;三角形任意两边之和大于第三边,任意两边之差小于第三边;方程ax 2+bx +c =0 (a ≠0)有实根的充要条件是b 2-4ac ≥0,无实根的充要条件是b 2-4ac <0等,在求解这类问题时,可根据相应的限制条件进行分类讨论.四、根据函数的性质进行分类【例4】 已知幂函数y =x 3m -7(m ∈N +)在区间(0, +∞)内是减函数,且图像关于y 轴对称,求函数解析式.【解】 由于幂函数y =x n ,当n <0时,在区间(0, +∞)内是减函数,所以可得3m -7<0.解得m <73.又∵ m ∈N +, ∴ m =1, 2.当m =1时,函数的解析式为y =x -4,是偶函数,其图象关于y 轴对称.当m =2时,函数的解析式为y =x -1,是奇函数,其图象关于原点对称,∴ m =2(舍去).因此,所求函数的解析式为y =x -4.【点评】 幂函数y =x n 当n <0时,在区间(0, +∞)内是减函数,据此可定出m 的取值范围,再由m ∈N +及该幂函数为偶函数(图象关于y 轴对称),进一步确定m 的值.五、根据图形相对位置的变化特征进行分类【例5】 如图,在直角梯形ABCD 中,∠B =90°,AB =4,BC =CD =2,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D 运动,设点P 运动的路程为x ,△ABP 的面积为y ,写出y 与自变量x 之间的函数关系式,并在直角坐标系中画出它的图象.【分析】 △ ABP 的面积由于点P 的运动,函数关系式共分两个部分来求解,分别为点P 在BC 上和点P 在CD 上.【解】 当点P 由B →C 运动时,PB =x ,则S △ABP =12×AB ×PB =2x ,且x ∈;当点P 由C →D 运动时,S △ABP =12×AB ×BC =124×2=4,且x ∈(2,4].∴综上所述:y =⎩⎪⎨⎪⎧ 2x ,4,x ∈x ∈(2,4],且该函数关系式的图像如图所示.【点评】 此例的求解是根据图形的位置特征进行分类讨论的,对于这类与图形的位置特征有关的数学问题,求解时可根据图形的位置特征进行分类讨论.六、根据参数的取值进行分类【例6】 试根据k 的不同取值,讨论方程kx 2+y 2=1所表示的曲线形状.【分析】 根据不同曲线方程对参数的要求,可对方程中参数m 的取值进行分类,求得曲线的标准方程,从而确定出方程所表示的不同曲线.【解】 当k =0时,方程为y 2=1,即y =±1表示两条垂直于y 轴的直线;当k =1时,方程为x 2+y 2=1,表示以原点为圆心,以1为半径的圆;当k ≠0且k ≠1时,方程为x21k+y 2=1;当1k>1,即0<k <1时,表示焦点在x 轴上的椭圆; 当0<1k 1,即k >1时,表示焦点在y 轴上的椭圆;当1k<0,即k <0时,表示焦点在y 轴上的双曲线. 【点评】 在讨论曲线方程时,一定要掌握不同曲线方程的特征,并按照不同曲线方程的要求进行讨论,然后从一般到特殊,进行分类讨论,可先讨论直线、圆,然后再讨论抛物线、椭圆、双曲线.【例7】 不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,求a 的取值范围.【分析】 因x 2的系数a 2-1可以等于0也可以不等于0,因此对a 2-1是否等于0应分类讨论.【解】 (1)若a 2-1=0,则a =-1或a =1 因a =1符合题意,而a =-1不符合题意 ∴a =1;(2)若a 2-1≠0则由题意知 ⎩⎪⎨⎪⎧a 2-1<0(a -1)2+4(a 2-1)<0∴-35<a<1 综合(1)(2)得,a 的取值范围是(-35,1].【点评】 由于参数的取值不同,问题的表述也不相同.因此只有对参数进行分类才能根据问题的不同表述分别列式求解.【举一反三】 对任意实数x ,不等式ax 2+2ax -(a +2)<0恒成立,求实数a 的取值范围.【解】 当a =0时,由题意得-2<0.符合题意.当a ≠0时,由题意得⎩⎨⎧a <0(2a )2+4a (a +2)<0,解之得-1<a <0. 综上所述,a 的取值范围(-1,0].【例8】 已知函数y =log a x(a>0且a ≠1)在[1, 2]上的最大值比最小值大2,求a 的值. 【分析】 因a 的不同取值,对数函数y =log a x 在[1, 2]上的单调性不同,因此必须对a 进行分类讨论.【解】 (1)若a>1由已知得log a 2-log a 1=2∴log a 2=2 ∴a 2=2 ∴a =2; (2)若0<a<1由已知得log a 1-log a 2=2∴log a 12=2 ∴a 2=12 ∴a =22综合(1)(2)得a =2或a =22.【点评】 由于参数的取值不同,对数函数y =log a x 的单调性也不相同,因此只有对a 进行分类,才能利用函数的单调性列式求解.七、根据求解数学问题结论的多样性进行分类【例9】 根据a 的不同取值,求函数f (x )=ax 2+x +1的单调区间.【分析】 f (x )可能为一次函数,也有可能为二次函数,而当f (x )为二次函数时,可根据抛物线的开口方向及对称轴的位置,讨论其单调区间.【解】 当a =0时,f (x )=x +1,∴ f (x )的递增区间为(-∞,+∞).当a ≠0时,f (x )为二次函数,对称轴为x =-12a,当a >0时,f (x )的递增区间为⎣⎡⎭⎫-12a ,+∞,递减区间为⎝⎛⎦⎤-∞,-12a , 当a <0时,f (x )的递增区间为⎝⎛⎦⎤-∞,-12a ,递减区间为⎣⎡⎭⎫-12a ,+∞. 【点评】 一次函数、指数函数、对数函数等在其定义域内的单调性都有两种可能性,二次函数的单调性不仅要考虑抛物线的开口方向,还要考虑对称轴的位置.综合训练1.A ={x |x 2-2x -3=0},B ={x |ax -1=0},B A ,则a 的值是( )A .-1,0, 13B .-1, 13C .-13,0,1D .-13,1【分析】 A ={-1,3}当B =∅时,方程ax -1=0无解,a =0 当B ={-1}时,-a -1=0,a =-1当B ={3}时,3a -1=0,a =13 a 的值是-1, 0, 13.2.在同一坐标中,y =x a和y =ax +1a的图象可能是( )A B C D3.已知m ∈R ,且(m 2-8m +7)+(m 2-1)i =|(2-23i)2|,则m =( ) A .-1或1 B .-1 C .1或7 D .7【分析】 |(2-23i)2|=|8+83i|=16 故有⎩⎪⎨⎪⎧m 2-8m +7=16m 2-1=0解得m =-1.4.顶点间的距离为6,渐近线方程为y =±12x 的双曲线的标准方程是( )A.x 29-4y 29=1或y 29-x 236=1B.y 29-4x 291或x 29-y 236=1C.x 29-4y 29 1D.y 29-x236=1【分析】 2a =6,a =3当焦点在x 轴上时,渐近线为y =±b a =±12x, b a =12 b =32双曲线的标准方程是x 29-4y29=1.当焦点在y 轴上时,渐近线为y =±a b =±12x ,a b =12, b =6双曲线的标准方程是y 29-x236=1.二、填空题5.设A ={1,2,3},B ={3, lg a },若B ⊆A ,则a =__10或100________. 【分析】 由题得lg a =1或lg a =2,∴ a =10或a =100.6.已知π2<α<3π2,则|tan α|tan α+|sin α|sin α=_____0___.【分析】 π2<α<π时,|tan α|tan α+|sin α|sin α=0;π<α<3π2|tan α|tan α+|sin α|sin α0.7.若log a 45<1,则a 的取值范围是___(0,45)∪(1,+∞)_______.【分析】 由题意,得log a 45<1=log a a ,则当a >1时,y =log a x 是单调增的,∴a >45,即a >1;当0<a <1时,y =log a x 是单调减的,∴a <45,即0<a <45.综上所述,a 的取值范围为(0,45)∪(1,+∞).8.设f (x )=⎩⎪⎨⎪⎧2x -1,x >03-x ,x ≤0,则xf (x )>0的解集是___⎝⎛⎭⎫12,+∞_______.【分析】 当x >0时,x (2x -1)>0,即x >12或x <0 ∴x >12.当x ≤0时,x (3-x )>0,解为∅.9.在△ABC 中,已知a =23,c =2,∠C =30°,则b =____2或4____.【分析】 cos C =a 2+b 2-c 22ab ,32=12+b 2-443b,b 2-6b +8=0,b =2或4.10.已知椭圆的中心在原点,对称轴为坐标轴,长轴为8,短轴为4,则椭圆方程是___x 216+y 24=1或y 216+x24=1_____. 【分析】 若焦点在x 轴上,则椭圆方程为x 216+y 24=1,若焦点在y 轴上则椭圆方程为y 216+x241.11.平行于直线3x -4y -20=0,且和它相距3个单位的直线方程是__3x -4y -5=0或3x -4y -35=0______.【分析】 设所求直线方程为3x -4y +m =0,由题意知两直线间的距离d =|-20-m |5=3,则m =-5或-35.三、解答题12.已知集合A ={1, p, p 2},集合B ={1, 1-q, 1-2q },且A =B ,求p 的值.【解】 因为A =B .所以有⎩⎪⎨⎪⎧ p =1-q p 2=1-2q ①或⎩⎪⎨⎪⎧p =1-2q p 2=1-q ②由①得⎩⎪⎨⎪⎧2p =2-2qp 2=1-2q ⇒p 2-2p =-1⇒p =1(舍去).由②得⎩⎪⎨⎪⎧p =1-2q 2p 2=2-2q ⇒2p 2-p =1⇒p =-12或p =1(舍去).所以p =-12.(舍去p =1是因为集合中的元素是互异的)13.求与双曲线x 22y 2=1有两个公共焦点,且过点(3,2)的圆锥曲线的方程.【解】 双曲线x 22y 2=1的两个焦点为F 1(-3,0),F 2(3,0)当圆锥曲线为椭圆时,设其方程为x 2a 2+y 2b2=1(a >b >0),由⎩⎪⎨⎪⎧ 3a 2+4b 2=1a 2-b 2=3 得: a 2=9,b 2=6,椭圆的方程为x 29+y 26=1.当圆锥曲线为双曲线时,设其方程为x 2a 2y 2b2=1(a ,b >0),由⎩⎪⎨⎪⎧3a 2-4b 2=1a 2+b 2=3得: a 2=1, b 2=2,双曲线的方程为x 2-y 22=1.14.函数y =a -b cos3x 的最大值是6,最小值是-2,求函数y =cos πxa+b 的最小正周期与最小值.【解】 当b ≥0时,根据题意⎩⎪⎨⎪⎧ a +b =6a -b =-2, ∴ ⎩⎪⎨⎪⎧a =2b =4函数y =cos πx a +b 的最小正周期T =2ππ2=4,最小值是3;当b <0时,根据题意⎩⎪⎨⎪⎧ a -b =6a +b =-2,∴ ⎩⎪⎨⎪⎧a =2b =-4,函数y =cos πx a +b 的最小正周期T =2ππ2=4,最小值是-5.15.如图,已知矩形ABCD ,AB =4,BC =3,点P 为BC 或DC 上一动点,设AP 与矩形ABCD 所围成的三角形面积是S ,从点A 沿矩形周界且经过B (或再经过点C )到P 的距离是x ,试用解析式将S 表示为x 的函数.图(1) 图(2) 第15题图【解】 如P 在BC 间,AB +BP =x ,PB =x -4,S =12AB ·BP =12×4(x -4)=2x -8,此时,x ∈(4,7];如P 在DC 间,AB +BC+CP =x ,CP =x -7,DP =DC -CP =4-(x -7)=11-x ,S =12AD ·DP =12×3×(11-x )=-32x +332此时x ∈(7,11),∴S =⎩⎪⎨⎪⎧2x -8 x ∈(4,7]-32x +332x ∈(7,11)。

第一编 数学思想方法 第三讲 分类讨论思想 Word版含解析

第一编 数学思想方法 第三讲 分类讨论思想 Word版含解析

第三讲 分类讨论思想思想方法解读考点由概念、法则、公式引起的分类讨论典例1 (1)2015·福建高考]若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0,且a ≠1)的值域是4,+∞),则实数a 的取值范围是________.解析]因为f(x)=⎩⎨⎧-x +6,x ≤2,3+log a x ,x>2,所以当x ≤2时,f(x)≥4;又函数f(x)的值域为4,+∞),所以⎩⎨⎧a>1,3+log a 2≥4.解得1<a ≤2,所以实数a 的取值范围为(1,2].答案] (1,2](2)已知各项均为正数的数列{a n },其前n 项和为S n ,且S n =(S n -1+a 1)2(n ≥2),若b n =a n +1a n+a na n +1,且数列{b n }的前n 项和为T n ,则T n =________.解析] 由题意可得,S n >0,因为S n =(S n -1+a 1)2(n ≥2),所以S n =S n -1+a 1,即数列{S n }是以S 1=a 1为首项,以a 1为公差的等差数列,所以S n =n a 1,所以S n =n 2a 1,所以当n ≥2时,a n =S n -S n -1=n 2a 1-(n -1)2a 1=(2n -1)a 1,当n =1时,适合上式,所以b n =a n +1a n +a n a n +1=2n +12n -1+2n -12n +1=1+22n -1+1-22n +1=2+2⎝ ⎛⎭⎪⎪⎫12n -1-12n +1, 所以T n =2n +2⎝ ⎛⎭⎪⎪⎫1-13+13-15+…+12n -1-12n +1=2n +2⎝ ⎛⎭⎪⎪⎫1-12n +1=2n +4n 2n +1=4n 2+6n 2n +1. 答案] 4n 2+6n2n +1四步解决由概念、法则、公式引起的分类讨论问题 第一步:确定需分类的目标与对象.即确定需要分类的目标,一般把需要用到公式、定理解决问题的对象作为分类目标.第二步:根据公式、定理确定分类标准.运用公式、定理对分类对象进行区分.第三步:分类解决“分目标”问题.对分类出来的“分目标”分别进行处理.第四步:汇总“分目标”.将“分目标”问题进行汇总,并作进一步处理.【针对训练1】 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解 (1)由题意得5a 3·a 1=(2a 2+2)2, 即5(a 1+2d)·a 1=(2a 1+2d +2)2 d 2-3d -4=0,解得d =-1或d =4, 所以a n =-n +11或a n =4n +6. (2)设数列{a n }前n 项和为S n ,因为d<0,所以d =-1,a n =-n +11,则 由a n ≥0,即-n +11≥0得n ≤11. 所以当n ≤11时,a n ≥0,n ≥12时,a n <0.所以n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ; n ≥12时,|a 1|+|a 2|+…+|a 11|+|a 12|+…+|a n |=a 1+a 2+…+a 11-a 12-…-a n =S 11-(S n -S 11)=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.考点由参数变化引起的分类讨论典例2 2015·江苏高考]已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.解] (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a3. 当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0, 从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以⎩⎪⎨⎪⎧a >0,427a 3-a +c >0或⎩⎪⎨⎪⎧a <0,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立,从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1.此时,f (x )=x 3+ax 2+1-a =(x +1)x 2+(a -1)x +1-a ], 因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞. 综上c =1.1.变量或参数变化时常见的分类讨论(1)解含参数的不等式时,常按参数的取值不同分类讨论. (2)平面解析几何中,直线点斜式中按斜率k 存在和不存在,直线截距式中按截距b =0和b ≠0分类讨论.2.利用分类讨论思想的注意点(1)分类讨论要标准统一,层次分明,分类要做到“不重不漏”. (2)分类讨论时要根据题设条件确定讨论的级别,再确定每级讨论的对象与标准,每级讨论中所分类别应做到与前面所述不重不漏,最后将讨论结果归类合并,其中级别与级别之间有严格的先后顺序、类别和类别之间没有先后;最后整合时要注意是取交集、并集,还是既不取交集也不取并集只是分条列出.【针对训练2】 2016·四川高考]设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1. 而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)内单调递增.又h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞. 考点 根据图形位置或形状分类讨论典例3 2015·广东高考]已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解] (1)圆C 1的标准方程为(x -3)2+y 2=4,圆心坐标为C 1(3,0). (2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝⎛⎭⎪⎫x-322+y2=94.故线段AB的中点M的轨迹C的方程是⎝⎛⎭⎪⎫x-322+y2=94在圆C1:(x-3)2+y2=4内部的部分,设AB方程为y=k1x,当AB与圆C1相切时⎩⎨⎧y=k1xx2+y2-6x+5=0⇒(k21+1)x2-6x+5=0,由Δ=36-4×5×(k21+1)=0得k1=±255,代入方程组得x=53,因此x∈⎝⎛⎦⎥⎤53,3.即⎝⎛⎭⎪⎫x-322+y2=94⎝⎛⎭⎪⎫53<x≤3.(3)联立⎩⎪⎨⎪⎧x=53,⎝⎛⎭⎪⎫x-322+y2=94,解得⎩⎨⎧x=53,y=±253.不妨设其交点为P1⎝⎛⎭⎪⎫53,253,P2⎝⎛⎭⎪⎫53,-253,设直线L:y=k(x-4)所过定点为P(4,0),则kPP1=-257,kPP2=257.当直线L 与圆C 相切时,⎪⎪⎪⎪⎪⎪32k -4k k 2+1=32,解得k =±34.故当k ∈⎩⎨⎧⎭⎬⎫-34,34∪⎝⎛⎭⎪⎫-257,257时,直线L 与曲线C 只有一个交点.六类常见的由图形的位置或形状变化引起的分类讨论 (1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.【针对训练3】 (1)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32 B.23或2 C.12或2 D.23或32答案 A解析 不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0,若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t6t =12.若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32.(2)已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( )A .-12 B.12 C .0 D .-12或0答案 D解析不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线y =kx +1与直线x =0或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.。

分类讨论的思想方法

分类讨论的思想方法

b 1 时, f (x) x2 ln(x 1) ,令 h(x) x3 f (x) ,则

8:已知函数
f
(x)
2ax x2
a2 1
1
(
x
R)
,其中
a
R

(Ⅰ)当 a 1 时,求曲线 y f (x) 在点 (2,f (2)) 处的切线方程;
(Ⅱ)当 a 0 时,求函数 f (x) 的单调区间与极值.
内为减函数.
函数 f (x) 在 x1 a 处取得极大值 f (a) ,且 f (a) 1 .
函数
f
(x)

x2
1 a
处取得极小值
f
1 a
,且
f
1 a
a2 .
例 9:设函数 f (x) x(x a)2 (x∈R),其中 a∈R,
(1)当 a=1 时,求曲线 y= f(x) 在点(2,f (2))处的切线方程; (2)当 a≠0 时,求函数 f(x)的极大值和极小值;。
g(x) 在 (0, ) 上为增函数, x 0 时, g(x) g(0) 0 ,即
f (x) ax 。
2)若 a 2 ,方程 g '(x) 0 的正根为 x1 ln a
a2 2
4
,此时若
x
(0,
x1 )
,则
g
'( x)
0
,故
g(x)
在该区
间为减函数,因此 g(x) g(0) 0 ,即 f (x) ax
解:(1)设 r 为方程的一个根,即 f (r) 0 ,则由题设得 g( f (r)) 0 .于是,
g(0) g( f (r)) 0 ,即 g(0) d 0 . 所以, d 0 . (2)由题意及(1)知 f (x) bx2 cx , g(x) ax3 bx2 cx .

分类讨论的思想方法

分类讨论的思想方法

分类讨论的思想方法问题的提出:分类讨论的思想方法一方面可将复杂的问题分解若干个简单的问题,另一方面恰当的分类可避免丢值漏解,从而提高全面考虑问题的能力,提高周密严谨的数学教养。

当我们所研究的各种对象之间过于复杂或涉及范围比较广泛时,我们大多采取分类讨论的方法进行解决,即对问题中的各种情况进行分类,或对所涉及的范围进行分割,然后分别研究和求解。

分类讨论解题的实质,是将整体问题化为部分问题来解决,以增加题设条件。

问题:从1到100这100个自然数中每次取两个,要使它们的和大于100,有多少中取法?分析:这个问题看似简单,但很多人拿过来却是丈二和尚摸不着头脑,这时们就可以使用分类讨论的思想方法了。

解:很显然每取的两个数中,总有一个是较大的,那么以“两数中较大者”作为分类的标准,逐一给予讨论:若较大的数是100,则另一个数从其余99个数中任取一个与100配对,都满足条件,且这样的取法有99种:(100,99)、(100,98)、·····、(100,1);若较大的数是99,则时有97种取法:(99,98)、(99,97)、······、(99,2);若较大的数是98,则有95种取法:(98,97)、(98,96)、······、(98,3);······若较大的数是51,则这时只有1种取法:(51,50);若较大的数都是小于等于50的数,这时都不可能再取出满足条件的数对。

因此可以得出结果:99+97+95+······+3+1=2500总结:生活中有许许多多的实际问题也要分类讨论的方法来解决,这时我们要记住的是:在分类之后不能遗漏问题中可能出现的任何一种情况。

分类讨论思想ppt课件演示文稿

分类讨论思想ppt课件演示文稿



1 cos 2 x 2 | sin x | 解析:f x cos x cos x 2 tan x, x [2k ,2k ) [2k ,2k ) 2 2 . 2 tan x, x [2k ,2k 3 ) [2k 3 ,2k 2 ) 2 2
2.引入分类讨论的主要原因
1由数学概念引起的分类讨论:如绝对值的定义、
直线与平面所成的角、定比分点坐标公式等;
2 由数学运算要求引起的分类讨论:如除法运算
中除数不为零、对数中真数与底数的要求等;
3由函数的性质、定理、公式的限制引起的分类讨论; 4 由图形的不确定引起的分类讨论; 5由参数的变化引起的分类讨论; 6 按实际问题的情况而分类讨论.
考点1 由数学概念引起的分类讨论
例1.设a为实数,函数f x 2x 2 x a x a .
1 若f 0 1,求a的取值范围; 2 求f x 的最小值.
分析:由f 0 1,知 a a 1,然后根据 绝对值的定义解此不等式可解得第 1 小题; 而第 2 小题利用绝对值的定义化函数为分 段函数,然后分别求其最值.
【思维启迪】由数学运算性质类型、公式和定理、 法则有范围或者条件限制,或者是分类给出 的,在解答中注意分类讨论思想的应用.本题 Sn 中利用an Sn S n1 n 1与n 2讨论. n 1 n 2 求出an 就须分
分析:分两类n 1与n 2进行解答,但须注
解析:当n 2时,an Sn S n 1
2 2n 2n 2 n 1 2 n 1 4n, 所以an 4n(n 2,n N* ). 2

分类讨论思想PPT优秀课件(1)

分类讨论思想PPT优秀课件(1)

∴当y=4时,f(y)min=146. 即点P应位于(0,4). ∴当点P为(0,4)时到三镇距离的平方和最小. (2)P至三镇的最远距离为
25 y 2 (当 25 y 2 12 y ),
g(y) 12 y
(当 25 y 2 12 y ).
由 25 y 2 12 y , 得 y 119 , 24
3007和48011.
v
v
(2)由于列车在B,C两站的运行误差之和不超过2
分钟,
所以 300 7 480 11 2 .

v
v
当 0 v 300 时 , ① 式变形为 7
300 7 480 11 2 , 解得 39 v 300 ;
v
v
7
当 300 v 480 时 , ① 式变形为
3.分类讨论产生的时机: (1)涉及的数学概念是分类定义的. (2)运算公式、法则、性质是分类给出的. (3)参数的不同取值会导致不同的结果. (4)几何图形的形状、位置的变化会引起不同的
结果. (5)所给题设中限制条件与研究对象不同的性质
引发不同的结论. (6)复杂数学问题或非常规问题需分类处理才便
性的关系;幂函数y=xn的幂指数n的正、负与定义 域、单调性、奇偶性的关系;指数函数y=ax (a>0 且a≠1)、对数函数y=logax (a>0,a≠1)中底数a 的 范围对单调性的影响;等比数列前n项和公式中公 比q的范围对求和公式的影响;复数概念的分类; 不等式性质中两边同时乘以正数与负数对不等号 方向的影响;排列组合中的分类计数原理;圆锥 曲线离心率e的取值与三种曲线的对应关系;运用 点斜式,斜截式直线方程时斜率k是否存在;角的

3-26分类讨论思想

3-26分类讨论思想

数学(理) 第30页
新课标· 高考二轮总复习
[解]
(1)设等比数列{an}的公比为 q(q≠0),则 ak+ 1
+ +
=qk,ak+3=qk 2,ak+2=qk 1, 依题意得 2qk 2=qk+qk 1,由于 qk≠0,所以 2q2-q 1 -1=0,解得 q=1 或 q=- . 2 (2)当 q=1 时,Sk+1=(k+1)a1=k+1,Sk+3=k+3, Sk+ 2=k+2,显然 Sk+1+Sk+ 2=k+1+k+2=2k+3≠2Sk+
1 3 1 (3)当 a≥ 时,如图(3)知,y≥f = +a. 2 2 4
1 3 综上所述:当 a≤- 时,值域为[ -a,+∞);当- 2 4 1 1 1 3 <a< 时,值域为[a2+1,+∞);当 a≥ 时,值域为[ + 2 2 2 4 a,+∞).
数学(理) 第28页
新课标· 高考二轮总复习
第三部分
高考专题讲解
数学(理) 第1页
新课标· 高考二轮总复习
第二十六讲 分类讨论思想
数学(理) 第2页
新课标· 高考二轮总复习
考情分析
分类讨论思想是指在数学中,根据研究对象的性质 差异,分别对各种不同的情况予以分析的分类思考方法, 它是一种重要的思想方法,同时也是一种重要的解题策 略.在近年的高考试题中频繁出现,已成为高考的一个
数学(理) 第20页
新课标· 高考二轮总复习
[解]
f′(x)=ex(x2+ax+a+1)+ex(2x+a) =ex[x2+(a+2)x+(2a+1)].
令 f′(x)=0,得 x2+(a+2)x+(2a+1)=0. ①当 Δ=(a+2)2-4(2a+1)=a2-4a=a(a-4)>0, 即 a<0 或 a>4 时,方程 x2+(a+2)x+(2a+1)=0 有 两个不同的实根 x1,x2,不妨设 x1<x2.

技法专题第2讲分类讨论思想、转化与化归思想

技法专题第2讲分类讨论思想、转化与化归思想
问题的C思o想py策r略ig.h对t 问20题1实9-行20分1类9与A整sp合o,s分 e P类t标y准L等td于. 增加
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化

分类讨论的思想方法

分类讨论的思想方法

科技信息分类讨论是一种重要的数学思想,它在人的思维发展中有着重要的作用。

当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类结果,最后综合各类结果得到整个问题的解答。

因此,在近几年高考试题中,它都被列为一种重要的思想方法来考察。

有关分类讨论的数学问题,关键是明确分类讨论的原因,即认识为什么要分类讨论,只有明确了讨论的原因,才能准确、恰当地进行分类与讨论。

引起分类讨论的原因大致可以归纳为以下几种:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成角、直线的倾斜角、两直线所成角、定比分点公式、两条异面直线所成角等。

(2)由数学运算要求而引起的分类讨论:如除法运算中的除数不能为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,异面直线上两点间的距离公式等。

(3)由函数的性质、定理、公式的限制而引起的分类讨论。

(4)由图形的不确定性而引起的分类讨论。

(5)由参数的变化而引起的分类讨论:如某些含有参数的问题。

由于参数的取值不同会导致所得结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等。

(6)运用的解题方法途径有局限性。

(7)求解的数学问题的结论有多种情况或者多种可能性。

(8)较复杂或者非常规的数学问题,需要采取分类讨论的解题策略来解决的。

(9)其他根据实际情况具体分析而引起的分类讨论,如排列组合问题,应用问题等。

合理分类的三条标准:(1)对所讨论的全域分类要“既不重复,又不遗漏”。

(2)同一分类必须按同一标准进行。

(3)对多级讨论,应逐级进行,不能越级。

分类讨论是一种逻辑方法,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类讨论的一般步骤是:(1)确定分类讨论的对象。

(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级)。

分类讨论思想方法-文档资料

分类讨论思想方法-文档资料
高考专题辅导
分类讨论思想方法
分类讨论思想方法
在解答某些数学问题时,有时会有多种情 况,对各种情况加以分类,并逐类求解,然 后综合归纳,这就是分类讨论法。 分类讨论是一种逻辑方法,也是一种数学 思想。有关分类讨论的数学问题具有明显的 逻辑性、综合性、探索性,能训练人的思维 条理性和概括性,所以在高考试题中占有重 要的位置。
→明确讨论对象,确定对象的全体 →确定分类标准,正确进行分类 →逐步进行讨论,获取阶段性结果 →归纳小结,综合得出结论。
2.逻辑划分应遵循的原则: 分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。 3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
l o g( x ) l o g( x ) a1 a1
log 1 x )|=…… a(
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①C (A∪B) 且C中含有3个元素;②C∩A≠φ。 【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。 【解】 C
1 · 12
C
2 + 8
C
2 12·
C
1 8+
C
3 · 12
C 80 =1084
3 3 【另解】(排除法): C C 1 0 8 4 2 0 8 例3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有 f(x)>0,求实数a的取值范围。
【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S U M M E R T E M P L AT E
分类讨论思想方法
高考专题辅导
分类讨论思想方法
分类讨论思想方法
在解答某些数学问题时,有时会有多种情 况,对各种情况加以分类,并逐类求解,然 后综合归纳,这就是分类讨论法。
分类讨论是一种逻辑方法,也是一种数学 思想。有关分类讨论的数学问题具有明显的 逻辑性、综合性、探索性,能训练人的思维 条理性和概括性,所以在高考试题中占有重 要的位置。
4.含有特殊元素或特殊位置的排列组合问题,其解题的基 本策略,就是按照特殊元素或特殊位置的特征进行恰当的 划分,转化为最基本、最简单的排列组合问题,然后结合 加法原理或乘法原理完成解答。
5.树立划分意识,训练思维的严谨性,保证解题的正确 与完整。
二、分类讨论的步骤、原则和方法
1.分类讨论的一般步骤是:
一、在什么情况下要进行分类讨论
1.数学中的某些概念、定理、性质、法则、公式是分类定义 或分类给出的,在运用它们时要进行分类讨论。
2.研究含参数的函数、方程、不等式等问题,由参数值的 “量变”而导致结果发生“质变”,因而也要进行分类讨论。
3.在研究几何问题时,由于图形的变化(图形位置不确定 或形状不确定),引起问题结果有多种可能,就需要对各 种情况分别进行讨论。
A.
8 9
3 ;B.
4 9
3 ;C. 2
9
3 ;D. 4 3 或 8
9
9
3。
Ⅱ、示范性题组:
例1.设0<x<1,a>0且a≠1,比较| 的大小。
loga(1x)|与|
loga(1x)|
【分析】对数函数的性质与底数a有关,而分两类讨论。
【解】∵0<x<1∴0<1-x<1,1+x>1
当0<a<1时, |loga(1x)|-| loga(1x)|= loga(1x)-
【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法)
例3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有
f(x)>0,求实数a的取值范围。
1
1
∴【1解f ( a1】a1)=当42a>a10时 0,或f(x)=a1f (≤ a1)(= 1 xa- 2a
loa(1 gx)loga(1x2)>0;
当a>1时,| loga(1x)|-| loga(1x)|=……
由①、②可知, loga(1x)loga(1x)
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①C (A∪B) 且C中含有3个元素;②C∩A≠φ。
Ⅰ、再现性题组:
1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},
若A B,那么a的范围是____B_____。
A.0≤a≤1;B.a≤1;C.a<1;D.0<a<1。
2.若a>0且a≠1,p= loag(a3a1),q= loag(a2a1,)
则p、q的大小关系是___C______。
∴a≥1或
1 <a<1或φ即a > 2
1 2
)2+2-a
2≥0 或
1 a
≥4
f (4)=16a

8
2≥0
当a<0时,ff((14))= =1a6a282≥ 2≥ 0 0,解得φ;
当a=0时,f(x)=-2x+2 , f(1)=0,f(4)=-6,∴不合题意
由上而得,实数a的取值范围是a > 1 。 2
A.3x-2y=0;
B.x+y-5=0;
C.3x-2y=0或x+y-5=0;
D.不能确定。
5.函数
y x 1 x
的值域是__B_______。
A.[2,+∞);B.(-∞,-2]∪[2,+∞);C.(-∞,+∞);D.[-2,2]。
6.正三棱柱的侧面展开图是边长分别为2和4的矩形,
则它的体积为___D______。
(1)统一式。针对变量分类讨论的,且在不同条件下问题 有不同的结论,归纳结论时应采用统一式。
(2)分列式。针对参数分类讨论的,且每一类讨论结果均 是总结论的一个子集,归纳结论时应采用分列式。
三、灵活运用逻辑划分的思想方法
1.通过“补集”间接求解。 2.有条件时,尽量减少分类层次,寻求整体解决方法。
(x4a)(x6a)
1
例4.解不等式
2a1 >0 (a为常数,a≠- 2 )
【分析】含参不等式,参数a决定了2a+1的符号和两根
1
1
-4a、6a的大小,故对a>0、a=0、-
分别加以讨论.
1
2
<a<0、a<-
2
【解】2a+1>0时,a > -2 ;-4a<6a时,a> 0。
所以分以下四种情况讨论:
→明确讨论对象,确定对象的全体 →确定分类标准,正确进行分类 →逐步进行讨论,获取阶段性结果 →归纳小结,综合得出结论。
2.逻辑划分应遵循的原则:
分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。
3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。
【解】
C 112·C
2+
8
C 122·CBiblioteka 81+C3·
12
C
0 8
=1084
【另解】(排除法):C230C83 1084
例3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有 f(x)>0,求实数a的取值范围。
A.p=q;B.p<q;C.p>q;D.当a>1时,p>q;当0<a<1时,p<q。
3.函数ysinxcosxtanxcotx的值域是_4_,_0_,___2__。 |sinx| |cosx| |tanx| |cotx|
4.过点P(2,3),且在坐标轴上的截距相等的直线方程是___C______。
当a>0时,(x+4a)(x-6a)>0,解得:x <-4a或x>6a;
当a=0时,x 2 >0,解得:x≠0;
1 当- 2 <a<0时,(x+4a)(x-6a)>0,解得:x<6a或x>-4a;
当a<- 1 时,(x+4a)(x-6a)<0,解得:6a<x<-4a。 2
综上所述,……
例5.在xoy平面上给定曲线y2=2x,设点A(a,0),a∈R,曲线上 的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40) 【分析】求两点间距离的最小值问题,先用公式建立目标函数,
相关文档
最新文档