2-3 随机变量的函数及其分布 (概率论与数理统计2)

合集下载

概率论与数理统计课件第2章

概率论与数理统计课件第2章

X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量

包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:

概率论与数理统计第二章 随机变量及其分布

概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)

i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章

第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22/C53=1/10,P{X=4}=C32/C53=3/10,P{X=5}=C42/C53=3/5,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60},即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)k p=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5. F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarc tanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞==23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-32=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-)=0.1,所以Φ(x-)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595. (2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2X2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={1/[2π(y-1)]e-(y-1)/4, y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同. 总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3) 8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于元, 元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出X(元),要使保险公司亏本,则必须X>即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于元}=P{-X≥}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.,即保险公司获利不少于元的概率在98%以上.P{保险公司获利不少于元}=P{-X≥}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.,即保险公司获利不少于元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X,300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x) 1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+ 1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2( 12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0..习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X 表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3,有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

概率论与数理统计-随机变量及其分布-随机变量与分布函数

概率论与数理统计-随机变量及其分布-随机变量与分布函数

7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解

概率论与数理统计第二讲

概率论与数理统计第二讲

定义 设X是S上的随机变量F(x)为其分布函数, 如果存在定义在(-∞,+∞)上的非负实质函数 f(x),使得
F ( x)
x

f ( t )dt, x
则称X为连续型随机变量,称F(x)为连续型分 布函数,称f(x)为X的概率密度函数(或概率 密度或分布密度)。
设X为连续型随机变量,F(x)与f(x)分别 为其分布函数和概率密度 1)对任意常数a<b有

P(X<0)=P(X-3<-3)=0.1。
当μ=0且σ=1的正态分布N(0,1),称为标准正 态分布。 x2 1 2 概率密度 ( x ) e , x ,
2
在统计用表中给出了 x 0至x 3.49所对应 的( x)值。 当x 3.49时,( x) 1 ;
P(λ)
λ=np=1
0.368 0.368 0.184 0.061 0.015 0.004
例 某物业管理公司负责10000户居民的 房屋维修工作。假定每户居民是否报修 是相互独立的,且报修的概率都是0.04% 另外,一户居民住房的维修只需一名修理 工来处理。易知,在某个时段报修的居民 数X~B(10000,0.0004).试问 1)该物业管理公司至少需要配备多少名 维修工人,才能使居民报修后能得到及时 修理的概率不低于99%。
P (a X b) f ( x )dx
a
b
2)F(x)是连续函数,且当f(x)在x=x0处连续时
F ( x0 ) f ( x0 )
3)对任意常数c,P(X=c)=0,从而对任何a<b,有
P (a X b) P (a X b) P (a X b) P (a X b)

概率论与数理统计第二章

概率论与数理统计第二章

的球若干, 例2:设袋中有编号为 ,2,3,4的球若干,从中任意取出 :设袋中有编号为1, , , 的球若干 一个,假设取到球的概率与球上的号码成反比,求取到球 一个,假设取到球的概率与球上的号码成反比,求取到球 的号码X的分布 的分布。 的号码 的分布。 解:X可以取值为 ,2,3,4。 可以取值为1, , , 。 可以取值为
P { X = 1} = 5 %
X P
0 95%
1 5%
两点分布:只有两个可能取值的随机变量所服从的分布。 两点分布:只有两个可能取值的随机变量所服从的分布。 随机变量所服从的分布 概率函数: 概率函数:P{X=xk}=pk k=1,2 0-1分布:只有 和1两个值的随机变量所服从的分布。 - 分布 只有0和 两个值的随机变量所服从的分布 分布: 两个值的随机变量所服从的分布。 概率函数: 概率函数:P{X=k}=pk(1-p) 1-k k=0,1
用随机变量表示事件 例1:某时间段内寻呼台收到的寻呼次数记作 。“收到 次 :某时间段内寻呼台收到的寻呼次数记作X。 收到20次 寻呼” 寻呼” 可写成 {X=20}。 。 “收到的寻呼次数介于30到100之间”可写作{30<X<100}。 收到的寻呼次数介于 到 之间”可写作 } 之间 例2:从一大批产品中随机抽取一件,记该产品的寿命为 :从一大批产品中随机抽取一件, Y(小时 则{Y>1500}表示“产品的寿命大于 小时),则 表示“ 小时” 小时 表示 产品的寿命大于1500小时”。 小时
−∞
−∞
0
2
∴ A= 3 . 8
(2)用概率密度函数定义求 用概率密度函数定义求
3 3 2 1 P(0≤ X<1) = ∫0 f ( x)dx = ∫0 ( 2 x− 4 x )dx = 2 ,

概率论与数理统计第二章随机变量及其分布

概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,

概率论与数理统计第2章随机变量及其分布

概率论与数理统计第2章随机变量及其分布

1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.

例2.2 测试灯泡的寿命.

样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论与数理统计第二章--随机变量及其分布

概率论与数理统计第二章--随机变量及其分布

第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )

概率论与数理统计2_3连续型随机变量

概率论与数理统计2_3连续型随机变量

《概率统计》
返回
下页
结束
若不计高阶无穷小,有
f ( x)
f (a)1ຫໍສະໝຸດ oP{ x X x x } f ( x )x
的概率近似等于
a
x
它表示随机变量 X 取值于 ( x, x x ]
x)) x x ff ((x
在连续型随机变量理论中所起的作用与
P X xk pk
x2 , f ( x) A, 0, 0 x 1 1 x 2 其它
求 (1)常数A; ( 2) P{0 X 3};
(3)分布函数F(x).
2
解: (1)由于f(x)是一个密度函数,


f ( x)dx 1, 得
2 2 1
x dx
0
1
Adx 1
《概率统计》
返回
下页
结束
例3.设随机变量X在[2,8]上服从均匀分布,求二次方程 y2+2Xy+9=0 有实根的概率.
解:由于X服从均匀分布,故X的概率密度为
1 , 2 x8 f ( x) 6 0, 其它
方程有实根等价于4X236≥0 , 即X≥3或X≤3. 从而, P{y2+2Xy+9=0 有实根}=P{X≥3}+P{X≤3}
1 f ( x) e 2
( x )2 2 2
f(x)
, x
其中μ,σ(σ>0)为常数,则称X服从参 数为μ,σ2的正态分布或高斯(Gauss) 分布,记作 X~ N(μ,σ2)
0
x
分布函数
F(x)
x 1 e 2 ( t )2 2 2
F ( x)

概率论与数理统计(随机变量函数的分布)

概率论与数理统计(随机变量函数的分布)
117 108 102 108 ( ) ( ) 3 3
( 3) ( 2) ( 3) ( 2) 1
0.9987 0.9772 1 0.9759
2.4.2 连续型随机变量函数的分布
也可以这样计算:
102 108 X 108 117 108 P{102 X 117} P 3 3 3 X 108 P { 2 3} ( 3) ( 2) 0.9759 3
函 数 NORMDIST 返 回 累 ቤተ መጻሕፍቲ ባይዱ 函 数 值 ( 即 分 布 函 数
值);如果为FALSE,返回概率密度值.
2.4.2 连续型随机变量函数的分布
实验步骤: (1)在单元格B2中输入计算P{X < 102}的公式:
= NORMDIST(102, 108, 3, TRUE)
(2) 在单元格B3中输入计算P{X < 117}的公式:
f X [h( y)][ h' ( y)], y , fY ( y) 0, 其它
综合以上两式,定理证毕.
2.4.2 连续型随机变量函数的分布
说明:
若 f X ( x )在有限区间(a,b)外等于零,当 x (a, b) 时,g ( x ) ( , ) 且在(a,b)上恒有g'(x) > 0 (或恒有g'(x)<0 ),则仍可按式(2.12)求得 Y = g(X)概率密度.
2) 当y > 0时,FY ( y) P{ y X y} ( y) ( y) 2 ( y) 1 则
fY ( y) F 'Y ( y) 2 ( y) 2 1
2

概率论与数理统计2

概率论与数理统计2
x2 2a
x0 x0
1 ( 2)当 x 时, f 2 ( x ) cos x 0, 不是 2 2
( 3)


f 3 ( x )dx 2,
不是

设随机变量X的概率密度为
ke 3 x f ( x) 0 x0 x0
试确定常数k, 并求X的分布函数及 P(X>0.1)。
第二章 随机变量及其分布
第一节 一维随机变量及分布
第二节 第三节 第四节 离散型随机变量 连续型随机变量 随机变量函数的分布
第三节、 连续型随机变量
第三节 连续型随机变量
一 连续型随机变量及其概率密度函数
二 常见的连续型随机变量的分布
1 均匀分布 2 指数分布
3 正态分布
1、概率密度的概念与性质
S1
x1
f ( x)d x
1
o
x1 x2
S1
x
1.2 概率密度函数的性质
(1) f(x)0, xR, 表明密度曲线在 x轴上方。
f ( x)
1
o
(2)


x

f ( x)dx 1
这表明介于密度曲线 y f ( x)与x轴之间的面积为1。
( 3 )
P ( x 1 X x 2 ) F ( x 2 ) F ( x1 )

x
U(a,b)的分布函数为
x a, 0, x a F ( x) , a x b, b a x b. 1,
F ( x)
应用模型 在区间上“等可能投 点”“随机投点”的试 验的数学模型。
1
a o

b

x

概率论与数理统计 第二章

概率论与数理统计 第二章

1. 考查分段函数 积分的计算.
求(1)常数A;(2)X的分布函数F(x);
3 1 (3) P X 2 2
18
概率论与数理统计课件
N o t e:
李 建 峰
四.小结
1.掌握概率密度函数的定义和性质,会求连续型 随机变量落在任一区间内的概率. 2.掌握连续型随机变量特有的性质.
1.当 N≥10n时, 超几何分布可以 用二项分布来近 似计算(不放回 抽样可用放回抽 样近似)
则X服从参数为M,N,n的超几何分布.
M 当N 10n,p ,则 N k nk CM CN nk k k M C n p 1 p n CN
9
概率论与数理统计课件
N o t e:
o a
b
x 2.概率P与f(x)成正
比,但f(x)本身并 不表示概率.
40
对数轴上任意集合S(可以是若干区间的并) P( X S ) f ( x)dx.
S
50 由性质3及积分中值定理知,若f ( x)在点x处 连续,当x充分小时, P( x X x x) f ( x)x 及 F ( x) f ( x).
李 建 峰
4.几何分布: 考虑一个随机试验E它只有两个结果,如成功和 失败,概率为p和1-p,0<p<1, 现将试验独立重复 进行,直至出现一次成功为止.用X表示所需的 试验次数, X取每个值的概率为
P X k p 1 p
k 1
, k 1, 2,
则X服从参数为p的几何分布,记为X~G(p).
N o t e:
李 建 峰
二、密度函数的性质 10 f ( x) 0.
f (x) o
2

《概率论与数理统计》第二章 随机变量及其分布教案

《概率论与数理统计》第二章 随机变量及其分布教案

第二章随机变量及其分布§2.1随机变量及其分布教学目的要求:使学生掌握随机变量、离散型随机变量、连续型随机变量的概念及其分布,会应用这些概念、分布求分布列.教材分析:1.概括分析:概率论所要考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统规律性.为此,就有必要把随机试验的每一个可能的结果与一个实数联系起来.随机变量正是为适应这种需要而引进的。

随机变量实质上是定义在样本空间Ω={e}上的一个实值单值函数X(e).从此,对随机事件的研究转变为对随机变量的研究,通过随机变量将各个事件联系起来,进而去研究随机试验的全部结果.而且,随机变量的引入,使我们有可能借助于微积分等数学工具,把研究引向深入.2.教学重点:随机变量、离散型随机变量、连续型随机变量的概念及其分布函数.3.教学难点:求随机变量分布函数.教学过程:在第一章里,我们研究了随机事件及其概率,可以会注意到,在某些例子中,随机事件和实数之间存在着某种客观的联系.例如,在伯努利概型这一节中,曾经讨论过“在n 重伯努利试验中,事件A 出现k 次”这一事件的概率,如果令ξ=n 重伯努利试验中事件A 出现的次数则上述“n 重伯努利试验中事件A 出现k 次”这个事件就可以简单地记作(ξ=k),从而有P(ξ=k)=⎪⎪⎭⎫ ⎝⎛k n p k q n-k.并且ξ所有可能取到的数值也就是试验中事件A 可能出现的次数:0,1,…,n.在另一些例子中,随机事件与实数之间虽然没有上述那种“自然的”联系,但是我们常常可以人为地给它们建立起一个对应关系.例如抛掷一枚均匀的硬币,可能出现正面,也可能出现反面,现在约定若试验结果出现正面,令η=1,若试验结果出现反面,令η=0,这时就有:{试验结果出现正面}=(η=1),{试验结果出现反面}=(η=0).在上述例子中,对每一个试验结果ω,自然地或人为地对应着一个实数X(ω),这与高等数学中熟知的“函数”概念本质上是一致的.只不过在函数概念中,函数f(x)的自变量是实数x,而在X(ω)的自变量是样本点ω.因为对每一个试验结果ω,都有实数X(ω)与之对应,所以,X(ω)的定义域是样本空间,显然值域是实数域.显然,一般来讲此处的实数X 值将随ω的不同而变换,它的值因ω的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量。

概率论与数理统计2-3

概率论与数理统计2-3
∆x → 0 ∆x → 0
P ( x1 < X ≤ x2 ) = F ( x2 ) − F ( x1 ) = ∫ x 2 f ( x )dx 1
x
3) 对任意 P(X=x)=0. 从而对任意实数 b, (a<b), 对任意x, 从而对任意实数a, P (a ≤ X ≤ b) = P (a < X <与数理统计
第二章
随机变量及其概率分布
定理 : 设F ( x ), f ( x )分别为连续随机变量 X的分布函数 和密度函数 .若f ( x )在点x处连续 , 那么 f ( x ) = F ' ( x ). 由该定理和注8可知 可知,若 注9 由该定理和注 可知 若F(x)除至多可数个点外有连续 除至多可数个点外有连续 导数, 导数 那么密度函数 F ' ( x ) 在F ( x )有连续导数处 f ( x) = 任意取值 其他 由注9给出的密度函数可能会有一定差异 给出的密度函数可能会有一定差异,但不影响 注10 由注 给出的密度函数可能会有一定差异 但不影响 分布函数的表示和事件概率的计算. 分布函数的表示和事件概率的计算 这种现象是概率论研 究中的一种特色, 而称这样的密度函数是几乎处处相等的, 究中的一种特色 而称这样的密度函数是几乎处处相等的 对其简单说明如下: 设有随机变量X及函数 及函数g(x),h(x),若 对其简单说明如下 设有随机变量 及函数 若 P ( X ∈ { x : g( x ) = h( x )}) = 1, 几乎处处相等. 称g(x),h(x)几乎处处相等 几乎处处相等
华东师范大学统计系
概率论与数理统计
第二章
随机变量及其概率分布
3 几个常用的连续型分布 1) 均匀分布 设连续型随机变量X具有密度函数 设连续型随机变量 具有密度函数 1 b− a − 1 b− a , a ≤ x ≤ b, f ( x) = 其他 , 0, a b 则称X在区间 在区间[a, 上服从均匀分布 上服从均匀分布. 则称 在区间 b]上服从均匀分布 记作X ~ U (a , b ) F ( x) 分布函数为: 分布函数为: 0 , 1 x < a,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X,Y相互独立,它们的 概率密度分别为
p(
x
)

e 0,
x
,
x 0, 其他.
p(
y
)

2e2 0,
y , x 0, 其他.
试求Z

X Y
的概率密度函数
解 由公式

0
pZ (z) 0
yp( yz, y)d y yp( yz, y)d y,

p(
x,
y)
zy
dy p( x, y)dx
0

y0 x y z
o
x
y 0y 0x y
z
y 1x
令u x
z
y 0 dy p( yu, y) ydu
z
dy
p( yu, y) ydu
z
0

0

z
dy p( yu, y) ydu dy p( yu, y) ydu
z
dy p( yu, y) ydu
0

0

z
dy p( yu, y) ydu dy p( yu, y) ydu
z
0

0
z

dy p( yu, y) ydy du p( yu, y) ydy
z

0
pZ
(
z
)

dFZ ( dz
0

dy p( x, y)dx
zy
zy
dy p( x, y)dx
0

D {(x, y) x z} y
y
x zy ( y 0)
xzy
o x zy x ( y 0)
令u x y
0

dy
z
p( yu, y) ydu
zk f ( xi , y j )
k 1,2
其中“
pij ”是关于f ( xi , y j ) zk
zk f ( xi , y j )
的( xi , y j )求和.
例2 设两个独立的随机变量X 与Y 的分布律为
X1
3
Y2 4
PX 0.3 0.7
PY 0.6 0.4
求随机变量 Z=X+Y 的分布律.
观察值为X1, X2, X3, X4, X5设它们是相互独立的
随机变量,且都服从同一分布
F
(z)

1


e
2
ze2 8
,
z 0,
0,
其他.
试求max{ X1, X2 , X3 , X4 , X5 } 4的概率.
解 设 D max( X1, X2, X3, X4, X5 )
因为 Fmax (z) [F (z)]5, 所以 P{D 4} 1 P{D 4}
P{Z zk } P{ f ( X ,Y ) zk }

pij
k 1,2, .
zk f ( xi , y j )
2. 连续型随机变量函数的分布 (1)Z X Y的分布
(2)Z X 的分布 Y
(3)M max( X ,Y )及N min( X ,Y )的分布
推广: 一般地,设 M max{ X1, X2, Xn}, N min{ X1, X2, Xn },
则当 X1, X2, , Xn相互独立且同分布时, 有 FM (z) F n(z) FN (z) 1 [1 F (z)]n 其中F (z) P{ X1 z}.
例8 对某种电子装置的输出测量了5次,得到的观
x x 10
x z x z 10
O
10
20
z

0 0

x 10, z x
10,

0 x z 10

10, x
z,
时,
pR(z)
p( x) p(z x)d x 中被积函数不为零.

此时

z
p( x) p(z x)d x,
0 z 10,
1 Fmax (4) 1 [F (4)]5 1 (1 ee2 )5 .
内容小结
1. 离散型随机变量函数的分布律 若二维离散型随机变量的联合分布律为
P{X xi ,Y y j } pij ,i, j 1,2, 则随机变量函数 Z f ( X ,Y )的分布律为
X Y 3 2 1 3 1 1 1 2 22
23
X Y 1
5 31 0 1 2 225 43
所以X Y ,| X Y |的分布律分别为
X Y 3
2 1 3 1 1 3 22
1
P 12
1
3
2
12 12 12
12 2 12 12 12
5
X Y 0
1
2
P
1
4
2
pY ( y)
1

e
y2 2
,

y
由公式pZ (z)

pX ( x)pY (z x)dx

pZ (z)

1 2π

e
x2 2

e
(
z
x 2
)2
dx
t xz 2

1 2π

e
z2 4

(
e
x
z 2
)2
dx

1


12 12 12
3 53
2
12 2 12 12 12
结论 若二维离散型随机变量的联合分布律为
p{X xi ,Y y j } pij ,i, j 1,2, 则随机变量函数Z f ( X ,Y )的分布律为
P{Z zk } P{ f ( X ,Y ) zk }

pij
e
z2 4
et2dt
1

e
z2 4


即 Z 服从 N (0,2)分布.
说明
一般,设X ,Y相互独立且X ~ N ( μ1,σ12 ),Y ~
N ( μ2,σ22 ).则 Z X Y 仍然服从正态分布,且有
Z
~
N ( μ1

μ2 ,σ12

σ
2 2
).
有限个相互独立的正态随机变量的线性组合 仍然服从正态分布. 例如,设X、Y独立,都具有正态分布,则 3X+4Y+1也具有正态分布.
若X与Y独立时,

pZ (z) pX (z y)pY ( y)dy

pX ( x)pY (z x)dx
例5 设两个独立的随机变量 X 与Y 都服从标准正 态分布,求 Z=X+Y 的概率密度.

由于pX ( x)
1 2π

e
x2 2
,
x
证 FM (z) P{M z}
P{X z,Y z} P{ X z} P{Y z} FX (z)FY (z)
( X与Y独立)
FN (z) P{N z} 1 P{N z} 1 P{X z,Y z} 1 P{X z} P{Y z} 1 [1 FX (z)][1 FY (z)]
为了解决类似的问题,下面我们讨论二维随机 变量函数的分布.
二、离散型随机变量函数的分布
例1 设随机变量( X ,Y )的分布律
X Y 2 1 0
1
1
3
1
12 12 12
1
2
1
0
2
12
12
3
2
0
2
12
12
求 (1)X Y , (2) X Y 的分布律.
解 X Y 2 1 0
1
1
3
(1,2) (1,4)
3 5
0.42 (3,2)
5
0.28 (3,4)
7
Z X Y 3 所以
P
0.18
5
7
0.54 0.28
三、连续型随机变量函数的分布
几种特殊形式的随机变量函数的分布
(1)Z X Y的分布

pZ (z)
p(z y, y)dy


p( x, z x)dx
x),
0 z x 10,
0,
代入 (1) 式得
其它.
(600z 60z2 z3 ) 15000, 0 z 10,
pR(z) (20 z)3 15000,
10 z 20,
0,
其它.
(2)Z X Y的分布

pZ (z)
p(z y, y)dy
第三节 随机变量的函数
及其分布(2)
(两个随机变量的函数的分布)
一、问题的引出
二、离散型随机变量
的函数的分布

三、连续型随机变量 的函数的分布
停 下
一、问题的引出
有一大群人,令X和Y分别表示一个人的年龄 和体重,Z表示该人的血压并且已知Z与X ,Y的函数 关系Z f ( X ,Y ),如何通过X ,Y的分布确定Z的分布
备用题
例3-1 设相互独立的两个随机变量 X, Y 具有同一 分布律,且 X 的分布律为
X
0
1
P 0.5 0.5 试求:Z max( X ,Y )的分布律.
相关文档
最新文档