第六讲---相似三角形的中位线及其应用培优辅导(三)
典中点图形的相似专训3 三角形中位线的应用
典中点图形的相似专训3 三角形中位线的应用◐名师点金◑三角形中位线定理有着广泛的应用,可以用来证明或求解许多问题,但我们往往不能直接利用这个定理,要仔细观察图形中与定理有关的基本图形,特别是涉及与中点有关的条件时,要通过巧妙添辅助线构造三角形中位线。
应用1:利用三角形中位线进行证明类型1:证相等关系1.如图,在四边形ABCD 中,对角线AC=BD,E,F 分别为AB,CD 的中点,点O 为AC,BD 的交点,G,H 为EF 与BD,AC 的交点.求证:OG=OH 。
类型2:证倍分关系2.如图,在平行四边形ABCD 中,BD 为对角线,点E,F 分别是AB,BC 的中点,连结EF,交BD 于M 点。
求证:(1)BM=41BD;(2)ME=MF类型3:证不等关系3.如图,M,N 是四边形ABCD 的边BC,AD 的中点,且AB 与CD 不平行.求证:MN<21(AB+CD)。
类型4:证位置关系4.如图,自△ABC的顶点A向∠ABC和∠ACB的平分线作垂线,垂足分别为D,E,连结DE。
求证:DE∥BC。
应用2:利用三角形中位线探究多边形形状5.顺次连结对角线相等的四边形各边中点,所得四边形是( )A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连结正方形各边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形7.D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连结OB,OC,点G,F分别是OB,OC的中点,顺次连结点D,G,F,E.如图,当点O在△ABC的内部时,试判断四边形DGFE的形状,并说明理由。
应用3:利用三角形中位线求值8.如图所示,在四边形ABCD中,AD∥BC,AD+BC=8,且AD:BC=3:7,E,F分别是BD,AC的中点,求EF的长。
三角形中位线定理课件
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录
北师大版九年级数学上册 相似三角形解答题培优专题(含答案)
2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。
最新初三上数学培优专题讲义九AB------相似三角形
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
三角形中位线培优复习上课讲义
三角形中位线培优复习课题三角形中位线培优F M E C B A P F E D C B A F N M E C B A例题2:BE 、CF 是△ABC 的角平分线,AN ⊥BE 于N ,AM ⊥CF 于M 。
求证:MN ∥BC练习:如图,在∆ABC 中,AB=BC ,∠ABC=90°,F 为BC 上一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF=2ME 。
方法二、【取中点构造中位线】例题1:如图,在四边形ABCD 中,AD=BC ,∠CBD=20°,∠BDA=110°,E 、F 、P 分别为AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.练习:如图,在∆ABC 中,∠C=90°,CA=CB ,E ,F 分别为CA ,CB 上一点,CE=CF ,M ,N 分别为AF ,BE 的中点,求证:AE=2MNNM D C B A 例题2:如图,四边形ABCD 中,M ,N 分别为AD ,BC 的中点,边BD ,若AB=10,CD=8,求MN 的取值范围。
练习:已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE的延长线分别与AD 、BC 的延长线交于H 、G 点.求证:∠AHF =∠BGF .方法三、【借助平行四边形的性质】例题:如图,(1)E 、F 为△ABC 的中点,G 、H 为AC 的两个三等分点,连接EG 、FH 并延长交于D , 连接AD 、CD. 求证:四边形ABCD 是平行四边形.练习:已知:如图,在□ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交于G .求证:GF =GC .课后作业1.如图,在△ABC 中,AB=10,BC=7,BE 平分∠ABC ,AE ⊥BE ,点F 为AC 的中点,连接EF ,求EF 的长度.3.如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点。
《三角形的中位线》课件
三角形中位线的证明方法
03
找到三角形任意两边中点,连接两点成线段,即为中位线。
证明两条线段相等:利用三角形中位线定理,证明中位线长度等于第三边长度的一半。
利用三角形中位线定理证明线段相等
找到三角形任意两边中点,连接两点成线段,即为中位线。
证明两个角相等:利用三角形中位线定理,证明中位线与第三边平行,从而证明两个角相等。
什么是三角形的中位线
中位线与中线的区别
中位线是指连接三角形两边中点的线段,而中线是指连接三角形一个顶点和它所对边的中点的线段。
中位线与中线的联系
虽然中位线和中线不同,但它们都过三角形的同一个顶点,并且互相平行。
三角形的中位线与中线的关系
平行性质
等分性质
直角三角形中位线的性质
三角形中位线的性质
三角形中位线的定理和推论
这个推论是三角形中位线定理的一个直接结果,但在实际应用中,可能需要先通过其他方法证明该推论的正确性。
三角形中位线定理的推论
该定理可以用于证明两个三角形相似,或者用于计算线段长度和角度大小。
在一些复杂的问题中,可能需要利用三角形中位线定理和其他几何定理结合使用,以得出问题的解。
三角形中位线定理的应用
中考中的三角形中位线考点分析
1
如何更好地掌握三角形中位线定理
2
3
要深入理解三角形中位线的概念和性质,掌握中位线的定义、性质和判定方法。
理解概念
通过大量的练习和实践,掌握三角形中位线定理的应用技巧和方法,提高解题能力和应用能力。
做题实践
要善于总结规律和方法,掌握三角形中位线定理的证明和应用技巧,形成自己的解题思路和方法。
利用三角形中位线定理证明角相等
找到三角形任意两边中点,连接两点成线段,即为中位线。
北师大版八年级下册数学 第六章三角形的中位线课件(18张ppt
使EF=DE, 连结AF、CF 、CD
D
E
F C
B
返回
证法二
证法一
三角形中位线定理
A
用符号语言表示:
D
E
∵ DE是△ABC的中位线
1 ∴ DE∥BC, DE= BC 2
B
C
用 途
① 证明平行问题
② 证明一条线段是另一条 1 线段的2倍或 2
你现在知道蛋糕为什么 这样分了吗? A
A D F E
3 个平行四边形 B (3)图中有 _____
(4)若△ ABC 的面积为 24,△ DEF 的 6 面积是 _____
C
A
E B
H
D G C
如图,在四边形ABCD中, E、F、G 、H 分别是AB、 BC、CD、DA的中点。四 边形EFGH是平行四边形吗? 为什么?
F
小结:
A
定义:
北师大版《义务教育教科书》
八年级下册数学 第六章
三角形的中位线
情境引入:
1、你怎样把一块三角 形蛋糕平均分给两个 小朋友? 2、如果要把一块三角 形蛋糕平均分给四个 小朋友,怎么分呢?
A
B
E
D
F
C
3、若要把一块三角形 蛋糕分成大小相等、 形状相同的四块,你 能实现吗?
A D B E
F
C
获取新知: 什么叫三角形的中位线?
D E
B
F
C
定理应用:
A 、 B 两点被建筑物隔开 , 如何测量 A 、 B 两点距离呢 ?
B E A D F G C
1.若DE的长为36米,则
AB的长为多少? 2.若DE之间还有阻隔, 你又有什么办法解决 呢?
北师大版数学八年级下册:6.3三角形的中位线(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形中位线的基本概念、性质和定理,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对三角形中位线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.学会利用三角形的中位线求解线段长度,以及证明线段平行。
4.掌握三角形中位线在实际问题中的应用,如求线段比例、相似三角形等。
二、核心素养目标
1.培养学生的几何直观能力,通过观察和操作,让学生体会三角形中位线的性质,发展空间观念。
2.提高学生的逻辑推理能力,使学生能够运用中位线定理进行严谨的证明,增强演绎推理能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形中位线的基本概念。三角形的中位线是连接三角形两边中点的线段。它是三角形中的重要线段,因为它们不仅平行于第三边,而且长度等于第三边的一半。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了三角形中位线在实际中的应用,以及它如何帮助我们解决几何问题。
在实践活动环节,学生分组讨论和实验操作的积极性很高,他们能够将所学的知识应用到解决实际问题中去。不过,我也观察到,在讨论过程中,部分学生在分析问题和解决问题时还显得有些吃力,这说明我们在日常教学中还需要加强学生逻辑思维和分析能力的培养。
学生小组讨论的环节,我认为是非常有价值的。学生们能够围绕三角形中位线的实际应用进行深入探讨,互相交流想法,共同解决问题。我在这个过程中尽量扮演好引导者的角色,通过提问引导学生思考,帮助他们理清思路。从学生的分享成果来看,我觉得这个环节达到了预期的效果。
三角形中位线定理的运用例谈(Word版-含解析、点评和练习设计)
2017-2018下学期八数专题复习 二:三角形中位线定理的运用例谈 第 1页(共 8页) 第 2页 (共 8页)2017—2018下学期八年级数学专题复习 二:三角形中位线定理的运用例谈赵化中学 郑宗平三角形的中位线定理在平面几何中比较特殊,它既反映三角形的中位线与三角形边的位置关系,又有与三角形边的数量关系的规律性结论;在一些所谓的几何难题中常见它的身影,而三角形的中位线往往能起牵线搭桥甚至是关键性的作用;下面我精选一部分“含"三角形的中位线的几何解答题,让我们共同来探究、解析、训练.知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1。
三角形三条中位线围成的三角形与原三角形在某些数量上的关系⑴.周长关系如图点D E F 、、分别是⊿ABC 的三边BC CA AB 、、的中点,请探究⊿DEF 的周长 ⊿ABC 的周长的关系?分析: 点D E F 、、分别是⊿ABC 的三边BC CA AB 、、,,,111EF BC DE AB DF AC 222=== ∴()12EF DE DF BC AC AB ++=++所以三角形的三条中位线围成的三角形的周长是原三角形的周长的一半。
追踪练习:以上面的图为例,若⊿DEF 的周长为23cm ,则⊿ABC 的周长为 . ⑵。
面积关系如图点D E F 、、分别是⊿ABC 的三边BC CA AB 、、的中点,请探究⊿DEF 的面积与⊿ABC 的面积关系? 略析:根据三角形中位线定理可以得出,,,,111EF BC DF AC DE AB EF BC DF AC DE AB 222===;,再利用线段中点的定义、平行线性质、平行四边形的性质等可以进一步推出DEF 、AFE 、FBD 、DEC是全等的,故它们的面积是相等的,则S ⊿ABC =4S ⊿DEF .所以三角形的三条中位线围成的三角形的面积是原三角形的面积的14. 说明:今后我们学习了相似三角形的性质后,这个结论的推导就简单多了。
三角形中位线应用PPT课件
2021
3
❖ 三角形中位线是为三角形和四边形知识的应用 和深化所引出的一个重要的性质定理,它揭示了 线段之间的位置关系和数量关系。对进一步学习 非常有用,尤其是在它证明两直线平行和论证线 段倍分关系时常常用到,初三的学生对于三角形 中位线的理解及完成大部分练习也不是难事,但 学生在应用中位线定理时易出现不知如何添加辅 助线的问题。所以在学习完三角形中位线定理后 ,集中选取几个具有代表性的辅助线添加的题目 ,设计安排一系列变式题,让学生研讨、思考, 既可以把若干知识点串联起来,达到巩固所学知 识的目的,又可以培养学生的猜想能力,解题分 析能力,有效地促进创造思维的形成与发展.
以一题多变为载体培养学生优秀思维品质 -----特色课堂教学设计
乳山府前中学 肖永华
2021
1
以一题多变为载体培养学生优秀思维品质
-----特色课堂教学设计 ❖ 设计一题多变的训练,发展学生的思维,
培养学生分析问题和解决问题的能力,是数 学教学的根本任务。所谓一题多变, 是指在 保持问题实质不变的情况下, 通过变式改变 问题的条件或问题的结论, 把一个问题化为 梯度渐次上升的一个问题系列。
(3)顺次连结对角线相等 且垂直的四边形各边中点 所得的四边形
2021
菱形
18
结论
顺次连接四边形各边中点所得到的四边
形一定是平行四边形,但它是否特殊的平行 四边形取决于它的对角线是否垂直或者是否 相等,与是否互相平分无关.
原四边形两条对角线
连接四边中点所得四边形
互相垂直
矩形
相等
菱形
互相垂直且相等
正方形
1顺次连结对角线相等的四边形各边中点所得的四边形3顺次连结对角线相等且垂直的四边形各边中点所得的四边形2顺次连结对角线垂直的四边形各边中点所得的四边形菱形结结论原四边形两条对角线连接四边中点所得四边形互相垂直矩形相等菱形互相垂直且相等正方形既不互相垂直也不相等平行四边形顺次连接四边形各边中点所得到的四边形一定是平行四边形但它是否特殊的平行四边形取决于它的对角线是否垂直或者是否相等与是否互相平分无关
北师大数学八年级下册第六章-三角形的中位线经典讲义
第02讲_三角形的中位线知识图谱三角形的中位线知识精讲一.三角形的中位线三角形中位线定义 连接三角形两边中点的线段 叫做三角形的中位线性质DE ∥BC , 12DE BC =如图,在△ABC 中,D 、E 分别是AB 、AC 边的中点,则线段DE 是△ABC 的中位线.求证:DE ∥BC , 12DE BC =证明过程:延长DE 到F ,使EF = DE ,连接 FC 、DC 、AF 1)证明四边形ADCF 是平行四边形 2)证明四边形BCFD 是平行四边形∴DE// BC 且DE=EF=12BC 2.任意两点的中点坐标公式:平面直角坐标系内的任意两点()11A x y , ,()22B x y ,,线段AB 的中点C 的坐标为121222x xy y ++⎛⎫ ⎪⎝⎭,.ABCD EABCDEF出现两个中点,无三角形→构造三角形如图,四边形ABCD 中,点E 、F 、G 、H分别为四边中点连接对角线AC 、BD ,则HG 为△ADC的中位线,HG ∥AC 且HG =12AC 。
最后可证四边形HEFG 为平行四边形三.易错点(1)注意中线与中位线的区分 (2)中位线的辅助线构造三点剖析一.考点:1.中位线定理.二.重难点: 构造中位线,解决相关的角度线段问题.三.易错点:中线与中位线的区别.中位线定理例题1、 如图,▱ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3cm ,则AB 的长为( )A.3 cmB.6 cmC.9 cmD.12 cm【答案】 B【解析】 解:∵四边形ABCD 是平行四边形, ∴OA=OC ;又∵点E 是BC 的中点, ∴BE=CE ,∴AB=2OE=2×3=6(cm ) 故选:B .例题2、 如图,在Rt △ABC 中,△A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A.1B.2C.D.1+【答案】 A【解析】 如图,△在Rt △ABC 中,△C=90°,△A=30°, △AB=2BC=2.又△点D 、E 分别是AC 、BC 的中点, △DE 是△ACB 的中位线, △DE=AB=1.例题3、 如图,在Rt △ABC 中,∠B =90°,AB =5,BC =12,点D 在BC 上,以AC 为对角线的所有平行四边形ADCEH GFEA BCD中,DE 的最小值是( )A.5B.6C.12D.13【答案】 A【解析】 ∵在Rt △ABC 中,∠B =90°, ∴BC ⊥AB .∵四边形ADCE 是平行四边形, ∴OD =OE ,OA =OC .∴当OD 取最小值时,DE 线段最短,此时OD ⊥BC . ∴OD 是△ABC 的中位线,∴12.52OD AB ==,∴ED =2OD =5.例题4、 已知:如图,△ABC 中,∠ACB=90°,点D 、E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且CF=DE ,求证:∠CDF=∠A .【答案】 见解析【解析】 证明:∵D 、E 分别是AC 、AB 的中点, ∴DE ∥BC ,∵点F 在BC 的延长线上, ∴DE ∥CF , ∵DE=CF ,∴四边形CEDF 为平行四边形, ∴DF ∥CE ,∴∠CDF=∠ECA ,∵∠ACB=90°,E 为AB 的中点, ∴CE=21AB=AE , ∴∠A=∠DCE , ∴∠CDF=∠A .例题5、 (1)如图1,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,则BME CNE ∠=∠,求证:AB CD =.(提示取BD 的中点H ,连接FH ,HE 作辅助线) (2)如图2,在ABC ∆中,且O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G ,若5AB DC ==,60OEC ∠=︒,求OE 的长度.【答案】 (1)见解析(2)52【解析】 连结BD ,取DB 的中点H ,连结EH 、FH . E 、F 分别是AD 、BC 的中点,∴EH AB ∥,12EH AB =,FH CD ∥,12FH CD =BME CNE ∠=∠,∴HE HF =, ∴AB CD =;(2)解:连结BD ,取DB 的中点H ,连结EH 、OH , AB CD =,∴HO HE =,∴HOE HEO ∠=∠,60OEC ∠=︒,∴60HEO AGO ∠=∠=︒, ∴OEH ∆是等边三角形, 5AB DC ==∴52OE =随练1、 一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( ) A.6 B.12 C.18 D.36 【答案】 C【解析】 根据题意,画出图形如图示, 点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE=12BC ,DF=12AC ,EF=12AB ,∵AB+CB+AC=36,∴DE+DF+FE=36÷2=18. 故选C .随练2、 如图,△ABC 中,已知AB=8,△C=90°,△A=30°,DE 是中位线,则DE 的长为( )A.4B.3C.D.2【答案】 D【解析】 △△C=90°,△A=30°, △BC=AB=4, 又△DE 是中位线, △DE=BC=2.故选D .随练3、 如图,已知ABC △是锐角三角形,分别以AB 、AC 为边向外侧作两个等边三角形ABM △和CAN △,D 、E 、F 分别MB 、BC 、CN 的中点,连结DE 、FE ,求证:DE EF =.【答案】 证明见解析【解析】 连接MC 、BN ,ABM ∵△和CAN △是等边三角形,60BAM CAN ∠=∠=︒∴,MA BA =,AN AC =, BAM BAC CAN BAC ∠+∠=∠+∠∴, 即MAC BAN ∠=∠, 在MAC △与BAN △中 MA BA MAC BAN AN AC =⎧⎪∠=∠⎨⎪=⎩, MAC BAN ∴△≌△, MC NB =∴,D ∵、E 、F 分别是MB 、BC 、CN 的中点,12DE MC =∴,12EF BN =,DE EF =∴.随练4、 如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN .若AB=14,AC=19,则MN 的长度为__________.【答案】 2.5【解析】 延长BN 交AC 于D ,∵AN ⊥BN ,AN 平分∠BAC ,∴AN 是BD 的垂直平分线,∵点M 是BC 的中点,∴MN 是△BCD 的中位线,111 2.5222MN CD AC AD AC AB ==-=-=()() 随练5、 已知,如图,四边形ABCD 中AD BC =,E 、F 分别是AB 、CD 的中点,延长AD 、EF 和BC 的延长线分别交于M 、N 两点,求证:AME BNE ∠=∠.ABCMN ABC D EFMNNMFD C BA【选项】【答案】见解析【解析】证明:连接BD,取BD的中点G,连接EG、FGE、F、G分别是AB、CD、BD的中点//FG BC∴,//EG AD且1=2FG BC,1=2EG ADAME FEG∴∠=∠,BNE GFE∠=∠AD BC=FG EG∴=FEG EFG∴∠=∠AME BNE∴∠=∠.拓展1、如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()A.1B.43C.32D.2【答案】A【解析】如图,延长AD交BC于F,∵CD是∠ACB的角平分线,CD⊥AD,∴AD=DF,AC=CF,(等腰三角形三线合一),又∵E是AB的中点,∴DE是△ABF的中位线,∴12DE BF=,∵AC=4,BC=6,∴BF=BC-CF=6-4=2,∴1212DE=⨯=.2、如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.52D.4【答案】 B【解析】 在△ABC 中,D 、E 分别是BC 、AC 的中点 ∴DE ∥AB∴∠EDC=∠ABC ∵BF 平分∠ABC ∴∠EDC=2∠FBD在△BDF 中,∠EDC=∠FBD+∠BFD ∴∠DBF=∠DFB∴FD=BD=12BC=12×6=3.3、 如图,已知△ABC 中,AB =10,AC =8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD =________.【答案】 5【解析】 ∵AB =10,AC =8,BC =6, ∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE =EC =4,DE ∥BC ,且线段DE 是△ABC 的中位线, ∴DE =3, ∴225AD DC AE DE ==+=.4、 如图,点A ,B 为定点,定直线l △AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤△APB 的大小. 其中会随点P 的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【答案】 B【解析】 △点A ,B 为定点,点M ,N 分别为PA ,PB 的中点, △MN 是△PAB 的中位线, △MN=AB ,即线段MN 的长度不变,故①错误; PA 、PB 的长度随点P 的移动而变化,所以,△PAB 的周长会随点P 的移动而变化,故②正确;△MN 的长度不变,点P 到MN 的距离等于l 与AB 的距离的一半, △△PMN 的面积不变,故③错误;直线MN ,AB 之间的距离不随点P 的移动而变化,故④错误; △APB 的大小点P 的移动而变化,故⑤正确. 综上所述,会随点P 的移动而变化的是②⑤. 故选:B5、 如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当ACAB=______时,四边形ADFE 是平行四边形.【答案】32【解析】 当ACAB =32时,四边形ADFE 是平行四边形.理由:∵ACAB =32,∴∠CAB=30°,∵△ABE 为等边三角形,EF ⊥AB ,∴EF 为∠BEA 的平分线,∠AEB=60°,AE=AB , ∴∠FEA=30°,又∠BAC=30°, ∴∠FEA=∠BAC , 在△ABC 和△EAF 中, ACB EFA BAC AEF AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EAF (AAS ); ∵∠BAC=30°,∠DAC=60°, ∴∠DAB=90°,即DA ⊥AB , ∵EF ⊥AB , ∴AD ∥EF ,∵△ABC ≌△EAF , ∴EF=AC=AD ,∴四边形ADFE 是平行四边形6、 如图所示,在梯形ABCD 中,AD BC ∥,AD BC <,F ,E 分别是对角线AC ,BD 的中点.求证:()12EF BC AD =-【答案】 见解析【解析】 如图所示,连接AE 并延长,交BC 于点G . AD BC ∥,∴ADE GBE ∠=∠,EAD EGB ∠=∠,又E 为BD 中点,∴AED GEB ∆∆≌.∴BG AD =,AE EG =. 在AGC ∆中,F ,E 分别是对角线AC ,BD 的中点∴F 、E 是AGC ∆的为中位线,∴EF BC ∥,()()111222EF GC BC BG BC AD ==-=-,即()12EF BC AD =-。
三角形中位线定理课件
02 三角形中位线定理的推导 与证明
三角形中位线的定义与性质
定义
在三角形中,连接一个顶点和它所对 边的中点的线段叫做三角形的中位线 。
性质
三角形的中位线平行于第三边,并且 等于第三边的一半。
三角形中位线定理的推导过程
01
02
第一步,根据定义,画 出三角形的一条中位线。
ห้องสมุดไป่ตู้
第二步,通过相似三角形的 性质,证明中位线与第三边 平行且等于第三边的一半。
解析法
通过建立坐标系,利用解析几何的 方法证明三角形中位线定理,通过 点的坐标和直线的方程进行推导。
03 三角形中位线定理的应用 举例
在几何问题中的应用
证明线段相等
利用三角形中位线定理可 以证明两条线段相等,通 过构造中位线并利用其性 质进行推导。
证明线段平行
通过三角形中位线的性质, 可以证明两条线段平行, 这在几何问题中经常用到。
对三角形中位线定理的深入理解与展望
01
深入理解三角形中位线的性质
除了基本的定义和性质外,还可以进一步探讨三角形中位线的其他性质,
如与三角形各边之间的关系、与三角形内角之间的关系等,以加深对三
角形中位线的理解。
02
拓展三角形中位线定理的应用范围
可以进一步拓展三角形中位线定理的应用范围,探索其在更广泛的数学
证明角相等
三角形中位线定理还可以 用来证明两个角相等,通 过构造适当的三角形并应 用定理进行推导。
在三角形面积计算中的应用
计算三角形面积
利用三角形中位线定理,可以将一个 三角形划分为两个小的相似三角形, 从而简化面积计算过程。
求解三角形高
推导三角形面积公式
结合三角形中位线定理和其他几何知 识,可以推导出三角形面积的多种计 算公式。
三角形中位线课件
三角形中位线的定理
• 定理:三角形的中位线定理是指三角形的中位线长度等于 第三边长度的一半,并且平行于第三边。
三角形中位线的性质定理
01
02
03
性质定理1
三角形的中位线将相对边 分为两段,且这两段长度 相等。
性质定理2
三角形的中位线与第三边 平行,且长度为第三边的 一半。
性质定理3
三角形的中位线将相对顶 点与对边中点连接,且该 连线长度为中位线长度的 一半。
电路设计
在电路设计中,三角形中位线可以用来平衡电流,防止电流过大导致设备损坏或 火灾等安全事故。
05 总结与思考
三角形中位线的重要性和意义
几何构造的基础
在实际生活中的应用
三角形中位线是几何学中的基础概念 ,对于理解几何图形的构造和性质至 关重要。
在建筑、工程和设计等领域,三角形 中位线的应用广泛,例如在测量、绘 图和计算面积等方面。
02 三角形中位线的 性质与判定
三角形中位线的性质
三角形中位线平行于第三边
01
三角形中位线与第三边平行,这是三角形中位线的基本性质。
三角形中位线长度为第三边的一半
02
三角形中位线的长度是第三边长度的一半,这是三角形中位线
的长度性质。
三角形中位线将相对边等分
03
三角形中位线将相对边等分,这是三角形中位线的等分性质。
在解题中的应用
解题辅助
在解决一些几何问题时,三角形中位线可以作为一个重要的解题工具,帮助我 们找到解题的突破口。
证明定理
通过三角形中位线,我们可以证明一些重要的几何定理,如“三角形中位线定 理”等。
在生活中的实际应用
建筑测量
在建筑行业中,三角形中位线被广泛应用于测量和计算角度、长度等参数,决几何证明问题
相似三角形的中位线和中线的关系
相似三角形的中位线和中线的关系在数学中,三角形是基本的几何形状之一。
相似三角形也是中学数学中的一个基本概念。
本文将介绍相似三角形的中位线和中线的关系。
首先,让我们来了解一下什么是相似三角形。
相似三角形是指在形状上相似但不同于大小的两个三角形。
即它们的三个角度相等,但它们的三条边长比例不一定相等。
现在,让我们来研究相似三角形的中位线和中线。
一个三角形的中位线是一个从一个角移动到其对面线的中点的线段,而中线是一个连接三角形的一条边中点和另一个角的线段。
第一个结论是:在任何三角形ABC(其中AB≠AC)中,AD(其中D是BC的中点)是三角形ABC的一条中位线。
同理,BE(其中E是AC的中点)和CF(其中F是AB的中点)也分别是三角形ABC的中位线。
第二个结论是:在任何三角形ABC中,AM(其中M是BC的中点)与AN(其中N是角A的对边BC的中点)是三角形ABC的中线。
同理,BM和BN以及CM和CN也分别是三角形ABC的中线。
通过上述结论,我们可以得出以下关于相似三角形中位线和中线的关系:当两个三角形相似时,它们的中线与中位线的比例是相同的。
这也适用于与这些线段平行的线。
具体来说,假设三角形ABC和DEF是相似的,且它们的对应点分别是A和D,B和E,C和F,则有以下比例关系成立:AD/DE = BE/EF = CF/DF = 1/2AM/DF = BN/DE = 1/2AN/EF = CM/DE = 1/2其中,AD、BE和CF是对应三角形ABC的中位线,AM、BN和CN是对应三角形ABC的中线,DE、EF和DF是对应三角形DEF的中位线。
综上所述,对于相似的三角形,在它们的中线和中位线之间存在着固定的比例关系,这对于解决一些三角形问题很有用。
第六讲---相似三角形的中位线及其应用培优辅导(三)
第六讲 相似三角形(三) -------三角形的中位线及其应用一、知识点梳理:1、三角形的中位线定义:连结三角形两边中点的线段.三角形中位线定理: ①三角形的中位线于第三边(位置关系) ②三角形的中位线等于(数量关系)符号语言:∵DE 是△ABC 的中位线(或AD=BD,AE=CE)∴DE //2、 三角形的重心: 三角形重心的性质:基础巩固1、如图△ABC 中,D 、E 分别是边AB 、AC 的中点,已知DE=5,则BC 的长为2、如图,△ABC 中,AB=AC ,AD 平分∠BAC ,DE ∥AC 交AB 于E ,则S △EBD :S △ABC =3、若△ABC 的面积是8cm 2,则它的三条中位线围成的三角形的面积是4、△ABC 的三边长分别为a 、b 、c ,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第2009中点三角形的周长为( )A .B .C .D .5、如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积…,由此可得,第2014个正△A 2014B 2014C 2014的面积是( )A .B .C .D .3、梯形的中位线定义:连结梯形中点的线段. 梯形中位线定理: 梯形的中位线B3、中点四边形:对角线的四边形的中点四边形是菱形对角线的四边形的中点四边形是矩形对角线的四边形的中点四边形是正方形对角线的四边形的中点四边形是平行四边形(1) 顺次连接四边形各边中点所得的四边形是.(2) 顺次连接平行四边形各边中点所得的四边形是.(3) 顺次连接矩形各边中点所得的四边形是.(4) 顺次连接菱形各边中点所得的四边形是.(5) 顺次连接正方形各边中点所得的四边形是基础巩固1、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形2、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③等腰梯形④对角线互相垂直的四边形A.①③B.②③C.③④D.②④3、顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、若梯形中位线的长是高的2倍,面积是18cm2,则这个梯形的高等于()(A)62cm (B)6cm (C)32cm (D)二、专题讲解:常规辅助线的添加方法一、【利用角平分线+垂直、必有等腰三角形】例题1:如图,△ABC中,CD平分∠ACB,AD⊥CD,垂足为D点,点E为AB的中点. (1)求证:DE∥BC;(2)求证:DE=(BC-AC)/2BAFME C BA PF E DC BA练习:如图,在∆ABC 中,AB=BC ,∠ABC=90°,F 为BC 上一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF=2ME 。
相似三角形的中位线三角形关系
相似三角形的中位线三角形关系在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
中位线是指连接三角形的一个顶点与对边中点的线段。
本文将探讨相似三角形中的中位线与三角形的关系。
首先,让我们考虑一个三角形ABC和它的中位线DE。
三角形ABC的三个顶点分别为A、B和C,而DE连接了A和对边BC的中点。
我们要研究的是,当我们选择不同的三角形ABC时,中位线三角形DE的性质是否会发生变化。
为了更好地理解问题,让我们通过一个具体例子来说明。
假设我们有一个相似三角形ABC和它的中位线DE。
我们可以用长度比例来表示相似三角形的关系,即AB/DE=BC/EF=AC/DF,其中EF和DF分别为中位线DE的另外两条边。
根据相似三角形的性质,我们知道三角形ABC和三角形DEF具有相似的形状,即它们的对应角度相等。
因此,我们可以推断出,中位线三角形DEF也是与原始三角形ABC相似的三角形。
通过观察我们可以发现,中位线三角形DEF的三个顶点分别是原始三角形ABC的三条边的中点。
这意味着中位线三角形DEF的三个边长分别是原始三角形ABC的三个边长的一半。
进一步地,我们可以用数学来证明这一结论。
设中位线DE的长度为x,那么根据长度比例关系,我们可以得到AB=2x、BC=2x以及AC=2x。
因此,中位线三角形DEF的边长分别为EF=x、DF=x以及DE=x。
根据中位线三角形DEF的定义,我们知道它的两条边EF和DF分别平分了原始三角形ABC的两条边BC和AC。
也就是说,EF平分了BC,DF平分了AC。
此外,根据相似三角形的性质,我们可以得出,DE与原始三角形ABC的对边BC平行。
这是因为DE是根据BC的中点连接到A的,而平行线可以通过对向平行线的辅助线来证明。
这些性质和关系表明,中位线三角形DEF与原始三角形ABC是相似的,并且具有一些特殊的性质。
根据中位线的定义,我们知道中位线的长度等于原始三角形对边的一半。
因此,中位线三角形DEF的面积为原始三角形ABC面积的四分之一。
北师大版八年级数学下册第六章《6.3 三角形的中位线》优课件3
A
E
C
图2
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
已知:如图所示,在△ABC中,AD=DB, BE=EC,AF=FC. 求证: AE、DF互相平分.
A
D
F
B E
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
∴ GEGDDE1
GC AG AC 2
∴ GE GD1
CE AD 3
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月17日星期四2022/2/172022/2/172022/2/17 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/172022/2/172022/2/172/17/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/172022/2/17February 17, 2022 •4、享受阅读快乐,提高生活质量。2022/2/172022/2/172022/2/172022/2/17
M
40
20
C
N
B
问题
A 如图1:在△ABC中,DE是中位线
D
B
图1
B
D 4F 53
(1)若∠ADE=60°,
E 则∠B= 60 度,为什么?
(2)若BC=8cm,
则DE= 4 cm,为什么?
C
如图2:在△ABC中,D、 E、F分别是各边中点, AB=6ቤተ መጻሕፍቲ ባይዱm,AC=8cm, BC=10cm, 则△DEF的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 相似三角形(三) -------三角形的中位线及其应用
一、知识点梳理:
1、三角形的中位线定义:连结三角形两边中点的线段.
三角形中位线定理: ①三角形的中位线于第三边(位置关系) ②三角形的中位线等于(数量关系)
符号语言:∵DE 是△ABC 的中位线(或AD=BD,AE=CE)
∴DE //
2、 三角形的重心: 三角形重心的性质:
基础巩固
1、如图△ABC 中,D 、E 分别是边AB 、AC 的中点,已知DE=5,则BC 的长为
2、如图,△ABC 中,AB=AC ,AD 平分∠BAC ,DE ∥AC 交AB 于E ,则S △EBD :S △ABC =
3、若△ABC 的面积是8cm 2,则它的三条中位线围成的三角形的面积是
4、△ABC 的三边长分别为a 、b 、c ,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第2009中点三角形的周长为( )
A .
B .
C .
D .
5、如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积…,由此可得,第2014个正△A 2014B 2014C 2014的面积是( )
A .
B .
C .
D .
3、梯形的中位线定义:连结梯形中点的线段. 梯形中位线定理: 梯形的中位线
B
3、中点四边形:
对角线的四边形的中点四边形是菱形
对角线的四边形的中点四边形是矩形
对角线的四边形的中点四边形是正方形
对角线的四边形的中点四边形是平行四边形
(1) 顺次连接四边形各边中点所得的四边形是.
(2) 顺次连接平行四边形各边中点所得的四边形是.
(3) 顺次连接矩形各边中点所得的四边形是.
(4) 顺次连接菱形各边中点所得的四边形是.
(5) 顺次连接正方形各边中点所得的四边形是
基础巩固1、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形
2、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()
①平行四边形②菱形③等腰梯形④对角线互相垂直的四边形
A.①③
B.②③
C.③④
D.②④
3、顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是
A.菱形
B.对角线互相垂直的四边形
C.矩形
D.对角线相等的四边形
4、若梯形中位线的长是高的2倍,面积是18cm2,则这个梯形的高等于()
(A)62cm (B)6cm (C)32cm (D)
二、专题讲解:常规辅助线的添加
方法一、【利用角平分线+垂直、必有等腰三角形】
例题1:如图,△ABC中,CD平分∠ACB,AD⊥CD,垂足为D点,点E为AB的中点. (1)求证:DE∥BC;
(2)求证:DE=(BC-AC)/2
B
A
F
M
E C B
A P
F E D
C B
A
练习:如图,在∆ABC 中,AB=BC ,∠ABC=90°,F 为BC 上一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF=2ME 。
方法二、【取中点构造中位线】
例题2:如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点。
求证:2AF= FC
练习:如图,在四边形ABCD 中,AD=BC ,∠CBD=20°,∠BDA=110°,E 、F 、P 分别为AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.
练习:如图,梯形ABCD 中,AD∥BC,点E 是AB 中点,连结EC 、ED 、CE⊥DE,
CD 、AD 与BC 三条线段之间有什么样的数量关系?请说明理由。
相似三角形应用培优例题精讲
【例1】(线段等积式的证明)已知:如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,想一想,
(1)图中有哪两个三角形相似?
(2)求证:AC 2=AD ·AB ;BC 2=BD ·BA ; (3)若AD =2,DB =8,求AC ,BC ,CD ; (4)若AC =6,DB =9,求AD ,CD ,BC ; (5)求证:AC ·BC =AB ·CD .
【巩固】如图所示,已知AB ∥CD ,AD ,BC 交于点E ,F 为BC 上一点,且∠EAF =∠C . 求证:(1)∠EAF =∠B ; (2)AF 2=FE ·FB .
【例2】已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°. (1)求证:△ABD ∽△DCE ;
(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.
培优同步检测
1、P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )
A.1条
B.2条
C.3条
D.4条 2、如图,在□ABCD 中,E 为CD 上一点,DE :CE =2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则=∆∆∆ABF EBF DEF S S S ::( )
A .4:10:25
B .4:9:25
C .2:3:5
D .2:5:25
3、如图,CD 是△ABC 的中线,点E 、F 分别是AC 、DC 的中点,EF=1,则BD= _________ .
4、如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且
61
=EB AE ,射线CF 交AB 于E 点,则
FD
AF
等于______. 5、如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.
6、已知:如图,在△ABC 中,∠C =90°,P 是AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB 交AC 于E ,点E 不与点C 重合,若AB =10,AC =8,设AP =x ,四边形PECB 的周长为y ,求y 与x 的函数关系式.
7、如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.
(1)求直线AB 的解析式;
(2)当t 为何值时,△APQ 与△ABO 相似?
(3)当t 为何值时,△APQ 的面积为5
24
个平方单位?。