最新七年级一元一次方程解决实际问题及分析答案

合集下载

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

7年级数学上册答案—一元一次方程的实际应用题

7年级数学上册答案—一元一次方程的实际应用题

一元一次方程实际问题步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.一、配套问题知识点:寻找等量关系1.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?解:设应分配x人生产甲种零件,则(62- x)人生产乙种零件由题意得:12x×2=23(62﹣x)×3,解得:x=46,62﹣46=16(人).答:应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.2.制一张桌子要用一个桌面和4条桌腿,1米3木材可制作20个桌面,或者制作400条桌腿.现有12米3木材,应安排多少米3木材制作桌面才能使桌子配套.解:设安排x米3木材制作桌面,则(12-x)米3木材制作桌腿。

由题意得:20x×4=400(12﹣x),解得:x=10.答:应安排10米3木材制作制作桌面才能使桌子配套。

3.某车间每天能生产甲种零件180个,或乙种零件120个,如果甲种、乙种零件分别取3个、2个才能配成一套,那么要想在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数?解:设应安排x天生产甲种零件,则(30﹣x)天生产乙种零件由题意得:2×180x=3×120×(30﹣x)解得:x=15.30﹣x=30﹣15=15.答:生产甲种零件15天,生产乙种零件15天.二、调配问题知识点:寻找等量关系1.某班分两组志愿者去社区服务,第一组20人,第二组28人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?解:设从第二组调x人去第一组由题意得:20+x=2(28﹣x)解得:x=12答:从第二组调12人去第一组才能使第一组的人数是第二组的2倍。

人教版七年级上册数学3.4一元一次方程利润问题及答案

人教版七年级上册数学3.4一元一次方程利润问题及答案

一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.考点:二元一次不定方程的应用;一元一次方程的应用。

(完整word版)七年级一元一次方程解决实际问题及分析答案

(完整word版)七年级一元一次方程解决实际问题及分析答案

1、列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。

①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇?分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500①解:设两车X小时后相遇,根据题意得60x (60 1.5)x 1500解得:x 15答:15小时后两车相遇。

②分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500, 即吉普车行驶路程+ 客车行驶路程=1500。

解:设客车开出X小时后两车相遇,根据题意得60 (2 x) (60 1.5)x 15003解得x 14.6答:客车开车14.6小时后两车相遇。

例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。

解:设甲经过X秒追上乙,根据题意得6.5(x 1) 7x解:得x 13答:甲经过13秒后追上乙。

例3、小明、小亮两人相距40km,小明先出发1.5h,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程一小亮走的路程=相距路程解:设小明出发后x小时追上小亮,根据题意得8x 6(x 1.5) 40解得x 15.5答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了 2.5小时, 已知水流速度是3千米/时,求船在静水中的速度。

分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x千米/时,则船在顺水中的速度为( x 3 )千米/时,船在逆水中的速度为(x 3 )千米/时,根据题意得2(x 3) 2.5(x 3)解得x 27答:船在静水中的速度为27千米/时。

一元一次方程与实际应用(内含详细答案)

一元一次方程与实际应用(内含详细答案)

1、公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每推销一件产品增加推销费5元;方案二:不付底薪,每推销一件产品增加推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?(3)你能否对将被试用的小王的推销量和所得工资提一合理性的建议?2、A,B两地间的距离为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:(1)两车同时出发,相向而行,出发后多长时间相遇?(2)两车相向而行,慢车先开28分钟,那么快车开出多长时间后两车相遇?3、某公司要把一批物品运往外地,现有两种运输方式可供选择:方式一:使用快递公司运输,装卸费400元,另外每千米再加收4元;方式二:使用火车运输,装卸费820元,另外每千米再加收2元.(1)若两种运输的总费用相等,则运输路程是多少?(2)若运输路程是800千米,这家公司应选用哪一种运输方式?4、请根据图中提供的信息,回答下列问题:(1)-个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由,5、甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?6、在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?7、)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。

它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。

本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。

问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。

已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。

解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。

根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。

将方程化简得:8x + 30 = 72。

再继续化简得:8x = 72 - 30 = 42。

最后得到:x = 42 ÷ 8 = 5.25。

由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。

问题二:小明用某种运算规则将这个数x变为y,其中x = 5。

若x × y = 60,求y的值。

解答二:根据问题可列出一元一次方程:5 × y = 60。

将方程化简得:y = 60 ÷ 5 = 12。

所以小明用这种运算规则将5变为12。

问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。

解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。

根据题意,可列出一元一次方程:x + 2 = 25。

将方程化简得:x = 25 - 2 = 23。

所以小明爸爸今年的年龄是23岁。

通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。

无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。

总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。

在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。

【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】

【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】

专题17 列一元一次方程解决实际问题知识解读1.行程问题行程问题中的基本关系:路程=速度×时间.顺流、逆流问题中,顺流速度=船在静水中的速度+水速,逆流速度=船在静水中的速度-水速.2.销售问题销售问题中常见的数量关系:标价×折率=售价,售价一进价=利润,进价×利润率=利润。

3.分档问题现实生活中,有许多与费用有关的问题,其费用的计算方法会分成多个不同的档次.解题时要对照档次,认准计算方法,如果不能确定属于哪个档次时,要注意分类讨论.培优学案典例示范1.行程问题例1 甲、乙两列火车从A ,B 两地相向而行,乙车比甲车早出发1小时,甲车比乙车每小时快30千米,甲车发车2小时恰好与乙车相遇.相遇后为了错车,甲车放慢了速度,以它原来速度的倍23行驶,而乙车加快了速度,以它原来速度的倍行驶.结果2小时15分钟后,两车距离又等于A ,B 53两地之间的距离.求两车相遇前的速度及A ,B 两地之间的距离。

【提示】设乙车相遇前的速度为x 千米/小时,则甲车相遇前的速度为(x +30)千米/小时.分别用含x 的式子表示出相遇前两车的总行程和相遇后两车的总行程.【技巧点评】行程问题中基本的关系:路程=速度×时间.当问题较为复杂时,可借助表格来帮助分析:跟踪训练1甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.例2一条汽船在一条河上航行,若从A港到B港顺流航行需要3h,从B港到A港逆流航行需要4h,那么一根木棍从A港到B港顺水漂流需要多长时间?【提示】设汽船在静水中的速度为x千米/小时,水流的速度为y千米/小时.根据顺流汽船的行程和逆流汽船的行程都是A,B两港之间的距离可以列出方程,进而求出x与y的关系,而木棍漂流所用的时间等于A,B两港之间的距离除以水流速度。

七上 一元一次方程 解决问题 应用题 题型全面含答案

七上 一元一次方程 解决问题 应用题 题型全面含答案

用方程解决问题(1)1.将360分成三个数,使这三个数的比为l︰2︰3,求分成的三个数.2.将面积为160m2的土地分成两部分,使两部分的面积之比为3︰5,求各部分的面积.3.为创建卫生城市,市容部门组织30位工作人员到甲、乙、丙三个社区检查工作,要使分配到甲、乙、丙三个社区的人数之比为2︰3︰5,应怎样分配?4.某学生把98分成两个数,使第一个数加上5等于第二个数减去5,求分成的两个数分别是多少?5.某商场春节期间销售彩电、微波炉、DVD共228台,其中销售彩电与DVD的数量之比为3︰2,销售的微波炉比彩电少20台,春节期间销售DVD多少台?6.在日历中:(1)圈出一竖列上相邻的三个数,它们的和能为60吗?75呢?21呢?(2)圈出2×2的正方形,若这4个数的和为76,这4天分别是几号?(3)圈出3×3的正方形,若这9个数的和为90,这9天分别是几号?(4)爷爷生日那天的上、下、左、右4个日期的和为80,爷爷的生日是几号?7.某校七年级的美术、声乐和体育三个特长班共有115人,其中美术班与声乐班的人数之比为4︰3,美术班与体育班的人数之比为8︰9,每个特长班各有多少人?8.在一个多边形的各边上标上数,它们依次为2,4,6,8,…,并且后面一边上标的数比前面一边上标的数大2.现已知某相邻三边上所标的数之和为24.(1)这三边上所标的数分别是多少?(2)是否存在这样的相邻三边上所标的数之和为32?为什么?9.将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数.(1)图中框出的这16个数的和是;(2)在图中,要使一个正方形框出的16个数之和分别等于2000,2004,可能吗?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.参考答案1.60,120,180 2.60,100 3.6,9,15 4.44,54 5.62 6.(1)①能圈出一竖列上相邻的三个数的和为60②不能圈出一竖列上相邻的三个数的和为75③不能圈出一竖列上相邻的三个数的和为21(2)15,16,22,23(3)这9天分别是2号、3号、4号、9号、10号、11号、16号、17号、18号(4)20 7.45 8.(1)8,6,10(2)设中间一边上标的数为x,则(x-2)+x+(x+2)=32,x=323,不合题意9.(1)352 (2)框出的16个数的和可能为2000,其中最小数为113,最大数为137,而框出的16个数的和不可能为2004用方程解决问题(2)1.某人买甲、乙两种笔记本共20本,付款40.8元.甲种笔记本的单价为2.2元,乙种笔记本的单价为1.8元,两种笔记本各买了多少本?2.有一批重39 t的货物,准备用载重量分别为6 t和7.5 t的卡车一次运走.已知载重量为6 t的卡车比载重量为7.5 t的卡车多2辆,两种卡车各要多少辆?3.小王去超市购物,买了什锦糖和荔枝共7 kg,付款92.4元.已知每千克什锦糖16.8元,每千克荔枝8.4元,小王买了什锦糖和荔枝各多少千克?4.甲仓库有化肥100 t,乙仓库有化肥88 t,从这两个仓库一共运出50 t化肥后,这两个仓库的剩余化肥的数量相等,从这两个仓库各运出了多少吨化肥?5.某小组原来的女生人数是全组人数的13,后来又加入了4个女生,于是女生人数占全组人数的一半,该小组原来有多少人?6.某服装加工车间有54人,每人每天可加工上衣8件或加工裤子10条,应怎样分配加工上衣的人数和加工裤子的人数,才能使每天加工的衣裤配套?7.乒乓球集训队一队有42人,二队有19人,能否从一队调若干人到二队,使得一队的人数是二队人数的两倍?8.现有水果1000kg,入库时测得含水量为96%,一个月后因水果中水分损耗,测得含水量为95%,这批水果的总重量损失了多少?9.小刚的叔叔到他家做客,小刚问叔叔多大年纪了,叔叔说:“我像你这么大时,你才4 岁.你到我这么大时,我已经37岁了.”你知道小刚和叔叔现在各多少岁了吗?参考答案1.甲种笔记本买了12本,甲种笔记本买了8本2.设载重量为7.5 t的卡车有2辆,载重量为6 t的卡车有4辆3.小王买了什锦糖4千克,荔枝3千克.4.从甲仓库运出化肥31 t,从甲仓库运出化肥19 t.5.该小组原来有12人,6.安排30人加工上衣,安排24人加工裤子.7.不能8.这批水果的总重量损失了200kg9.小刚现在15岁,叔叔现在26岁.用方程解决问题(3)1.把一批课外书分给若干个小组,若每个小组分8本,则多3本;若每个小组分l0本,则少9本.有多少个小组?有多少本课外书?2.若干辆汽车装运一批货物,若每辆车装3.5 t,则有2 t货物不能运走;若每辆车装4 t,则这批货物全部运完后,还可以装运1 t其他货物.有多少辆汽车?这批货物有多少吨?3.某工人在规定时间内加工一批零件,若每天加工44个,则比规定任务少加工20个;若每天加工50个,则可以超额10个.求规定时间和这批零件的个数.4.给一块农田施肥,若每亩施肥6 kg,则缺少17 kg化肥;若每亩施肥5 kg,则余下3 kg 化肥.这块农田有几亩?化肥有多少千克?5.七年级美术班举办了一次美术作品展览,展出的美术作品若平均每人3张,则多24张;若平均每人4张,则少26张.一共展出了多少张美术作品?6.学校安排学生住宿,若每间宿舍住8人,则有12人没有地方住;若每间宿舍住9人,则空出2间宿舍.共有多少间宿舍?多少名住宿生?7.幼儿园有一批卡通书,若3个小朋友合看一本,则多2本;若2个小朋友合看一本,则有9个小朋友没有书看.一共有多少个小朋友?8.甲、乙两人生产同一种零件,月初两人的计划生产量之比为4︰5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产的零件总数为1632个,甲、乙两人原计划各生产多少个零件?9.一位工人接到加工一批零件的任务,必须在规定时间内完成.若每小时加工10个,则可以超额完成3个;若每小时加工11个,则可以提前1 h完成.求要加工的零件个数和规定的时间.参考答案1.有6个小组,51本课外书2.有6辆汽车,有23吨货3.规定时间为5天,这批零件的个数为240个4.这块农田有20亩,化肥103千克5.一共展出了174张美术作品6.有30间宿舍,252名住宿生7.一共有39个小朋友8.甲原计划生产640个零件,乙原计划生产800个零件9.规定8h完成,加工77个零件用方程解决问题(4)1.一辆汽车与一辆拖拉机从相距232 km的A、B两地同时出发,相向而行,4 h后相遇.已知汽车每小时走的路程比拖拉机的2倍多4 km,求拖拉机的速度.2.甲、乙两站相距274 km,一列慢车从甲站开往乙站.慢车出发1 h后,一列快车从乙站开往甲站,快车开出1.5 h后,两车在途中相遇.已知快车每小时比慢车多行20 km,求快车的速度.3.一艘轮船航行于甲、乙两地之间,顺水要7 h,逆水要9 h,已知水流的速度为3 km/h,求甲、乙两地之间的距离.4.小明从甲地到乙地,若每小时走4.5 km,则在规定时间内离乙地还有0.5 km;若每小时走5.5 km,则可比规定时间早1 h到达乙地.求甲、乙两地之间的距离和规定时间.5.一位邮递员骑自行车在规定时间内把特快专递送到某单位,若他每小时行15 km,则可以早到24 min;若他每小时行12 km,则要迟到15 min.规定的时间是多少?他去的单位有多远?6.某人游览水路风景区,乘坐摩托艇顺流而下,然后返回登艇处,水流的速度为2 km/h,摩托艇在静水中的速度是18 km/h,为了使游览时间不超过3 h,此人驶出多远就应回头?7.一个自行车车队进行训练,训练时所有队员都以35 km/h的速度前进.突然,1号队员以45 km/h的速度独自行进,行进10 km后掉转车头,仍以45 km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?8.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700m处,然后继续前进,到目的地后都立即返回,第二次相遇在距B点400m处,求A、B两地的距离.参考答案1.拖拉机的速度为18 km/h 2.快车的速度为81 km/h3.甲、乙两地之间的距离为189 km4.规定时间为6 h,甲、乙两地之间的距离27.5 km5.规定的时间为3h,他去的单位有39 km6.此人驶出803km就应回头7.1号队员从离队开始到与队员重新会合,经过了0.25 h 8.1700 m用方程解决问题(5)1.一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做2天,乙再加入一起做,完成这项工程还需多少天?2.一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天后,剩下的工程由甲队做,甲队还需多少天才能完成?3.完成一项工作,甲单独做需要3h,乙单独做需要5h,若两人合作这项工作的45,需要几小时?4.一块农田,若由甲拖拉机耕,20h可以耕完;若由乙拖拉机耕,15h可以耕完.现在,甲耕了13h后,让乙加入一起耕,还要几小时才能耕完?5.一件工作,甲单独做12h完成,乙单独做20h完成,现由乙单独做4h,剩下部分由甲、乙合作,还需几小时完成?6.一项工程,甲独做需12天完成,乙独做需24天完成,丙独做需6天完成,现在甲与丙合作2天后,丙因事离去,由甲、乙合作,甲、乙还需几天才能完成这项工程?7.甲、乙两人承包一项工程,共得报酬610元,已知甲做l0天,乙做13天,但因甲的技术比乙的技术好,因而预先就约定甲做4天的工资比乙做5天的工资还要多40元,甲、乙两人各分得多少元?8.一个农场有甲、乙两台打谷机,甲机的工作效率是乙机的2倍.若甲机打完全部谷子的2 3后,乙机继续打完,前后所需的时间比同时用两台打谷机打完全部谷子所需的时间多4天.若分别用甲、乙打谷机打谷,打完谷子各需几天?参考答案1.完成这项工程还要3 天2.甲队还需4天完成3.需要5h 4.还要3h才能耕完5.还需6 h完成6.甲、乙还要4天才能完成这项工程7.甲分得350元,乙分得260元8.甲打谷机打完谷子要6天,乙打谷机打完谷子要12天.用方程解决问题(6)1.某种服装现在的售价为56.1元,比原来的售价降低了15%,求原来的售价.2.某商品的进价为2400元,若按标价的9折销售,利润率为20%,该商品的标价是多少?3.某商品的标价为每件1100元,若按标价的80%出售,仍可获利10%,此商品的进价是多少元?4.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?5.某种家电标价2400元,现在按9折出售,并且送20元“打的”费,仍可获得7%的利润,求该家电的进价.6.一商场搞换季促销活动,若每件羽绒衫按标价的5折销售可赚50元,按标价的6折销售可赚80元.(1)每件羽绒衫的标价和成本各是多少元?(2)为保证盈利不低于20元,最多打几折?7.某服装个体户同时卖出两套服装,每套均卖168元,以原价为准,其中一套盈利20%,另一套亏本20%.在这次销售中,服装个体户是盈利还是亏本?盈利或亏本多少元?8.某商场的电视机原价为2500元,现在以8折销售,如果想使降价前后的销售额都为l0 万元,那么销售量应增加多少?9.据了解,个体服装销售只要高出进价的20%便可盈利,但老板们常以高出进价的50%~100%标价.若你准备买一件标价为180元的服装,应在什么范围内还价?参考答案1.原来的售价为66元2.该商品的标价是3200元3.此商品的进价是800元4.此商品的进价是700元,5.设该家电的进价为2000元6.(1)每件羽绒衫的标价为100元,成本是300元(2)为保证盈利不低于20元,最多打4折7.盈利的那套原价为140元,亏本的那套原价为210元,因为140+210=350>168×2,所以350—168×2=14(元).即服装个体户亏本14元8.销售量应增加10台9.应在108元与144元之间还价。

实际问题与一元一次方程习题及答案

实际问题与一元一次方程习题及答案

用一元一次方程解实际问题一、和、差、倍、分问题:本类问题依具体题意,由和、差、倍、分列方程求解.1,第三季度销量是第二例1、某大型商场三个季度共销售DVD2800台,第一季度销售量是第二季度的3季度的2倍,问第三季度销售DVD多少台?二、人数调配问题本类问题依调动后列等量关系例2、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一局部人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?三、商品的销售问题a)商品利润=商品售价-商品进价〔即商品本钱〕商品利润×100%b)商品利润率=商品进价n售出,n折可以是小数〔如8.5折〕c)折扣率:打n折,指按售价为10例3、某商品的进价是1530元,按商品标价的9折出售时,利润率是15% ,商品的标价是多少元?分析:此题由利润=进价×利润率=标价×折扣率-进价列方程四、数字型问题解决这类问题关键在于如何巧妙设出未知数,从而化简计算,常用的设未知数方法是:①连续数设中间;②多位自然数设一位;③数字换位设局部;④小数点移动直接设;⑤数字成比例设比值;⑥特殊关系特殊设例4、一个四位整数,其个位数字为2,假设把末位数字移到首位,所得新数比原数小108,求这个四位数.五、百分比问题例5某所中学现有学生4200人,方案一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问:这所学校现在的初中在校生和高中在校生人数分别是多少?分析:此题等量关系是:一年后初中在校生增加的人数+高中在校生增加的人数=全校在校生增加的总人数六、工程问题工程问题经常把总工作量看成1,存在等量关系:工作效率×工作时间=工作量,工作量的和=1例6、〔1〕某单位开展植树活动,由一人植树要80小时完成,现由一局部人先植树5小时,由于单位有紧急事情,再增加2人,且必须在4小时之内完成植树任务,这些人的工作效率一样,应先安排多少人植树?〔2〕某车间接到一批加工任务,方案每天加工120件,可以如期完成,实际加工时每天多加工20件,结果提前4天完成任务,问这批加工任务共有多少件?七、行程问题行程问题,它涉及路程、速度和时间三个根本量,在匀速条件下,它们的根本关系是:路程=速度×时间,行程问题又分为以下四种情况a 、 相遇问题根本关系式:快者路程+慢者路程=两地距离例7 甲、乙两列火车从A 、B 两地相向而行,乙车比甲车早发车1h ,甲车比乙车速度每小时快30km ,甲车发车两小时恰好与乙车相遇,相遇后为了错车,甲车放慢了速度,以它原来的32速度行驶;而乙车加快了速度,以它原来的35倍飞速行驶,结果241h 后,两车距离又等于A 、B 两地之间的距离,求两车相遇前速度及A 、B 两地之间的距离。

初一数学一元一次方程实际问题详解及答案

初一数学一元一次方程实际问题详解及答案

一元一次方程应用题一、双基回顾列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.(3)增长量=原有量×增长率现在量=原有量+增长量2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.商品销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)9.球赛积分表问题二、例题导引(一)、选择题。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。

最新人教版七年级上册数学一元一次方程应用题及答案

最新人教版七年级上册数学一元一次方程应用题及答案

最新人教版七年级上册数学一元一次方程应用题及答案一元一次方程应用题例1:某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。

一个螺钉需要两个螺母进行配对。

为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?2.一张方桌由一个桌面和四条桌腿组成。

如果现有的木料可以做方桌的桌面和桌腿,那么需要多少立方米的木料制作桌面,多少立方米的木料制作桌腿才能使桌面和桌腿正好配对?3.某车间有22名工人生产螺钉和螺母,每人每天平均生产1600个螺钉或2000个螺母。

两个螺钉需要三个螺母进行配对。

为了使每天的产品刚好配对,工人能生产多少套这组零件?4.一套仪器由一个A部件和三个B部件构成。

用1钢材可做40个A部件或240个B部件。

现要用6钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好制作出多少套这种仪器?5.某水利工地派48人去挖土和运土。

如果每人每天平均挖土5方或运土3方,那么应该如何安排人员,才能使挖土的土及时运走?6.机械厂加工车间有85名工人,平均每人每天加工16个大齿轮或10个小齿轮。

已知两个大齿轮与三个小齿轮配成一套,问工人需加工多少套这组零件,才能使每天加工的大小齿轮刚好配对?7.某厂生产一批西装,每3米布料可以裁剪2件上衣或3条裤子。

一件上衣和一条裤子为一套。

现用600米长的这种布料生产,为了使上衣和裤子配对,裁剪上衣和裤子各需要多少米?8.某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。

一个螺钉需要四个螺母进行配对。

为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?知能点2:工程问题工作量 = 工作效率 ×工作时间工作效率 = 工作量 ÷工作时间工作时间 = 工作量 ÷工作效率完成某项任务的各工作量的和 = 总工作量 = 116.甲独自完成一件工作需要10天,乙独自完成同样的工作需要8天。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。

七年级上册数学一元一次方程应用题及答案

七年级上册数学一元一次方程应用题及答案

七年级上册数学一元一次方程应用题及答案元;“神州行”使用者不缴纳月基础费,但每通话需支付1.2元。

某用户使用这两种业务,每月通话时间为t分钟,且月通话费用不超过100元。

问该用户每月最多能通话多长时间?解题思路:设“全球通”通话次数为x,“神州行”通话次数为y,由题意可列出如下不等式:50+1x+1.2y≤100又因为每次通话时间为1分钟,所以x+y=t将y用x和t表示出来,代入不等式中,得到一个关于x的一元一次不等式,解出x的取值范围,再根据x和t的关系,求出y的取值范围,最后计算出两种业务的通话时间,比较大小即可。

知能点3:比例问题8.某地区有一条公路,全长360千米,其中高速公路占公路总长度的3/5,其余部分为普通公路,现在规划在普通公路上修建一条公路,使得高速公路占公路总长度的3/4,问这条新修建的公路长度是多少千米?解题思路:设普通公路长度为x,由题意可列出如下比例:高速公路长度:普通公路长度=3:2修建新公路后,高速公路长度与普通公路长度的比例为3:1,因此新修建的公路长度为y,则有:3/5+y/360=3/4解得y=108,即新修建的公路长度为108千米。

1.电话费问题1) y1 = 0.2x + 0.1.y2 = 0.4x2) 通话时间为25分钟时,两种通话方式的费用相同3) 若预计一个月内使用话费120元,则应选择“神州行”通话方式较合算2.电费问题1) a = 602) 该用户九月份共用电800千瓦时,应交电费为288元3.进货方案问题1) 购进20台A型电视和30台B型电视2) 选择购进20台A型电视和30台B型电视的方案,因为这样可以获得最大利润。

4.灯的费用问题1) 用一盏节能灯的费用为49 + 0.045x元,用一盏白炽灯的费用为18 + 0.2x元2) 选购一盏节能灯和一盏白炽灯,每盏灯照明时间为1500小时,这样可以获得最低费用。

5.储蓄利息问题1) 利息 = 本金 ×利率 ×期数,本息和 = 本金 + 利息,利息税 = 利息 × 0.22) 利润 = 每个期数内的利息11.某同学存入250元钱,半年后取出时得到了252.7元,求银行半年期的年利率是多少?(不考虑利息税)12.为了准备XXX上大学的学费,他的父亲参加了教育储蓄,有三种方式可选择:直接存入一个6年期、先存入一个三年期再自动转存一个三年期、先存入一个一年期再自动转存下一个一年期。

最新人教版七年级上册数学一元一次方程解答题及答案汇总

最新人教版七年级上册数学一元一次方程解答题及答案汇总

最新人教版七年级上册数学一元一次方程解答题及答案汇总一、简答题1. 什么是一元一次方程?一元一次方程是指方程中只有一个变量,并且该变量的最高次数为1的方程。

2. 如何解一元一次方程?解一元一次方程可以使用多种方法,包括逆运算法、平移法和等式法。

其中,逆运算法是最常用和简便的方法之一。

3. 举例说明解一元一次方程的过程。

例如,解方程2x + 3 = 7:- 首先,将方程转化为形如x = ?的形式。

通过逆运算,将3从等式左边移动到右边,得到等式2x = 7 - 3。

- 然后,对等式进行计算,得出x的值。

在这个例子中,计算得到2x = 4,所以x = 2。

二、计算题1. 计算下列方程的解,并用大括号表示解的集合。

a) 3x + 5 = 14解:{3}b) 2(x + 4) = 18解:{7}c) 4(x - 1) + 5 = 13解:{3}d) 5(2x - 3) + 4 = 14解:{3}2. 选择题a) 解方程2x + 3 = 5的结果是:A. x = 1B. x = 2C. x = 3D. x = 4答案:Bb) 解方程3(x - 2) - 4 = 5的结果是:A. x = -3B. x = -2C. x = 0D. x = 2答案:Dc) 解方程4x + 7 = 3x + 9的结果是:A. x = -1B. x = 1C. x = 2D. x = 3答案:A三、总结本文介绍了一元一次方程的概念及解题方法,并给出了一些例题进行了解答。

希望本文能帮助同学们更好地理解和掌握一元一次方程的解题技巧。

初一一元一次方程应用题及答案

初一一元一次方程应用题及答案

初一一元一次方程应用题及答案1、甲乙两队原计划各修100千米。

甲队在乙队离开期间额外修了10*0.6=6千米,因此甲队修了106千米,乙队修了94千米。

2、自动笔的单价为2元,钢笔的单价为4元。

3、(1)该商品房的成本是60/(1+25%)=48万元。

2)设2010年每平方米的成本为x元,则每平方米售价为60/(1-20%)/(1+33.33%)=元。

因此x=48/(*100)=0.0384万元,即每平方米的成本为384元,每平方米的利润为-384=元。

4、5辆A型车已经装运了100吨物资,还需调用10辆B型车才能完成任务。

5、甲厂每天至少需要处理垃圾8小时。

6、共有7间宿舍,31名女生。

7、新单价为1600元,让利后的实际销售价为1280元。

每部手机的成本价是1200元。

2.为了保证今年按新单价让利销售的利润不低于20万元,需要销售多少部彩屏手机?9.___在百货大楼买了30个信封,包括A型号和B型号,共花费45元。

每个B型号信封比每个A型号信封便宜2分,求每个信封的单价。

10.两车站相距275km,慢车以50km/h的速度从甲站开往乙站,1小时后,快车以75km/h的速度从乙站开往甲站。

慢车开出多少小时后与快车相遇?11.一辆汽车以40km/h的速度从甲地开往乙地,行驶3小时后遇到雨,平均速度减少10km/h。

结果比预计晚45分钟到达乙地,求甲乙两地的距离。

12.某车间的钳工班分为甲队和乙队,甲队人数是乙队人数的2倍。

将甲队16人调到乙队后,甲队剩下的人数比乙队的人数的一半少3人。

求甲队和乙队原来的人数。

13.某商店3月份的利润为10万元,5月份的利润为13.2万元。

已知5月份的月增长率比4月份增加了10个百分点,求3月份的月增长率。

14.七年级一班女生分配到若干间宿舍住宿,每个房间可住5人或8人。

如果每个房间住5人,会有5个女生无法安排住宿;如果每个房间住8人,则会有一间房间空置,还有一些女生无法安排住宿。

人教版七年级上册 第3章 一元一次方程实际应用-和差倍分问题(含答案)

人教版七年级上册 第3章 一元一次方程实际应用-和差倍分问题(含答案)

人教版七年级上册一元一次方程实际应用-和差倍分问题(含答案)1.甲、乙、丙三辆卡车所运货物的质量之比为6:7:4.5,已知甲车比乙车少运货物12吨,则三辆卡车共运货物()A.120吨 B.130吨 C.210吨 D.150吨2.某班学生共40人,外出参加植树活动,根据任务不同,要分成甲、乙、丙三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲小组有()A.5人B.10人C.20人D.25人3.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=3304.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25 B.3x﹣25=4x+20C.4x﹣3x=25﹣20 D.3x﹣20=4x+255.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是()A.8 B.7 C.6 D.96.今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100 千克,则丙种盐水最多可用_________千克.7.幼儿园阿姨给x个小朋友分糖果,如果每人分4颗则少13颗;如果每人分3颗则多15颗,根据题意可列方程为______.8.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.9.一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_______________.11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?底面积(cm2)甲杯60乙杯80丙杯10012.某人把360cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4︰5,则这两个正方形的边长分别是__________.13.某校七年级共有587名学生分别到北京博物馆和中国科技馆参观,其中到北京博物馆的人数比到中国科技馆人数的2倍还多56人,设到中国科技馆的人数为x人,可列方程为_____.14.甲、乙两个图形的面积之和是2cm.150cm,面积之比为7:3,则较大图形的面积是____215.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.如图为一块在电脑屏幕上出现的色块图,由6个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为1,则所拼成的长方形的面积是________.17.将49毫升蜂蜜全部放入下面两个盛有水的杯子中,杯子分别有160和400毫升水,要使两杯水的甜度相同,这两个杯中应分别放入多少毫升蜂蜜?18.某车间共有28名工人生产螺栓和螺母,每人平均每天生产螺栓12个或螺母18个,问:如何安排工人才能使每天生产的螺栓和螺母按1:2配套?19.某校开展植树活动,七(1)班有27人,七(2)班有19人,现另调26人去支援,使七(1)班人数与七(2)班人数相等,问应调往七(1)班、七(2)班各多少人?20.列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调来多少名武警部队战士?21.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的23,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?22.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?24.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套?25.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?参考答案【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.2.A【解析】根据三个小组人数的比例,设甲小组的人数为x,则乙小组的人数为2x,丙小组的人数为5x.因为三个小组的人数相加应该等于班级总人数,故可以列出如下方程:x+2x+5x=40合并同类项,得8x=40,系数化为1,得x=5,即甲小组有5人.故本题应选A.【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D . 4.A 【解析】试题分析:设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程. 解:设这个班有学生x 人, 由题意得,3x+20=4x ﹣25. 故选A .考点:由实际问题抽象出一元一次方程. 5.A . 【解析】试题分析:设答对的题数为x 道,则不答或答错的有(10﹣x )道,故:5x ﹣3(10﹣x )=34,解得:x=8.故选A . 考点:1.一元一次方程的应用;2.应用题. 6.50 【解析】 【分析】可设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,盐的浓度=盐的质量与盐水总质量之比,根据题意可得3%(100)8%11%7%100x y x y--++=,化简即可确定y 的最大值.【详解】解:设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,根据题意可得3%(100)8%11%7%100x y x y --++=,化简得85400y x +=,即5508y x =-+,所以y 的最大值为50,丙种盐水最多可用50千克. 故答案为:50 【点睛】本题考查了二元一次方程的应用,正确理解题意列出方程是解题的关键. 7.4x ﹣13=3x+15 【解析】 【分析】根据分配方法不同,但糖果总数相同,可列出方程. 【详解】根据两种分配方法糖果总数相等,得 4x ﹣13=3x+15故答案为:4x ﹣13=3x+15 【点睛】分析题意,抓住总数相等,列出方程. 8.800 【解析】 【分析】设选择“公交车”的学生人数是3x ,则自行车的有7x ,其他的有2x ,根据该校学生有3200人,列出方程,求出x 的值,即可得出答案. 【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为:800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.115【解析】试题分析:可以设共有x辆卡车,货物的总量是不变的,根据相等关系列出方程,从而得出货物的总量.解:设共有x辆卡车,根据题意得:7x+10=8(x﹣1)+3解得:x=15则货物共有7×15+10=115(吨).故答案为:115考点:一元一次不等式的应用.10.2x+56=589-x【解析】试题解析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589-x)人,由题意得,2x+56=589-x.考点:由实际问题抽象出一元一次方程.11.7.2【解析】【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,分别计算出倒水前后三个杯子中水的总体积,依据水的总体积不变列方程求解即可.【详解】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,答:甲杯内水的高度变为3×2.4=7.2cm.故答案是:7.2.【点睛】本题考查了一元一次方程的应用,理解倒水前后三个水杯中水的总体积不变是解题关键.12.40cm;50cm.【解析】因为两个正方形的边长之比是4:5,所以可以设边长较短的正方形的边长为4x,则另一个正方形的边长应为5x. 由题意可知,这两个正方形的周长之和为360cm. 通过正方形边长与周长的关系获得这两个正方形的边长与周长之和的关系从而列出方程并求解.设边长较短的正方形的边长为4x,则由两个正方形的边长之比是4:5可知,边长较长的正方形的边长应为5x.由题意,得()()+=x x4445360整理,得 36360x =, 解之,得 10x =.因此,边长较短的正方形的边长为441040x =⨯=(cm),边长较长的正方形的边长为551050x =⨯=(cm). 故本题应依次填写:40cm ,50cm. 点睛:利用比例关系设未知数是一种重要的解题方法. 这种方法有别与直接设某一个量为未知数x 的方法. 利用某两个相关量之间的比例关系,将这两个量设为关于未知数x 的单项式形式 (单项式的系数为比例关系中的相应数值). 这种方法不仅可以简化对比例关系的分析,还可以在一定程度上减少由比例关系所带来的分数运算. 13.x+2x+56=587.【解析】试题分析:由到中国科技馆的人数为x 人可得到北京博物馆的人数为2x+56,再根据七年级共有589名学生列出方程即可解:设到中国科技馆的人数为x 人,依题意可列方程为: x+2x+56=589,故答案为:x+2x+56=589.考点:由实际问题抽象出一元一次方程. 14.105 【解析】设较大图形的面积为x 2cm ,则较小图形的面积为(150-x)2 cm , 由题意得:x :(150-x)=7:3, 解得x=105,即较大图形的面积是1052cm15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:∵糯米做成年糕的过程中重量会增加20%,∵a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键.16.143【解析】试题分析:若设第二小的正方形的边长为x.则有两种不同的方法可以表示出长方形的长:根据正方形的边长相等,可得:第一种表示方法为x+x+(x+1);第二种表示方法为(x+2)+(x+3);即可列出方程.解:设第二小的正方形的边长为x,则有:x+x+(x+1)=(x+2)+(x+3),解得:x=4,所以长方形的长为13,宽为11,面积=13×11=143.故答案是:143.考点:一元一次方程的应用.17.这两杯分别放入14ml、35ml蜂蜜【解析】可以设出未知数,列出比例式,解答即可.设放入第一杯xml ,第二杯()49x ml -蜂蜜,根据题意,可列比例式():16049:400x x =-,求解即可.【详解】解:设放入第一杯xml ,第二杯()49x ml -蜂蜜():16049:400x x =-14x = 491435ml -=答:这两杯分别放入14ml 、35ml 蜂蜜. 【点睛】此题考查了比与比例的意义,以及对比例的实际应用能力. 18.螺栓12人,螺母16人【解析】试题分析:设安排x 人生产螺栓,则有(28-x )人生产螺母,根据每天生产的螺栓和螺母按1:2配套列出方程求解即可.试题解析:设安排x 人生产螺栓,则有(28-x )人生产螺母, 根据题意得:18(28-x )=12x·2, 解得:x=12, 28-12=16(人).答:应安排12人生产螺栓,16人生产螺母才行. 19.应调往七(1)班9人,调往七(2)班17人.【解析】试题分析:设应调往七(1)班x 人,则应调往七(2)班(26-x)人,根据等量关系“七(1)班原有的人数+调往七(1)班的人数=七(2)班原有的人数+调往七(2)班的人数”,列出方程,解方程即可.设应调往七(1)班x人,则应调往七(2)班(26-x)人.根据题意,得27+x=19+26-x.解得x=9.26-x=17.答:应调往七(1)班9人,调往七(2)班17人.点睛:本题主要考查了一元一次方程的应用,根据两个班人数之间的关系列出方程是解题关键.20.应往甲处调去140名,往乙处调去60名武警部队战士【解析】【分析】设应往甲处调来x名武警部队战士, 则向乙处调来(200-x) 个武警部队战士, 根据调派后甲处的人数比乙处人数的2倍多10人, 即可得出关于ェ的一元一次方程, 解之即可得出结论.【详解】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∵200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程式解题的关键.21.(1)11215a,641156a ax;(2)19.2.【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可. 【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a;六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +;(2)由题意得,11215a =641156a ax +, ∵a >0, ∵11215=641156x +, 解得x =19.2.∵六月份零售票应按每张19.2元定价. 【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了. 22.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.试题分析:设应分配x人生产甲种零件,则(60-x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.试题解析:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),×12(60-x),依题意得方程:24x=23解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.考点:一元一次方程的应用.23.七年级共有200名同学参加这次公益活动.【解析】试题分析:由于本题要求的是参加这次公益活动的七年级学生总人数,所以可以设七年级共有x名同学参加这次公益活动. 进一步分析题意可以看出,这些学生进行了三项活动:宣传,植树以及清扫垃圾. 根据题意,进行宣传活动的学生人数可以用x表示为10%x,进行植树活动的学生人数可以表示为55%x,从而清扫垃圾的学生人数可以表示为x-10%x-55%x. 由于题目中已经给出了清扫垃圾的学生人数,故可以根据清扫垃圾的学生人数列出方程并求解.试题解析:设七年级共有x名同学参加这次公益活动.由题意,得x-10%x-55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.在利用方程解决实际问题的题目中,列方程的基本根据是题目中的等量关系. 因此,在题目的条件中寻找合适的等量关系就成为解决问题的关键. 本题中应用的等量关系本质上是“总量=各部分量的和”. 在等量关系明确之后,利用未知数x对等量关系中的各个量进行表示则是正确列出方程的重要步骤.24.30名工人生产A种工件,45名工人生产B种工件【解析】试题分析:首先设分配x名工人生产A种工件,然后根据A种工件数量的2倍等于B种工件的数量列出方程进行求解,得出答案.试题解析:设分配x名工人生产A种工件,根据题意,得:2×15x=20(75-x)解得:x=30 ∵75-x=75-30=45答:分配30名工人生产A种工件,45名工人生产B种工件.考点:一元一次方程的应用25.篮球队有28支,排球队有20支.【解析】试题分析:设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.解:设篮球队有x支,排球队有y支,由题意,得,解得:.答:篮球队有28支,排球队有20支.考点:二元一次方程组的应用.26.每天能组装48套GH型电子产品;【解析】试题分析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;试题解析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,根据题意,6x 4=3(80−x)3,解得x=32,则80-32=48(套),答:每天能组装48套GH型电子产品;。

人教版七年级数学实际问题与一元一次方程(产品配套问题含答案)

人教版七年级数学实际问题与一元一次方程(产品配套问题含答案)

第4课时实际问题与一元一次方程(产品配套问题)1.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为人,每小时加工杯身个,杯盖个,则可列方程为,解得x= .间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为人,加工杯盖的工人为人,则可列方程为 .解得x= .故加工杯身的工人为人.2.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x张铁皮做盒身,根据题意可列方程为( )A.2×15(108-x)=42xB.15x=2×42(108-x)C.15(108-x)=2×42xD.2×15x=42(108-x)3.某车间共有75名工人生产A,B两种工件,已知一名工人每天可生产A种工件15件或B 种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,则车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?4.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为人,根据题意,可列方程为,解得x= .5.用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张制瓶身,多少张制瓶底可以正好制成整套的饮料瓶?6.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,多少木料做桌腿,恰好配成方桌多少张?7.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓、螺母按1∶3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓、螺母刚好配套?第4课时产品配套问题参考答案1.直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为(90-x)人,每小时加工杯身12x个,杯盖15(90-x)个,则可列方程为12x=15(90-x),解得x=50.间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为x12人,加工杯盖的工人为x15人,则可列方程为x12+x15=90.解得x=600.故加工杯身的工人为50人.2.D3.解:设该车间分配x名工人生产A种工件,(75-x)名工人生产B种工件,根据题意,得2×15x=20(75-x),解得x=30.则75-x=45.答:该车间分配30名工人生产A种工件,45名工人生产B种工件,才能保证连续安装机械时,两种工件恰好配套.4.(54-x) 8x=10(54-x) 30.5.解:设用x张铝片制瓶身,(150-x)张铝片制瓶底可以正好制成整套的饮料瓶.根据题意,得16x×2=43×(150-x).解得x=86.所以150-x=64.答:用86张铝片制瓶身,64张铝片制瓶底可以正好制成整套的饮料瓶.6.解:设用x立方米木料做桌面,那么桌腿用木料(5-x)立方米,根据题意,得4×50x=300(5-x).解得x=3.所以5-x=2,50x=150.答:用3立方米木料做桌面,用2立方米木料做桌腿,恰好配成方桌150张.7.解:设安排x人生产螺栓,则安排(30-x)人生产螺母,由题意,得12x×3=18×(30-x),解得x=10.所以30-x=20.答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓、螺母刚好配套.。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。

①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇? 分析:若两车同时出发 ,则等量关系为:吉普车的路程+客车的路程=1500 ① 解:设两车x 小时后相遇,根据题意得60(60 1.5)1500x x +÷=解得: 15x =答:15小时后两车相遇。

② 分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500,即吉普车行驶路程+客车行驶路程=1500。

解:设客车开出x 小时后两车相遇,根据题意得260()(60 1.5)15003x x ⨯++÷=解得14.6x =答:客车开车14.6小时后两车相遇。

例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。

解:设甲经过x 秒追上乙,根据题意得6.5(1)7x x +=解:得13x =答:甲经过13秒后追上乙。

例3、小明、小亮两人相距40km ,小明先出发1.5h ,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h ,小亮的速度是6km/h ,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程—小亮走的路程=相距路程 解:设小明出发后x 小时追上小亮,根据题意得86( 1.5)40x x --=解得15.5x =答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了2.5小时,已知水流速度是3千米/时,求船在静水中的速度。

分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x 千米/时,则船在顺水中的速度为(3x + )千米/时,船在逆水中的速度为(3x - )千米/时, 根据题意得2(3) 2.5(3)x x +=-解得27x =答:船在静水中的速度为27千米/时。

例5、一轮船在A 、B 两地之间航行,顺水航行用3h ,逆水航行比顺水航行多用30min ,轮船在静水中的速度是26km/h,问水流的速度是多少?分析:分析同例题4,水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设水流的速度是x km/h ,则船在顺水中的速度为(26x +)km/h ,船在逆水中的速度为(26x -)km/h. 根据题意得3(26) 3.5(26)x x +=-解得2x =答:水流的速度是2km/h 。

例6、甲乙两人参加环形跑道竞走比赛,跑道一周长400m ,乙的速度是80m/min ,甲的速度是乙的速度的1.25倍,若现在甲在乙前面100m 处,多少分钟后,两人第一次相遇? 分析:甲走的路程—乙走的路程=两人相距的距离 解:设x min 后两人第一次相遇,根据题意得(80 1.25)80400100x x ⨯-=-解得15x =答:15分钟后两人第一次相遇。

2、 列方程解工程问题例1、一件工作,甲做9天可以独立完成,乙做6天可以独立完成,现在甲先做了3天,余下的工作由乙独立完成,乙需要做几天可以完成全部的工作? 分析:如果把总工作量设为1,则甲的工作效率为19 ,乙的工作效率为16,根据工作总量=甲完成的工作量+乙完成的工作量解:设乙需要做x 天可以完成全部的工作, 根据题意得113196x ⨯+⨯= 解得4x =答:乙需要做4天可以完成全部的工作。

例2、整理一批图书,由一个人做需要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率完全相同,具体应先安排多少人工作。

分析:把工作总量看成1,则人均效率为140 ,有x 个人先做4小时的工作量为440x ,(2)x + 个人8小时的工作量为8(2)40x + ,由两部分的工作总量为1,可列方程。

解:设具体应先安排x 个人工作, 根据题意得 48(2)14040x x ++= 解得2x = 答:具体应先安排2个人工作。

例3、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?分析:等量关系为:甲注水量+乙注水量-丙排水量=1 解:设打开丙管后x 小时可注满水池, 由题意知11()(2)1689xx ++-= 解得4213x =答:打开丙管后4213小时可注满水池。

3、 列方程营销问题称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息=本金×利率×期数 本息和=本金+利息=100%⨯利息利率本金利息税=利息×税率 例1、某商品的售价为每件900元,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?分析:题中的等量关系为:商品利润=商品售价—商品进价=商品进价×商品利润率设商品的进价为x 元,商品售价—商品进价=900×90%—40—x =商品进价×商品利润率=10%x 解:设此商品的进价为x 元,根据题意得90090%4010%x x ⨯--= 解得700x =答:设此商品的进价为700元例2、某商场在一段时间里以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?解:设盈利25%的衣服进价为x 元,由题意知:(10.25)60x +=解得48x =设亏损25%的衣服进价为y 元,由题意知:(10.25)60x -=解得80y =两件衣服的进价是4880128x y +=+= (元)两件衣服的售价是6060120+=(元 ) 1201288-=- (元)答:在这次买卖中商场亏损10元。

例3、某商品月末的进货价比月初的进货价下降8%,而销售价不变,这样利润率月末比月初高10%问月初的利润率是多少?分析:利用售价=进价×(1+利润率),再根据“月初售价=月末售价”列方程。

注意:本题未知月初进货价,可以设一个,也可以看着整体1解:设月初进货价为a 元,月初利润率为x ,则月初的销售价为(1)a x + 元, 月末进货价为(18%)a - 元,月末销售价为(18%)[1(10%)]a x -++ 元,由题意知:(1)(18%)[1(10%)]a x a x +=-++解得0.15x =答:月初的利润率为15%。

例4、 例 某商品的进价是2 000元,标价为3 000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?分析:根据商品利润率=(商品利润÷商品进价)×100%=[(商品售价—商品进价)÷商品进价]×100% 解:设售货员最低可以打x 折出售此商品,则300020005%2000x -=解得0.7x =答:售货员最低可以打7折出售此商品。

例5、某企业生产一种产品,每件成本价是400元,销售价是510元,本季度销售了m 件,为进一步扩大市场,该企业决定在降低售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元? 分析:降价前利润总额=m (降价前的销售价-降价前的成本价)降价后的利润总额=(110%)m + (降价后的销售价-降价后的成本价),根据降价前利润总额=降价后的利润总额可列方程。

解:设该产品每件的成本价应降低x 元,则[510(14%)(400)](110%)(510400)x m m ⨯---⨯+=-解得10.4x =答:该产品每件的成本价应降低10.4元。

4、列方程解比例问题例1:男女生有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生的2倍.求原来的男生和女生的人数分析:本题的等量关系为:女生人数—走了的人数=男生人数的一半。

解:设,原来男生的人数为x 人 ,则女生的人数为34x 人 ,由题意知 32(12)4x x =-解得48x =33483644x =⨯= 答:原来男生的人数为48人,女生的人数为36人。

例2、洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?分析:全部数量=三种型号的洗衣机型号的数量之和解:设Ⅰ型洗衣机计划生产x 台,则Ⅱ型洗衣机计划生产2x 台,Ⅲ型洗衣机计划生产14x 台,由题意知21425500x x x ++= 解得1500x =2215003000x =⨯= 台 1414150021000x =⨯= 台答:Ⅰ型洗衣机计划生产1500台,则Ⅱ型洗衣机计划生产3000台,Ⅲ型洗衣机计划生产21000台。

5、 列方程解配套问题解决这类题的基本等量关系是:加工(或生产)的总量成比例。

例1、某车间有100名工人每人平均每天可以加工螺栓18个或螺母24个,要使每天加工螺栓和螺母(一个螺栓配两个螺母)应如何分配加工螺栓和螺母的工人?分析:本题中要求:加工螺母的总个数=2×加工螺栓的个数解:设分配x 人加工螺栓,则加工螺母的为(100)x - 人,由题意知:24(100)218x x -=⨯解得40x =1001004060x -=-=答:分配40 人加工螺栓,60 人加工螺母。

例2:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:本题的等量关系为:加工的大齿轮数量÷2=加工的小齿轮数量÷3 解:设分配x 名工人加工大齿轮,则加工小齿轮的有85-x 名工人,由题意知16210(85)3x x ÷=-÷解得 25x =85852560x -=-=答:应分配25名工人加工大齿轮,60名工人加工小齿轮。

6、 比赛问题这类问题的等量关系有:比赛总场数=胜场总数 +平场总数+负场总数比赛总积分=胜场总积分+平场总积分+负场总积分例1、在一次有12支球队参加的足球循环赛中(每两队必须比赛一场),规定胜一场得3分,平一场得1分,负一场得0分,某队在这次循环赛中所胜场数比所负场数多2,结果得18分,那么该队胜了多少场?解:设该队胜x 场,则该队负(2)x - 场,该队平的场数为11(x 2)132x x ---=- ,由题意知3(132)18x x +-=记得 5x =答:该队胜了5场.例2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

相关文档
最新文档