《合情推理与演绎推理》教案完美版
合情推理与演绎推理优秀教案
0(1,2,,)ia i n >=2.1合情推理与演绎推理姓名班级【学习目标】(1)结合已学过地数学实例,了解归纳推理、合情推理地含义,通过生活中地实例和已学过地教学地案例,体会演绎推理地重要性;(2)能利用归纳、类比进行简单地推理,体会并认识合情推理、演绎推理在数学发现中地作用.掌握推理地基本方法,并能运用它们进行一些简单推理.【教学重点】能利用归纳、类比、演绎地方法进行简单地推理.【教学难点】用归纳和类比进行推理,作出猜想;分析证明过程中包含地“三段论”形式.【教学过程】问题一:归纳推理一、创设情境1.哥德巴赫猜想:哥德巴赫观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 1000=29+971,, ……猜测:任一不小于6地偶数都等于两个奇质数之和.2.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对20213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=地观察,发现其结果都是素数,于是提出猜想:任何形如122+=nF (*∈N n )地数都是素数.后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,从而推翻费马猜想.3.四色猜想:1852年,毕业于英国伦敦大学地弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣地现象:“每幅地图都可以用四种颜色着色,使得有共同边界地国家着上不同地颜色.”,四色猜想成了世界数学界关注地问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学地两台不同地计算机上,用1200个小时,作了100亿逻辑判断,完成证明.4.哥尼斯堡城七桥问题:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)地普莱格尔河上有7座桥,将河中地两个岛和河岸连结,如图1所示.城中地居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点.这就是七桥问题,一个著名地图论问题.这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里.欧拉以深邃地洞察力很快证明了这样地走法不存在.欧拉是这样解决问题地:既然陆地是桥梁地连接地点,不妨把图中被河隔开地陆地看成A 、B 、C 、D4个点,7座桥表示成7条连接这4个点地线,如图2所示.图1图2图3于是“七桥问题”就等价于图3中所画图形地一笔画问题了.欧拉注意到,每个点如果有进去地边就必须有出来地边,从而每个点连接地边数必须有偶数个才能完成一笔画.图3地每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次地走法.二、合作探究:1、归纳推理地概念:由某类事物地部分对象具有某些特征,推出该类事物地全部对象都具有这些特征地推理,或者由个别事实概括出一般结论地推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般地推理.讨论:(i)归纳推理有何作用?(ii)归纳推理地结果是否正确?2. 练习:(1)由铜、铁、铝、金、银能导电,能归纳出什么结论? (2)已知,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥.可以归纳出,对12,,,n a a a 也成立地类似不等式为.(3). 观察等式:2221342,13593,13579164+==++==++++==,能得出怎样地结论? 三、例题讲解例1.已知数列{}n a 地第1项a 1=1,且),3,2,1(11 =+=+n a a a nnn ,试归纳出这个数列地通项公式.例2:汉诺塔问题有三根针和套在一根针上地若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动一个金属片;2.较大地金属片不能放在较小地金属片上面.试推测:把n 个金属片从1号针移到3号针,最少需要移动多少次?123巩固练习:(1)对于任意正整数n ,猜想(2n-1)与(n+1)2地大小关系?(2)已知数列}{n a 满足11=a ,)12111--+=n n n a a a (,()2≥n 求}{n a 地通项公式.问题二:类比推理一、 创设情境(1)鲁班由带齿地草叶和蝗虫地齿牙发明锯; (2)人类仿照鱼类外形及沉浮原理,发明潜水艇; (3)地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转地行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在.二、合作探究:1、类比概念:由两类对象具有某些类似特征和其中一类对象地某些已知特征,推出另一类对象也具有这些特征地推理. 简言之,类比推理是由特殊到特殊地推理.练习:(1)圆与球地特征地类比(课本P73)(2)在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?三、例题讲解例1、类比实数地加法和乘法,列出它们相似地运算性质.例2:类比平面内直角三角形地勾股定理,试给出空间中四面体性质地猜想.问题三:演绎推理一、 创设情境(1)所有地金属都能导电,铀是金属,所以铀; (2)太阳系地大行星都以椭圆形轨道饶太阳运行.冥王星是太阳系地大行星,因此冥王星是. (3)三角函数都是周期函数,αtan 是三角函数.因此αtan 是. 问:上述推理有什么共同特征? 二、合作探究1、演绎推理:从一般性地原理出发,推出某个特殊情况下地结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊地推理.2、三段论法:(1)三段论式推理是演绎推理地一般模式,它包括:大前提(M 是P )——;小前提(S 是M )——;结论(S 是P )——.(2)集合观点:若集合M 中地每一个元素都具有属性P 且S 是M 地子集,那么集合S 中地每一个元素都具有属性P .讨论:(1)因为指数函数xay =是增函数,xy )(21=是指数函数,则结论是什么?(结论是否正确,为什么?)(2)演绎推理怎样才结论正确? 3、合情推理与演绎推理地区别:(1)合情推理具有猜测和发现结论,探索和提供思路地作用;合情推理地结论正确,有待于进一步地证明;演绎推理是按照严格地逻辑法则,得到新结论地推理过程.演绎推理在都正确地前提下,得到地结论一定.(2)归纳推理:由到,由到;类比推理:由到; 演绎推理:由到. (3)演绎推理是证明数学结论、建立数学体系地重要思维过程; 合情推理可发现新地数学结论、证明思路等. 三、例题讲解例1:如图所示,在锐角三角形ABC 中,AD ⊥BC,BE ⊥AC,D 、E 是垂足.求证:AB 地中点M 到点D 、E 地距离相等.分析::证明过程→指出:大前题、小前题、结论.例2:证明函数x x x f 2)(2+-= 在(-∞,1)内是增函数.思悟小结巩固提高1.观察下列等式,猜想出一般地结论,并证明.2223sin 30sin 90sin 1502++=,223sin 60sin 120sin 1802++=, 2223sin 45sin 105sin 1652++=,2223sin 15sin 75sin 1352++=.2、证明:通项公式为)0(≠=cq cq a nn 地数列}{n a 为等比数列.并分析证明过程中地三段论.3、类比三角形中地余弦定理,在四面体中有怎样地结论?能否证明?4、平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成)(n f 块区域,有8)3(,4)2(,2)1(===f f f ,则)(n f 地表达式为()A 、n2 B 、22+-n n C 、)3)(2)(1(2----n n n nD 、410523-+-n n n5、在圆内画1条线段,将圆分成两部分;画2条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画3条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么(1)在圆内画4条线段,彼此最多分割成条线段?同时将圆分割成部分? (2)在圆内画5条线段,彼此最多分割成条线段?同时将圆分割成部分? (3)在圆内画n 条线段,彼此最多分割成条线段?同时将圆分割成部分?6、在平面几何里,可以得出正确结论:“正三角形地内切圆半径等于这正三角形地高地31”.拓展到空间,类比平面几何地上述结论,则正四面体地内切球半径.7、在圆222r y x =+中,AB 为直径,C 为圆上异于AB 地任意一点,则有BC AC K k ⋅=-1.你能用类比地方法得出椭圆2222by a x +=1(a>b>0)中有什么样地结论?8、在等差数列}{n a 中,若010=a ,则有n n a a a a a a -+++=+++192121 (n<19,且n )N *∈成立.类比上述性质,在等比数列}b {n 中,若19=b ,则存在怎样地等式?版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.eUts8。
合情推理与演绎推理说课稿 教案 教学设计
合情推理与演绎推理1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类. 2.合情推理3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理; (2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:题型一 归纳推理例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,∵f (x 1)+f (x 2)=131x +3+132x +3=(31x +3)+(32x +3)(31x +3)(32x +3)=31x +32x +23321x x ++3(31x +32x )+3=31x +32x +233(31x +32x )+2×3=31x +32x +233(31x +32x +23)=33.思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和 学的发现很有用.(1)观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为 .(2)已知f (n )=1+12+13+…+1n (n ∈N ),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有 .答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n )>n +22(n ≥2,n ∈N ) 解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.(2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n )>n +22(n ≥2,n ∈N ).题型二 类比推理例2 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N ),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N ),若b m =c ,b n =d (n -m ≥2,m ,n ∈N ),则可以得到b m +n = .思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算.答案 n -m d nc m解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m ,所以类比得b m +n =n -m d nc m思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( )A.0B.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R = . 答案 (1)B (2)a 2+b 2+c 22解析 (1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三 演绎推理例3 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.典例:(1) 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)= .思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是 .思维启迪 直接类比可得. 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1.答案x 0x a 2-y 0yb 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项: k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…,n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2).类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为 . 思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],由此得1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),…,n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)].以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2) =14n (n +1)(n +2)(n +3). 答案 14n (n +1)(n +2)(n +3)。
高中数学选修1-2《合情推理与演绎推理》教案
高中数学选修1-2《合情推理与演绎推理》教案教学内容:高中数学选修1-2《合情推理与演绎推理》教学时长:2-3课时教学目标:1.能够理解合情推理和演绎推理的概念和区别。
2.掌握合情推理和演绎推理的思维方法和技巧,能够应用到相关问题中。
3.能够运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。
教学重点:1.合情推理和演绎推理的概念和区别。
2.合情推理和演绎推理的思维方法和技巧。
3.运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。
教学难点:1.如何灵活运用合情推理和演绎推理的思维方法和技巧。
2.如何运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。
教学方法:多媒体展示、讲授、思维导图、案例分析。
教学过程:第一步:导入1.使用多媒体展示相关图片或视频引起学生的兴趣,并让学生讨论所展示的内容有哪些思维方法和技巧。
2.老师讲述实际生活中所涉及到的一些思维方法和技巧,并引导学生思考其作用和意义。
第二步:知识讲解1.合情推理:1)定义:合情推理是基于类比关系,通过类比来得出结论的一种思维方法。
它通常涉及到对某种事物或现象进行比较,从而得出与其有相似性或联系的结论,并用此结论进行推理或预测。
2)例子:老师在课堂上讲述一个问题,学生可以通过类比关系来引申出自己的想法,从而得出更深层次的结论。
2.演绎推理:1)定义:演绎推理是基于逻辑关系,通过前提与规则推导出结论的一种思维方法。
它的基本思路是从已知的前提出发,根据规则逐步推导,达到得出结论的目的。
2)例子:在证明一个定理时,需要根据已知条件和推论规则,逐步推导,得出结论,这就是演绎推理的典型应用。
第三步:案例分析1.老师给学生展示几个有关合情推理和演绎推理的案例,让学生思考并回答:1)这个问题中是否涉及到合情推理和演绎推理?2)涉及到的是合情推理还是演绎推理?3)为什么这个问题可以用合情推理或演绎推理进行解决?第四步:巩固练习1.老师设计一些具体的演绎推理和合情推理的例子,让学生解决问题,并展示解题过程和思路。
合情推理与演绎推理教学设计
《合情推理与演绎推理》教学设计(4)一、考情分析从近几年的高考试题来看,归纳推理、类比推理、演绎推理等问题是高考的热点. 归纳推理、类比推理大部分在选择题或填空题中出现,为中低档题,突出“小而巧”,主要考查类比推理、归纳推理的能力.演绎推理大多出现在解答题中,为中高档题目,在知识交汇点处命题,考查学生的逻辑推理能力,以及分析问题、解决问题的能力.二、教学目标①知识与技能(1)了解合情推理的含义,能进行归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.(2)了解演绎推理的含义,理解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.②过程与方法(1)经历合情推理发现数学结论和规律的过程,感受数学再创造的快乐;(2)感受并体会演绎推理的规则与过程,规范严谨地进行逻辑推理.③情感态度与价值观(1)培养学生应用数学的意识和创新精神,体验数学发现的快乐;(2)培养学生认识数学的科学价值与人文价值,养成理性思维的习惯.教学重点和难点教学重点:运用归纳推理和类比推理发现数学规律,解决数学问题.教学难点:运用合情推理发现结论和演绎推理证明结论.教学课时:1课时三、教法分析根据上述考情和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想. 结合本班学生的实际情况和数学学习能力,尽可能让学生通过独立思考和合作交流的方式自主发现规律与结论,并探究证明方法,让学生充分体验数学发现的快乐. 必要时教师恰当引导,并及时对学生的解答进行评价.四、教学程序2222124310-+-=-照此规律, 第个等式可为 .例2. 小石子中的数学问题(1)(2009湖北理)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( )(2)(2012湖北文)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列.可以推测:(Ⅰ)是数列中的第________项; (Ⅱ)21k b -=________.(用k 表示)(3)(2013湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第个三角形数为论,体验数学发现的快乐.体会高考源于课本,高于课本和在知识的交汇点命题的思想.写出足够多的项,从特殊项入手,发现一般规律.同时渗透“子数列”的思想,为高等数学级数的学习做铺垫.此题难度较大,可以小组讨论,必要时教师引导,分别从二次项和一次项系数入手纵向找规律.学生从五、方案设计说明美籍匈牙利数学家波利亚曾说:“直观洞察和逻辑证明是感知真理的两种不同方式……直观的洞察可能远远超前于形式逻辑的证明.”新课程强调着重培养学生创新精神和实践能力,而合情推理能力的培养正是实现这一目标的重要方法.本节课从近几年的高考真题和模拟题中精心选择试题,创设问题情景,鼓励学生运用合情推理大胆猜测结论,体验数学发现的乐趣,然后用演绎推理证明.养成“观察——归纳(类比)——猜想——论证”的思维习惯.。
21合情推理与演绎推理2教学设计
21合情推理与演绎推理2教学设计教学目标:1.让学生了解21世纪合情推理和演绎推理的概念和基本原理;2.培养学生运用合情推理和演绎推理思维方式分析问题的能力;3.培养学生合作学习和团队合作的能力。
教学内容:1.介绍合情推理和演绎推理的定义和基本原理;2.分析真实案例,并引导学生运用合情推理和演绎推理思维方式进行分析和推理;3.组织学生进行小组合作,运用合情推理和演绎推理思维方式解决复杂问题。
教学过程:第一课时:1.导入:通过播放相关视频或图片,引发学生对合情推理和演绎推理的认知和兴趣;2.具体讲解合情推理和演绎推理的定义和基本原理,并给出示例;3.组织学生讨论和分享他们对合情推理和演绎推理的理解和想法;4.小组活动:将学生分成小组,每个小组选择一个真实案例,并使用合情推理和演绎推理思维方式分析问题,并用PPT或海报形式展示分析结果;5.学生展示他们的分析结果,并进行点评和讨论。
第二课时:1.复习上节课的内容,提出问题:如果将两种思维方式结合使用会有什么样的效果?2.组织学生进行小组活动,让他们选择一个复杂问题,并运用合情推理和演绎推理思维方式进行综合分析和推理;3.每个小组向全班展示他们的分析结果,并进行讨论和点评;4.教师做总结,总结两种思维方式的优缺点,并指导学生如何运用合情推理和演绎推理思维方式解决实际问题;5.布置作业:要求学生写一篇总结报告,讲述他们如何运用合情推理和演绎推理思维方式解决一个实际问题,并提出自己对这两种思维方式的看法。
教学资源:1.视频和图片资料;2.真实案例;3.PPT和海报制作资料;4.讨论和分享的环节。
教学评价:1.观察学生在小组活动中的参与情况,评价他们是否能够运用合情推理和演绎推理思维方式解决问题;2.评价学生的PPT和海报展示的质量和内容是否清晰、准确;3.阅读学生的总结报告,评价他们对合情推理和演绎推理的理解和思考。
教学扩展:1.鼓励学生在生活中运用合情推理和演绎推理思维方式分析和解决问题;2.引导学生学习其他思维方法,如归纳推理、类比推理等;3.组织学生参加推理竞赛,锻炼他们的推理和分析能力。
高中数学选修《合情推理与演绎推理》教案
高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及意义。
2. 培养学生运用合情推理与演绎推理解决数学问题的能力。
3. 引导学生掌握合情推理与演绎推理的基本方法。
二、教学内容第一章:合情推理1. 合情推理的定义及分类2. 合情推理的方法:归纳推理、类比推理、归纳猜想3. 合情推理在数学中的应用第二章:演绎推理1. 演绎推理的定义及分类2. 演绎推理的方法:演绎法、反证法、归纳法3. 演绎推理在数学中的应用三、教学方法1. 采用讲授法讲解合情推理与演绎推理的基本概念和方法。
2. 通过例题展示合情推理与演绎推理在数学问题解决中的应用。
3. 组织学生进行小组讨论,分享解题心得,培养学生的合作能力。
四、教学步骤1. 引入新课:介绍合情推理与演绎推理的定义及意义。
2. 讲解合情推理:讲解归纳推理、类比推理、归纳猜想的方法,并通过例题展示其在数学中的应用。
3. 讲解演绎推理:讲解演绎法、反证法、归纳法的方法,并通过例题展示其在数学中的应用。
4. 练习与巩固:布置适量练习题,让学生巩固所学知识。
5. 总结与拓展:总结合情推理与演绎推理的方法及应用,引导学生思考如何在生活中运用这些方法。
五、教学评价1. 课后作业:检查学生对合情推理与演绎推理方法的掌握情况。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。
3. 小组讨论:评估学生在小组讨论中的参与程度及合作能力。
4. 期中期末考试:全面评估学生对选修内容的掌握情况。
六、教学内容第三章:合情推理与演绎推理的综合应用1. 合情推理与演绎推理在数学证明中的应用2. 合情推理与演绎推理在数学问题解决中的应用3. 合情推理与演绎推理在数学探究活动中的应用第四章:常见的错误与误解1. 合情推理与演绎推理中的常见错误2. 如何避免合情推理与演绎推理中的错误与误解3. 正确评价合情推理与演绎推理的结果七、教学方法1. 通过案例分析,让学生了解合情推理与演绎推理在实际应用中的重要性。
人教版高中选修2-22.1合情推理与演绎推理教学设计
人教版高中选修2-22.1合情推理与演绎推理教学设计一、教学背景本次教学适用于人教版高中选修2-22.1《数学与现实》这一模块中,合情推理与演绎推理的教学内容。
该模块旨在让学生能够运用数学知识分析现实生活中的问题,培养学生的数学思维、逻辑思维和创新意识,提高其实际应用数学的能力。
二、教学目标1.了解合情推理与演绎推理的概念和原理,掌握相关的数学知识和技能。
2.能够通过理论知识和实际问题的分析,运用合情推理和演绎推理方法解决实际问题和应用问题。
3.能够处理实际问题中的信息、转换问题描述方式,建立合理的数学模型,运用数学方法求解问题。
4.提高学生的数学思维能力和解决问题的能力,为以后的学习和工作打下基础。
三、教学内容本次教学将涉及以下内容:1.合情推理和演绎推理的概念和原理2.数学和现实生活中的联系3.运用合情推理和演绎推理方法解决实际问题4.转换问题描述方式,建立数学模型,运用数学方法求解问题1.导入引出本节课的主要内容,引入合情推理和演绎推理的概念和原理,让学生了解其基本概念和相关知识点。
2.课堂教学(1)合情推理•了解合情推理的定义和相关定理•通过数学题目,让学生感知合情推理的应用(2)演绎推理•了解演绎推理的定义和相关定理•通过数学题目,让学生感知演绎推理的应用(3)数学与现实生活中的联系•分析数学知识在现实生活中的应用,让学生了解其重要性(4)应用合情推理和演绎推理解决实际问题•引导学生分析实际问题,理解合情推理和演绎推理的应用•通过实例和数学题目,让学生掌握应用合情推理和演绎推理解决实际问题的方法(5)建立数学模型,运用数学方法求解问题•教授建立数学模型的步骤和方法,让学生掌握建立模型的能力•通过实例和数学题目,让学生学会运用数学方法求解问题的方法3.教学总结进行本节课的总结和归纳,让学生对本节课的内容有一个系统的认识和掌握。
1.学生是否了解合情推理和演绎推理的概念和原理。
2.学生是否能够将知识应用于实际问题的解决中。
高中数学《合情推理与演绎推理》教案5 新人教A版选修2-2
课题:推理案例赏识课型:新授课教学目标:1. 了解合情推理和演绎推理 的含义。
2. 能正确地运用合情推理和演绎推理 进行简单的推理。
3. 了解合情推理与演绎推理之间的联系与差别。
教学重点:了解合情推理与演绎推理之间的联系与差别教学难点:了解合情推理和演绎推理是怎样推进数学发现活动的。
教学过程:2 复习 合情推理和演绎推理的过程3 案例:例一 正整数平方和公式的推导。
提出问题我们知道,前n 个正整数的和为1S (n)=1+2+3+…….+n= 21n(n+i) ①那么,前n 个正整数的平方和 2S (n )=2222........321n ++++=? ②三,数学活动思路1 (归纳的方案) 参照课本 第36页 -37页 三表 猜想 2S (n )=6)12)(1(++n n n思考 :上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用?思路2 (演绎的方案)尝试用直接相加的方法求出正整数的平方和。
2 把正整数的平方和表示出来,参照课本棣37页 左右两边分别相加,等号两边的2S (n )被消去了,所以无法从中求出 2S (n )的值,尝试失败了。
(2)从失败中吸取有用信息,进行新的尝试(3)尝试把两项和的平方公式改为两项和的立方公式。
左右两边相加, 终于导出了公式。
思考: 上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用。
四,数学理论:上面的案例说明:(1)数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程。
(2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论,提供思路的作用。
(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据。
高中数学选修《合情推理与演绎推理》教案
高中数学选修《合情推理与演绎推理》教案第一章:合情推理概述1.1 推理的定义与分类引导学生理解推理的定义介绍合情推理与演绎推理的区别与联系举例说明合情推理在数学中的应用1.2 合情推理的方法介绍归纳推理、类比推理、归纳猜想等合情推理方法通过具体例子讲解各种合情推理方法的步骤与特点引导学生掌握合情推理的方法并能够运用到实际问题中第二章:演绎推理的基本形式2.1 演绎推理的定义与特点引导学生理解演绎推理的定义与特点强调演绎推理的逻辑严密性与结论的必然性2.2 演绎推理的基本形式介绍演绎推理的三段论形式及其结构引导学生理解假言推理、选言推理等演绎推理的基本形式通过例题讲解各种演绎推理形式的应用与解题步骤第三章:演绎推理的应用3.1 演绎推理在数学证明中的应用引导学生理解演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在证明题中的应用与步骤3.2 演绎推理在解决实际问题中的应用介绍演绎推理在解决实际问题中的应用范围与方法通过具体例子讲解演绎推理在实际问题解决中的步骤与技巧第四章:合情推理与演绎推理的综合应用4.1 合情推理与演绎推理的综合案例分析提供综合案例,要求学生运用合情推理与演绎推理的方法进行分析与解答引导学生理解合情推理与演绎推理在不同情境下的作用与重要性4.2 合情推理与演绎推理的综合练习提供综合练习题目,要求学生运用合情推理与演绎推理的方法进行解答引导学生通过练习巩固合情推理与演绎推理的知识与技能第五章:推理能力培养5.1 推理能力的培养方法介绍推理能力的培养方法与技巧引导学生掌握推理能力的培养方法并能够运用到实际学习中5.2 推理能力的学习与应用提供推理能力的学习与应用题目,要求学生进行练习与解答引导学生通过练习与应用提高自己的推理能力并能够运用到实际问题中第六章:数学归纳法与合情推理6.1 数学归纳法的概念与步骤介绍数学归纳法的定义与基本步骤通过具体例子讲解数学归纳法的应用与解题技巧6.2 数学归纳法在合情推理中的应用引导学生理解数学归纳法在合情推理中的作用与重要性提供合情推理题目,要求学生运用数学归纳法进行解答与证明第七章:演绎推理与数学证明7.1 演绎推理在数学证明中的作用强调演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在数学证明中的应用与步骤7.2 演绎推理在证明题中的综合应用提供证明题目,要求学生运用演绎推理的方法进行解答与证明引导学生通过练习巩固演绎推理在数学证明中的知识与技能第八章:逻辑推理与演绎推理8.1 逻辑推理的基本概念介绍逻辑推理的定义与基本概念强调逻辑推理在演绎推理中的重要性8.2 逻辑推理在演绎推理中的应用提供演绎推理题目,要求学生运用逻辑推理的方法进行解答与证明引导学生通过练习与应用提高逻辑推理在演绎推理中的能力第九章:演绎推理与问题解决9.1 演绎推理在问题解决中的作用强调演绎推理在问题解决中的重要性通过具体例子讲解演绎推理在问题解决中的应用与步骤9.2 演绎推理在实际问题解决中的综合应用提供实际问题题目,要求学生运用演绎推理的方法进行解答与解决引导学生通过练习与应用提高演绎推理在问题解决中的能力第十章:总结与提高10.1 合情推理与演绎推理的总结对本课程的合情推理与演绎推理进行总结与回顾强调合情推理与演绎推理在数学学习与问题解决中的重要性10.2 推理能力的进一步提高提供推理能力提高的练习与题目,要求学生进行解答与实践引导学生通过练习与实践不断提高自己的推理能力,并能够运用到实际学习中。
高中数学选修《合情推理与演绎推理》教案
高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及其相互关系。
2. 培养学生运用合情推理与演绎推理解决问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容1. 合情推理与演绎推理的定义及特点。
2. 合情推理与演绎推理在数学中的应用。
3. 合情推理与演绎推理的练习题解析。
三、教学重点与难点1. 合情推理与演绎推理的定义及其相互关系。
2. 运用合情推理与演绎推理解决实际问题。
四、教学方法1. 采用讲授法,讲解合情推理与演绎推理的定义、特点及应用。
2. 运用案例分析法,分析实际问题中的合情推理与演绎推理。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生了解合情推理与演绎推理的概念。
2. 讲解合情推理与演绎推理的定义、特点及相互关系。
3. 案例分析:分析实际问题,展示合情推理与演绎推理的应用。
4. 练习题解析:讲解练习题,巩固所学知识。
5. 小组讨论:学生分组讨论,分享各自的理解和心得。
6. 总结归纳:对本节课的内容进行总结,强调合情推理与演绎推理在数学及生活中的重要性。
7. 布置作业:布置相关练习题,巩固所学知识。
六、教学策略与手段1. 运用多媒体教学,通过动画、图片等形式展示合情推理与演绎推理的过程,增强学生的直观感受。
2. 设计丰富的教学活动,如游戏、竞赛等,激发学生的学习兴趣。
3. 创设问题情境,引导学生主动探究,培养学生的独立思考能力。
七、教学评价1. 课堂问答:检查学生对合情推理与演绎推理的理解程度。
2. 练习题:评估学生运用合情推理与演绎推理解决问题的能力。
3. 小组讨论:观察学生在讨论中的表现,评价其合作学习的能力。
八、教学案例案例一:通过分析一道数学题,引导学生运用合情推理与演绎推理求解。
案例二:以生活中的问题为背景,让学生运用合情推理与演绎推理寻找解决方案。
《合情推理与演绎推理》教案
选修2-2 2.1合情推理与演绎推理(3课时)第一课时2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想教学过程:<新課引入】1 哥德巴排猜想:规察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7:16=13+3, 18-11+7. 20=13+7 ......................... ,50=13+37,......... 100=3+^7.猜测:枉一偶数〔除去2•它蟲身是一養数)可以表示咙两个素龜之礼1742年写苗提岀*欧拉茂以后的坎F家无人能解,成为教学史上举世闻名的猎想.1973年* 投園数学家陈気润,证明F充分大的偶数町表小为一个素数与至多两亍素数集积之和,数芋上把它称対411+2".2.费马稱想:沐国业念敌宁家乏主一资马<1601-1685)ft 1640 对& = 2九"$, l = 2: -1 = 5 .>;=2:+1 = 17, X =2' 4-1 = 257 >巴=2卯+1 =仍5列的观獄发:现具结果都是盍数,『呈提出猜妙对斫右的门悠載八圧何吃如匕■F +】的数邵是盍数•石茫瑞L数苧家欧拉,发现斗=1’ -1 = 4 294 967 29?=«41.6 700 417 推翻费马皓恕,3.1852 T-ll: J英国伦敦大学的弗南西斯,幣思熨来剑一冢科研申•位搞地图看色T作时.发现了•种冇趣前现象:“陌懈地阁都可以用四种颇色若色.使得有找同边界的国家着上不同的颜色•匸叫色術怛诫f世界数学界关注的问SJ976年.羌国数学家同瞅尔耳哈肯在美国仙利诺斯大学的两台不同的电于计駅机卜.用1200个小时.件了100亿邃仙刊断■完戊证I冃一;讲授新课;1.教学槪念*尬概念:由菜鑒申物的部分对象具有菜轉特征・出该类事物的全部对象都具有这贱特菇的刑理.或背由个刖韦丈概扌占岀一般结论的推珅,祢为们细战玳简占2,门纳推理是由部分到讎神、由个别到一般的推坪.②归细嫌打:(i)drffl.似忆、银能导电,能门纳出什么结论?(ii)Ftifl«J三轴形、等廳三旳形、答边三拾形内角和1S0度,能归纳出什么结论?(iii)现察等式t 1 + 3-^-2\ 1 + 3 + 5-9.31, 1 + 5+5 + 7 + 9-16-43 ,能術出怎样的结论?③討论:①统卄学屮,从恵体屮抽取样本.然活川样本佔计总体,是否屈D纳推理?(ii)h纳推理有何作用?2£现新书实,获管新结论丫是做出科学发观的萊憂手段)WHH纳推艸的结果是否止确?(不一定)2.教学制谢:①岀已知数列仇}的第1琐術=妇1U占-上_(一“宀》试叶纳岀通顼公式.1斗叫(分析思辭;试fa n=1・2, 3・4 一倩恕斗一如何证阴:将遏推公式变冊.再构造新数列)②思考:证得某命老在n=叫时成上;又假试£ n—k时命题成孙樽证明n=k亠1时命题也成工由圧村莎,珂以!n纳岀什么艸论?€冃前:滾逋敬学门納肚氐理.即華硼、運粧关杀)③蘇习1己知加)=0叭町■甘(JT.0.1.刀工2卫"上A O*推测/v町的表达式.击小结:①!H納聊却的的店:市部分到戦体、由个别到一鮭:②典皱例于:哥锂巴赫猜扭的提出;数列通项公式的"I純三、巩固练习:1.练习:教材P87 1、2题.2•作业:教材P93习题A组1、2、3题.第二课时2.1.1 合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理^教学难点:用归纳和类比进行推理,作出猜想.教学过程:1.练习匕己知ii, >0(/= L2. T考察下列成子:(0°1 —: («> C^ + ^X丄+丄2彳:竹a i rt i帥〕妙L U(_L十丄+二**我门町以1门納出卜对―:也威立的类似不等试为.叫巧叫^2猜想数列丄,■丄.丄十丄.……的通碘埜式圮_______________ ,L x 3 3«5 5 x ? 7«93.导入:兽班由带齿的草烷明懾;人炎伪照创类外形及沉殍原理▼烷I川替水艇;地球上有生命.火星与地球有许多和似点.如祁是绕木阳teh\扰軸口转的行星,有大气层.也冇李节燮更,温度也适合生物生存. 科学家猜測;火星上有生命存在.以上都是类比思维,即类比推理.二、讲授新课:1.教学概念:①概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理•简言之,类比推理是由特殊到特殊的推理^②类比练习:(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径•由此结论如何类比到球体?(ii)平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii)由圆的一些特征,类比得到球体的相应特征•(教材P81探究填表)小结:平面T空间,圆T球,线T面③讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维2.教学例题:①出示例1 :类比实数的加法和乘法,列出它们相似的运算性质•(得到如下表格)② 岀2:类比平囱内直角三角形的勾股宦理,试给岀空间屮四面休性质的猎想.思绯:白的二角忌屮.zr-^0' + 3 >ri 的氏・2 SflfhiiiJ.b 和1怎斜边r -"3个商两两琏氏的四商体川.ZPP/ = ZFDE = ^LEDF = 90" * 4个'面的唧积_和£…%和53个“直甜前'%昂角和1个"斜商” s.・拓展,三角形到四商体的类比.3.小給;"自卅艸和娄比排用畠址粧据已仃询爭% 纾讯呪空、仃析.比轮,耽想.再魁行n 刖、吳比. 那灯据出猜»njr 理・觥称h 件情推理.第三课时 2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
2.1合情推理与演绎推理 教学设计 教案
教学准备
1. 教学目标
(1)知识与技能:
了解演绎推理的含义、基本方法;正确地运用演绎推理、进行简单的推理.
(2)过程与方法:
体会运用“三段论”证明问题的方法、规范格式.
(3)情感态度与价值观:
培养学生言之有理、论证有据的习惯;加深对数学思维方法的认识;提高学生的数学思维能力.
2. 教学重点/难点
【教学重点】:
正确地运用演绎推理进行简单的推理.
【教学难点】:
正确运用“三段论”证明问题.
3. 教学用具
多媒体
4. 标签
2.1 合情推理与演绎推理
教学过程
课堂小结
1.“三段论”是演绎推理的一般模式,包括:
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——据一般原理,对特殊情况做出的判断.
三段论的基本格式为:
大前提:M是P
小前提:S是M
结论:S是P
2.合情推理与演绎推理的区别和联系:
(1)推理形式不同(归纳是由特殊到一般的推理;类比是由特殊到特殊的推理;演绎推理是由一般到特殊的推理);
(2)合情推理为演绎推理提供方向和思路;演绎推理验证合情推理的正确性.。
北师大版高中数学选修合情推理演绎推理教案
第四课时 合情推理——演绎推理一、教学目标 1、知识与技能:(1)了解演绎推理 的含义;(2)能正确地运用演绎推理 进行简单的推理; (3)了解合情推理与演绎推理之间的联系与差别。
2、方法与过程:认识演绎推理的主要形式为三段论,认识三段论推理一般模式,包括三步(1)大前提,(2)小前提,(3)结论.再从实际应用中认识数学中的证明,主要通过演绎推理来进行的.从实例中认识它的重要作用和具体做法。
3、情感态度与价值观:通过本节的学习,使学生认识到演绎推理在数学中的重要性,我们既需要用合情推理来发现结论,也要用演绎推理来证明结论的对否。
二、教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:了解合情推理与演绎推理之间的联系与差别, 分析证明过程中包含的“三段论”形式,三段论的证明原理三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习准备:1. 练习: ① 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系? ②在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?(结论:在空间中,若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则) 2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢? 3. 导入:(小前提)是二次函数函数12++=x x y(二)、新课探析 1.概念:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
要点:由一般到特殊的推理。
② 讨论:演绎推理与合情推理有什么区别?合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊.③ 提问:观察上面导入的表格,它们都由几部分组成,各部分有什么特点?2.“三段论”是演绎推理的一般模式;包括 ⑴大前提---已知的一般原理; ⑵小前提---所研究的特殊情况; ⑶结论-----据一般原理,对特殊情况做出的判断. 三段论的基本格式M —P (M 是P ) (大前提) S —M (S 是M ) (小前提) S —P (S 是P )(结论)3.三段论推理的依据,用集合的观点来理解:如图若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P. ④ 举例:举出一些用“三段论”推理的例子. 2.例题探析:21.1y x x =++例把“函数的图象是一条抛物线”恢复成完全三段论。
人教版高中选修1-22.1合情推理与演绎推理教学设计
人教版高中选修1-22.1合情推理与演绎推理教学设计教学目标1.了解合情推理与演绎推理的基本概念,以及它们在实际生活中的应用。
2.能够进行合情推理和演绎推理的简单分析和判断。
3.熟练掌握合情推理和演绎推理相关的常用词汇和表述方式。
教学内容1.合情推理和演绎推理的定义和特点。
2.合情推理和演绎推理的逻辑关系,以及两者的应用场景。
3.合情推理和演绎推理相关的常用词汇和表述方式。
教学重难点1.合情推理和演绎推理的逻辑关系,对两种推理方式进行充分比较和分析。
2.确定合情推理和演绎推理的应用场景,使学生能够对实际问题有更深入的理解。
教学方法1.教师讲授2.典型案例分析3.群体讨论4.课外练习教具与设备1.多媒体课件2.课本、教辅材料3.学生清华笔记本电脑4.黑板、白板、粉笔教学步骤步骤1:引入知识教师通过描绘实际场景告诉学生应用了哪些推理类型。
这个起点应该能够吸引学生的注意力,并让他们能够理解两种推理类型之间的基本区别。
步骤2:讲解重难点通过多个实例分析合情推理和演绎推理的区别与联系,讲解两个推理的逻辑关系和相应的应用场景。
同时,让学生了解相关的常用词汇和表述方式,以便他们在实际问题中作出合理的判断和分析。
步骤3:巩固知识点教师组织群体讨论,使用实际案例帮助学生加深对合情推理和演绎推理的理解。
步骤4:拓展应用教师用实际情况扩展知识点,让学生更好地了解两种推理方式的应用。
让学生分组,应用合情推理和演绎推理每组分别处理不同类型的问题,并进行展示,分享他们的分析和解决方案。
步骤5:课堂作业教师让学生写下他们对合情推理和演绎推理的理解,以及他们的应用场景的总结。
根据理解程度梳理思路,并化思考出来的内容呈现出来。
教学评估1.考察学生对合情推理和演绎推理的理解程度;2.考察学生对合情推理和演绎推理的应用场景理解程度;3.考察学生对常用词汇和表述方式的掌握程度。
总结本次教学以合情推理和演绎推理作为指导,从基本概念开始,让学生学会了如何进行分析和判断,掌握相关的词汇和表述方式,并在实际生活中理性地运用两种推理方式。
合情推理与演绎推理,归纳推理教案公开课OK
人正则立 品正则兴 正己正物 兴德兴学
平和正兴学校高二数学备课组
课题:7.4合情推理与演绎推理——归纳推理
授课教师:韩冰 授课班级:高二(13)班 授课时间:2014-9- 26 课型:复习课
一、教学目标:1. 理解合情推理的概念
2. 理解归纳推理思考过程,了解其结果不一定具有真实性.能
正确进行归纳推理.
3.了解归纳推理对数学结论和科学发展很有用. 二、教学重点:理解归纳推理的思考过程,能正确进行归纳推理. 三、教学难点:理解归纳推理的思考过程,能正确进行归纳推理. 四、教学方法:问题探究,讲练结合.
平和正兴学校高二数学备课组 2。
5.合情推理和演绎推理-湘教版选修1-2教案
5. 合情推理和演绎推理-湘教版选修1-2教案一、教学目标:1.了解合情推理与演绎推理的定义和特点;2.掌握合情推理和演绎推理的应用方法;3.能够运用合情推理和演绎推理解决实际问题;4.培养学生的逻辑思维能力和创新能力。
二、教学重点:1.合情推理和演绎推理的概念和特点;2.合情推理和演绎推理的应用方法。
三、教学难点:1.合情推理和演绎推理的应用技巧;2.学生的逻辑思维能力和创新能力的培养。
四、教学过程:1. 引入(10分钟)教师先引导学生思考以下问题:•如果你有一天要去旅行,但你不知道去哪里,你会怎么做?•你需要做些什么才能让自己的选择更加明智?然后,教师引入今天的主题——合情推理和演绎推理。
2. 讲解(20分钟)2.1 合情推理合情推理是指根据常识和经验推理出结论的过程。
它的特点是推理过程简单明了,但不能保证推理结果正确。
合情推理的应用方法:•利用常识和经验;•利用类比推理;•利用归纳推理。
2.2 演绎推理演绎推理是指由普遍到特殊的推理过程。
它的特点是推理结果准确可靠,但推理过程比较复杂。
演绎推理的应用方法:•利用“三段论”;•利用假设法。
3. 实践(30分钟)3.1 练习一:合情推理假设生活中的例子,让学生利用合情推理解决以下问题:•有些刚从压力山大中逃出来的学生,想去旅行或者度假,但因为其他原因无法去海边,你能推理出他们可能选择哪些地方旅游吗?(可以引导学生根据气候,景色等因素进行推理)3.2 练习二:演绎推理假设生活中的例子,让学生利用演绎推理解决以下问题:•有一只口袋,口袋里有6个球,3个红球和3个蓝球,盖上盖子不让别人看到里面的球,从口袋里随手拿出两个球,开口说:“这两个球是同一个颜色的。
” 问这两个球的颜色是什么?(可以引导学生根据“三段论”进行推理,先假设某个颜色,再进行思考和验证)4. 总结(10分钟)通过今天的学习,我们了解到合情推理和演绎推理的定义、特点及应用方法,并进行了实践练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《合情推理与演绎推理》教案合情推理教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用•教学重点:能利用归纳进行简单的推理•教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7,20=13+7,……,50=13+37,……,100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和.1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想.1973 年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2” .2. 费马猜想:法国业余数学家之王一费马(1601-1665 )在1640年通过对F。
22 1 3 ,1 2 3 4F! 22 1 5 , F2 22 1 17 , F3 22 1 257 , F4 22 1 65 537 的观察,发现其结果n都是素数,于是提出猜想:对所有的自然数n,任何形如F n 221的数都是素数.后来瑞士5数学家欧拉,发现F5 221 4 294 967 297 641 6 700 4 1 7不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.②归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii )观察等式:1 3 4 22, 1 3 5 9 32, 1 3 5 7 9 16 42,能得出怎样的结论?③讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?(ii )归纳推理有何作用?(发现新事实,获得新结论,是做出科学发现的重要手段)(iii )归纳推理的结果是否正确?(不一定)2. 教学例题:a①出示例题:已知数列a n的第1项31 2,且a n 1 — (n 1,2,L ),试归纳出通项公式.1 a n(分析思路:试值n=1, 2, 3, 4 T猜想a n宀如何证明:将递推公式变形,再构造新数列)②思考:证得某命题在n= n 0时成立;又假设在n= k时命题成立,再证明n= k + 1时命题也成立.由这两步,可以归纳出什么结论?(目的:渗透数学归纳法原理,即基础、递推关系)③练习:已知f(1) 0,af (n) bf (n 1) 1, n 2, a 0,b 0 ,推测f(n)的表达式.3•小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳•三、巩固练习:1. 练习:教材P38 1、2题.2. 作业:教材P44习题A组1、2、3题.第二课时2.1.1 合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理教学难点:用归纳和类比进行推理,作出猜想.教学过程:一、复习准备:1 111. 练习:已知a i 0 (i 1,2丄,n),考察下列式子:(i) 1;(ii)⑻ a2)( ) 4 ;a1 a1 a21 1 1(iii) (a1 a2 a3)( ) 9 .我们可以归纳出,对,L ,a n也成立的类似不等式a a2 a3为_•_1 11 12. 猜想数列丄,丄,丄,丄,L L的通项公式是 ____________________ .—1 3 3 5 5 7 7 93. 导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在.以上都是类比思维,即类比推理.二、讲授新课:1. 教学概念:①概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理②类比练习:(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?(ii )平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii )由圆的一些特征,类比得到球体的相应特征.(教材P81探究填表)小结:平面T空间,圆T球,线T面.③讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维2. 教学例题:①出示例1 :类比实数的加法和乘法,列出它们相似的运算性质.(得到如下表格)思维:直角三角形中,C 90°, 3条边的长度a,b,c , 2条直角边a,b 和1条斜边c ;T3个面两两垂直的四面体中,PDF PDE EDF 90° , 4个面的面积 0,5,S 3和S3个“直角面” S ,S 2,S 3和1个“斜面” S . T 拓展:三角形到四面体的类比 •3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行 归纳、类比,然后提出猜想的推理,统称为合情推理 三、巩固练习:1.练习:教材P 38 3题• 2. 探究:教材P 35例5 3. 作业:P 44 5、6题.第三课时2.1.2演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理 的基本方法,并能运用它们进行一些简单的推理。
教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理 教学难点:分析证明过程中包含的“三段论”形式 .教学过程: 一、复习准备:1•练习: ① 对于任意正整数 n ,猜想(2n -1 )与(n +1)2的大小关系?②在平面内,若a c,b c ,则a//b .类比到空间,你会得到什么结论?(结论:在空间中,若a c,b c ,则a//b ;或在空间中,若, ,则// •2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?3. 导入:① 所有的金属都能够导电,铜是金属,所以 _____________________ ;② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ③ 奇数都不能被2整除,2007是奇数,所以 ____________ . _____(填空T 讨论:上述例子的推理形式与我们学过的合情推理一样吗? T 课题:演绎推理) 、讲授新课:1. 教学概念:① 概念:从一般性的原理出发, 推出某个特殊情况下的结论,我们把这种推理称为 演绎推理。
要点:由一般到特殊的推理。
② 讨论:演绎推理与合情推理有什么区别?39“三段论”是演绎推理的一般模式:第一段:大前提一一已知的一般原理;第二段:小前提 ――所研究的特殊情况;第三段:结论一一根据一般原理,对特殊情况做出的判断 ④举例:举出一些用“三段论”推理的例子 .2. 教学例题:① 出示例1:证明函数f (x ) x 2 2x 在 ,1上是增函数.板演:证明方法(定义法、导数法)T 指出:大前题、小前题、结论. ② 出示例2:在锐角三角形 ABC 中,AD BC, BE AC , D E 是垂足.求证:AB 的中点M 到D, E 的距离相等.分析:证明思路T 板演:证明过程T 指出:大前题、小前题、结论.③ 讨论:因为指数函数 y a x 是增函数,y (^)x 是指数函数,则结论是什么?归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊3. 比较: 合情推理与演绎推理的区别与联系?(从推理形式、结论正确性等角度比较;演绎 推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路. )三、巩固练习:1.练习:P 42 2、3题2.探究:P 42阅读与思考3•作业:P 44 6题,B 组1 题.风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。
你赤手空拳来到人世间,为了心中的那片海不顾一切。
运动太多和太少,同样的损伤体力;饮食过多与过少,同样的损伤健康;唯有适度可以产生、增进、保持体力和健康。
秋水无痕聆听落叶的情愫红尘往事呢喃起涟漪无数心口无语奢望灿烂的孤独明月黄昏遍遍不再少年路岁月极美,在于它必然的流逝。
春花、秋月、夏日、冬雪。
你必汗流满面才得糊口,直到你归了土;因为你是从土而出的。
你本是尘土,仍要归于尘土。
我始终相信,开始在内心生活得更严肃的人,也会在外表上开始生活得更朴素。
在一个奢华浪费的年代,我希望能向世界表明,人类真正需要的的东西是非常之微少的。
世界上的事情,最忌讳的就是个十全十美,你看那天上的月亮,一旦圆满了,马上就要亏厌;树 上的果子,一旦熟透了,马上就要坠落。
凡事总要稍留欠缺,才能持恒。
只有经历过地狱般的磨砺,才能练就创造天堂的力量;只有流过血的手指,才能弹出世间的绝响。
时光只顾催人老,不解多情,长恨离亭,滴泪春衫酒易醒。
梧桐昨夜西风急,淡月朦胧,好梦频惊,何处高楼雁一声?如果你长时间盯着深渊,深渊也会盯着你。
所有的结局都已写好 所有的泪水也都已启程 却忽然忘了是怎么样的一个开始 在那个古老的不再回来的夏日 无论我如何地去追索 年轻的你只如云影掠过 而你微笑的面容极浅极淡 逐渐隐没在日落后的群岚 遂翻开那发黄的扉页 命运将它装订得 极为拙劣 含着泪 我一读再读 却不得不承认青春是一本太仓促的书 记忆是无花的蔷薇,永远不会败落。
我也要求你读书用功,不是因为我要你跟别人比成就,而是因为,我希望你将来会拥有选 择的权利,选择有意义,有时间的工作,而不是被迫谋生。
尽管心很累 很疲倦 我却没有理由后退 或滞留在过去与未来之间三千年读史,不外功名利禄;九万里悟道,终归诗酒田园。
这是一个最好的时代,这是一个最坏的时代这是一个智慧的年代,这是一个愚蠢的年代;这是一个光明的季节,这是一个黑暗的季节;这是希望之春,这是失望之冬;人们面前应有尽有,人们面前一无所有;人们正踏上天堂之路,人们正走向地狱之门。