生物质能源的发展现状与前景综述

合集下载

生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景一、本文概述随着全球能源需求的持续增长和环境保护压力的日益加大,生物质能源作为一种可再生、清洁、低碳的能源形式,正逐渐受到全球范围内的广泛关注。

本文旨在全面综述生物质能源应用研究的现状与发展前景,通过对生物质能源的来源、转化技术、应用领域以及面临的挑战进行深入分析,揭示生物质能源在全球能源体系中的重要地位及其未来发展潜力。

本文将首先概述生物质能源的基本概念、分类及其在全球能源结构中的地位,然后重点介绍生物质能源转化技术的最新研究进展,包括生物质发电、生物质燃料、生物质化学转化等方面。

随后,本文将分析生物质能源在农业、工业、交通等领域的应用现状,以及其在节能减排、环境保护等方面的重要作用。

在此基础上,本文将探讨生物质能源发展面临的挑战,如生物质资源的可持续利用、技术创新的瓶颈、市场接受度等问题。

本文将展望生物质能源的未来发展前景,提出促进生物质能源产业发展的政策建议和技术创新方向,以期为全球能源转型和可持续发展提供有益的参考。

二、生物质能源应用研究的现状随着全球对可再生能源需求的持续增长,生物质能源作为一种清洁、可持续的能源形式,其应用研究在全球范围内得到了广泛的关注。

目前,生物质能源的应用研究主要集中在生物质能转换技术、生物质能源利用模式和生物质能源的环境影响等方面。

在生物质能转换技术方面,生物质能源主要通过生物质燃烧、生物质气化、生物质液化和生物质生物化学转化等过程,将生物质转化为热能、电能或生物燃料。

目前,生物质发电和生物质燃料是生物质能源应用的主要形式。

生物质发电技术已经相对成熟,广泛应用于生物质直燃发电、生物质与煤混合燃烧发电等领域。

同时,生物质燃料如生物柴油、生物质乙醇等也在全球范围内得到了广泛的应用。

在生物质能源利用模式方面,生物质能源具有分布广泛、可再生性强、环境友好等特点,因此,其在农村、城市、工业等多个领域都有广泛的应用前景。

例如,在农村地区,生物质能源可以用于农业废弃物的利用,提高农业废弃物的资源化利用率;在城市地区,生物质能源可以用于城市垃圾的处理和能源化利用,减少城市垃圾对环境的污染。

生物质能源开发利用的现状与前景分析

生物质能源开发利用的现状与前景分析

生物质能源开发利用的现状与前景分析随着能源危机日益临近,环境问题日益突出,生物质能源作为一种新型的可再生能源成为了当前发展的热点之一。

生物质能源是指以农业、林业、畜牧业和生活废弃物等作为原料制成的可再生能源,包括生物质热能、生物质液体燃料和生物质气体燃料等。

在我国,生物质能源的开发利用虽然已经取得了一些进展,但是与发达国家相比还存在差距。

本文将对生物质能源开发利用的现状与前景进行分析,以期为进一步推动生物质能源开发利用工作提供参考。

一、生物质能源开发利用的现状1.生物质热能生物质热能是指利用生物质进行热能转换,使之成为可供人们使用的热能。

生物质热能的利用形式多种多样,主要包括薪柴燃烧、生物质热水、生物质蒸汽和生物质热电联产等。

目前,我国的生物质热能市场主要集中在农村地区,大多数是由传统农村能源替代项目引起的。

然而,这些项目在技术水平、产业规模和市场化程度等方面存在一定的问题,还需要进一步推进。

2.生物质液体燃料生物质液体燃料是指利用生物质技术手段将其中的有机化合物分离出来,制成可用于代替化石燃料的燃料形式。

生物质液体燃料主要包括生物柴油和生物乙醇等。

目前我国的生物质液体燃料主要以生物乙醇为主,而生物柴油的开发利用还处于起步阶段。

生物乙醇燃料在消费者市场上的推广和应用非常成功,但是由于墨西哥和巴西等国家对生物乙醇的贸易管制,我国的生物乙醇行业面临诸多挑战。

3.生物质气体燃料生物质气体燃料是指利用生物质技术手段将其中的可燃气体产生器化学反应后获得的气体化学成分,制成其可用于代替化石燃料的燃料形式。

生物质气体燃料主要包括生物甲烷、生物氢气、生物二氧化碳和生物合成气等。

我国的生物质气体燃料开发利用处于起步阶段,但是其发展前景十分广阔,目前正受到政府和企业的关注和大力支持。

二、生物质能源开发利用的前景展望1.市场前景广阔目前,我国的生物质能源市场主要集中在农村地区,但是随着人们对环保和节能的重视,在城市地区也渐渐出现了生物质能源的需求。

生物质能源的发展现状及未来趋势

生物质能源的发展现状及未来趋势

生物质能源的发展现状及未来趋势生物质能源是指源自于生物质的可再生能源,包括从植物、废弃物以及动物排泄物等生物质所生产的能源。

随着人类社会对能源的需求越来越大,生物质能源作为一种环保、可持续的新型能源已经引起人们的广泛关注。

本文旨在分析生物质能源的发展现状及未来趋势。

一、生物质能源的发展现状在目前的能源结构中,生物质能源在能源总消费量中的占比仍然非常小。

但是,随着人们环保意识的提高以及新能源政策的倡导,生物质能源的应用将会越来越广泛。

1.生物质发电:发电是生物质能源的一种主要利用方式。

生物质可通过焚烧或气化方式进行能源转化,发电。

生物质发电的优势在于其能够使农林废弃物等生物质得到有效利用,同时减少了二氧化碳等有害气体的排放。

目前,生物质发电在欧洲等地的应用已经非常广泛。

2.生物质燃料:生物质燃料包括木质燃料、废弃物、农业余料、城市垃圾以及植物油等,具有环保、可再生的特点。

其中,生物质燃料的主要应用是作为替代传统石油燃料的能源。

例如,生物质燃料油可以通过加工处理后成为柴油等传统石油燃料的替代品。

3.生物质液态燃料:由于柴油、汽油等传统的石油燃料会对环境产生污染,生物质液态燃料因具有较低排放可替代传统燃料而受到越来越多的关注。

生物质液态燃料的主要来源是植物油和动物脂肪。

目前,生物质液态燃料已经逐步开始在农村、城市公交以及物流等领域得到应用。

二、生物质能源的未来趋势虽然目前生物质能源的占比很小,但是未来这种可持续、环保的新型能源的市场前景非常广阔。

1.技术创新:随着科技的进步,生物质能源的技术也会逐步完善和创新,生物质的转化效率会不断提高,生物质能源的应用范围也将不断扩大,特别是在高效利用生物质有效物料时的技术上,有望取得更加长足的进展。

2.政策支持:各国政府为了鼓励和推进生物质能源的发展,将会提供更多的政策支持。

例如,政府会根据绿色发展总体目标和排放限制目标,对生物质能源实行优惠政策,提高并扩大生物质能源的市场需求。

生物质能源的利用现状与发展趋势

生物质能源的利用现状与发展趋势

生物质能源的利用现状与发展趋势随着环保意识的不断提高, 生物质能源成为了新的热门话题。

它是指从活性生物质中提取能量的技术或方式,包括来自农作物、林木、稻壳、废纸和废弃物等的能源。

相较于传统的化石燃料,生物质能源具有更为环保的优势,被认为是一种重要的可再生能源。

本文将会讨论目前生物质能源的利用现状以及未来的发展趋势。

一、生物质能源的利用现状目前,生物质能源主要有两种形式,一种是通过生物质发电和热能利用的方式,另一种是通过制氢等技术来生产生物质燃料。

这些技术都已经在实际应用中得到很好的运用。

1.生物质发电生物质发电是目前生物质利用的主要方式。

通过生物质发电可以转换生物质的化学能为电能,同时还可以产生热能。

这项技术广泛应用于农业、林业、能源和环境等领域。

生物质燃烧发电的原理主要是利用生物质中的碳、氢、氧等元素以及其他的一些元素质和能量状态的变化而产生的热能来驱动机组发电。

目前,我国的生物质燃烧发电主要使用的是垃圾焚烧、污泥焚烧和农作物秸秆焚烧等方式。

2.生物质燃料生物质燃料通过生物质的生化反应来生产氢气、甲烷、醇类等燃料。

利用这些燃料可以替代传统的石油和天然气等有限资源,从而实现环保和可持续发展的目标。

二、生物质能源的未来发展趋势随着生物质能源技术的不断发展和完善,它有望成为未来能源开发的主要方向之一。

1.技术创新生物质能源技术的发展方向主要集中在改进发电和燃料生产技术,提高燃烧效率和经济效益,并且减少对环境的影响。

2.政策支持政府的政策支持也是未来发展生物质能源的关键。

未来的发展会需要广泛的政策支持,包括资金、税收和能源政策等。

政府的支持将会鼓励更多的企业和科研机构投入到生物质能源的研发和应用中。

3.市场需求未来市场需求也是生物质能源发展的重要驱动力。

人们对环保和可持续发展的关注将会逐渐提高,这将推动生物质能源的市场需求,同时也鼓励企业投资生物质能源的开发和生产。

4.产业升级未来生物质能源的产业升级是不可避免的趋势。

生物质能的开发与利用现状与前景分析

生物质能的开发与利用现状与前景分析

生物质能的开发与利用现状与前景分析能源,是人类社会发展的基石。

在传统能源面临日益严峻的挑战之际,生物质能作为一种可再生能源,逐渐走进人们的视野,并展现出巨大的潜力。

生物质能,简单来说,就是由生物质转化而来的能源。

生物质包括各种植物、动物及其废弃物等有机物质。

这些有机物质通过一系列的技术手段,可以转化为电能、热能、燃料等形式的能源。

一、生物质能开发与利用的现状(一)生物质发电生物质发电是目前生物质能利用的重要领域之一。

在一些地区,已经建立了以农作物秸秆、林业废弃物等为燃料的生物质发电厂。

这些发电厂通过燃烧生物质产生蒸汽,驱动涡轮机发电。

然而,目前生物质发电仍面临一些问题,如燃料收集和运输成本较高、发电效率有待提高等。

(二)生物液体燃料生物柴油和生物乙醇是常见的生物液体燃料。

生物柴油通常由植物油或动物脂肪制成,可直接用于柴油发动机。

生物乙醇则主要由粮食作物(如玉米、小麦)或非粮食作物(如甜高粱、木薯)发酵而成,可与汽油混合使用。

虽然生物液体燃料具有一定的优势,但也存在着原料供应不稳定、生产成本较高等挑战。

(三)生物质燃气生物质通过气化技术可以转化为生物质燃气,如沼气。

沼气在农村地区得到了一定程度的应用,用于照明、炊事和取暖等。

然而,沼气池的建设和管理还存在一些问题,如产气不稳定、沼渣沼液处理不当等。

(四)生物质固体成型燃料生物质固体成型燃料是将生物质压缩成块状或颗粒状的燃料,具有密度高、便于储存和运输等优点。

但在推广应用过程中,受到设备成本高、市场认知度低等因素的限制。

二、生物质能开发与利用的技术进展(一)先进的转化技术近年来,一些新的生物质能转化技术不断涌现,如热解气化技术、生物化学转化技术等。

热解气化技术可以将生物质在高温缺氧的条件下转化为气体和液体燃料,提高能源利用效率。

生物化学转化技术则通过微生物发酵等过程,将生物质转化为高附加值的化学品。

(二)多联产技术为了提高生物质能的综合利用效率,多联产技术逐渐受到关注。

生物质能源产业的发展趋势与前景

生物质能源产业的发展趋势与前景

生物质能源产业的发展趋势与前景随着环保意识不断增强,越来越多的人开始关注清洁能源的发展。

而在诸多清洁能源中,生物质能源被认为是最有前途和发展潜力的一种。

本文将探讨生物质能源产业的发展趋势和前景。

一、生物质能源的定义和特点生物质能源是指利用植物或动物等生物质材料转换成的能源,包括生物质热能、生物质发电和生物质燃料等。

生物质能源有以下几个特点:1.可再生性。

相比化石能源,生物质能源资源更加丰富,且具有可再生性,不会出现短缺的问题。

2.环保性。

生物质能源的燃烧排放的是二氧化碳,但这些二氧化碳是植物在生长过程中吸收的,所以不会产生额外的碳排放。

3.多样性。

生物质材料种类丰富,可以利用各种废弃物和剩余物,而不仅仅局限于特定的原料。

二、生物质能源产业现状目前生物质能源产业发展仍处于起步阶段,但在一些国家已经有了较好的发展。

例如,欧洲各国、美国和加拿大等国家已经形成了较为成熟的生物质能源产业链,由原料采集、物流运输、加工利用、能源生成、环保利用等多个环节组成的完整生物质能源产业链已基本建立。

而我国生物质能源产业还处于初级阶段,生产水平相对较低,整个行业的竞争和壁垒都很大。

三、生物质能源产业的发展趋势1.利用生物质多样化。

随着技术的不断发展,利用生物质的方法也会多样化,例如利用废弃植物物质、农作物秸秆、林业剩余物和畜禽粪便等生物质材料来研发生物质能源。

2.生产技术不断提升。

尽管生物质能源的生产技术已经逐渐成熟,但是仍然存在一些问题,例如生产成本较高、生产效率不够高等问题。

因此,生产技术的不断提升和改良是未来生物质能源产业发展的重要方向。

3.更好地回收利用废弃物。

目前,生物质能源的生产主要依赖于废弃物的利用。

随着废弃物回收技术的不断发展以及政策的加强推动,生物质能源产业将更好地实现废弃物回收利用,从而使生产过程更加环保,并减少治理时的成本。

四、生物质能源产业的前景未来,生物质能源产业将会成为清洁能源发展的重要趋势之一,并将在国家的支持下逐渐壮大。

生物质能源的发展现状与前景如何

生物质能源的发展现状与前景如何

生物质能源的发展现状与前景如何在当今全球能源需求不断增长,同时对环境保护的要求日益严格的背景下,生物质能源作为一种可再生、清洁的能源形式,正逐渐引起人们的广泛关注。

那么,生物质能源的发展现状究竟如何?未来又有着怎样的前景呢?生物质能源,简单来说,就是来源于生物质的能源。

生物质包括各种植物、动物和微生物,以及由这些生命体排泄和代谢产生的有机物质。

常见的生物质能源有生物质发电、生物柴油、生物乙醇、生物质成型燃料等等。

目前,生物质能源的发展取得了一定的成果。

在生物质发电领域,许多国家和地区都建立了基于生物质燃烧的发电厂。

这些发电厂通常利用农业废弃物、林业剩余物、生活垃圾等作为燃料,既实现了废弃物的资源化利用,又产生了清洁的电力。

例如,在北欧一些国家,生物质发电已经成为电力供应的重要组成部分。

生物柴油和生物乙醇的生产也在逐步扩大。

生物柴油通常由植物油或动物脂肪经过化学处理制成,可以直接用于柴油发动机。

生物乙醇则主要由粮食作物(如玉米、小麦)或非粮食作物(如甜高粱、木薯)发酵而来,可与汽油混合使用。

然而,这两种能源的发展也面临一些挑战。

例如,大规模使用粮食作物生产生物燃料可能会对粮食安全产生一定影响,因此,开发非粮食来源的原料成为了当前的研究重点。

生物质成型燃料在供暖和工业用能方面发挥了一定作用。

通过将生物质压缩成颗粒或块状,提高了其能量密度和燃烧效率,方便了储存和运输。

在技术方面,生物质能源的转化技术不断进步。

例如,生物质气化技术可以将生物质转化为可燃气体,用于发电或供热;生物质热解技术能够生产生物油和生物炭,具有较高的能源利用价值。

不过,生物质能源的发展也存在一些问题和限制。

首先,生物质资源的收集和运输成本较高。

由于生物质通常分布较为分散,收集和运输需要耗费大量的人力和物力。

其次,生物质能源的转化效率还有待提高。

虽然技术在不断进步,但与传统的化石能源相比,在能量转换效率方面仍有差距。

再者,生物质能源的生产可能会带来一定的环境影响。

生物质能源利用前景

生物质能源利用前景

生物质能源利用前景生物质能源作为一种可再生能源,近年来备受关注。

它是通过将植物、动物等有机物质转化为能源,具有环保、可持续的特点。

本文将就生物质能源的利用前景进行探讨,并对其发展方向进行展望。

一、生物质能源的现状目前,生物质能源已经广泛应用于各个领域。

其中,生物质燃料是应用最为广泛的领域之一。

生物质燃料的产生过程中,将生物质经过适当的处理后,转化为固态、液态或气态燃料,以供能源的使用。

与化石能源相比,生物质燃料具有低排放、可再生的特点,因此在替代传统能源、减少环境污染等方面具有巨大的潜力。

此外,生物质能源还被广泛应用于发电、热能供应等领域。

通过生物质的燃烧可以产生热能,用于供暖、热水等用途。

同时,生物质也可以用于发电,通过生物质发电技术将生物质转化为电能,供应给各个领域的用电需求。

二、生物质能源的优势和挑战生物质能源的利用具有多重优势。

首先,生物质能源是一种可再生资源,通过合理利用可持续供应能源需求。

其次,生物质能源减少对化石能源的依赖,对保护环境具有积极意义。

再次,生物质能源在适当处理之后,可以转化为不同形式的能源,满足不同领域的需求,具有很大的灵活性。

然而,生物质能源的利用还存在一些挑战。

首先,生物质能源的生产和利用过程需要耗费一定的资源和能源,与实际收益相比仍有一定的不协调性。

其次,生物质能源的采集和转化对环境也有一定的影响,需要合理管理和控制,以避免对生态系统的破坏。

另外,生物质能源的利用技术还需要进一步发展和完善,以提高能源利用效率和经济性。

三、生物质能源的发展方向为了进一步利用生物质能源,未来的发展方向可以从以下几个方面考虑。

首先,提高生物质能源的生产效率。

尽可能地利用农作物秸秆、农畜禽粪便等农业废弃物,将其转化为生物质能源,能够有效地提高能源的利用效率。

其次,研发新型生物质能源技术。

通过研究和实践,发展更加高效、环保的生物质能源转化技术,例如生物质发酵、生物质气化等,以达到更高的能量利用效率和更低的环境排放。

生物质能源产业发展现状与前景分析

生物质能源产业发展现状与前景分析

生物质能源产业发展现状与前景分析近年来,全球能源需求的不断增长以及对环境友好型能源的需求推动了生物质能源产业的快速发展。

生物质能源是指以植物、动物等有机物质为原料,通过转化和利用技术生产的可再生能源,如生物质电力、生物质燃料和生物质热能。

本文将对生物质能源产业的现状和前景进行分析。

一、生物质能源产业发展现状1.政策支持:许多国家纷纷出台支持生物质能源发展的政策措施,包括财政补贴、税收优惠和能源法规等。

这些政策措施为生物质能源产业的发展提供了有力支持。

2.技术进步:生物质能源领域的技术不断创新和进步,固体废弃物、农作物秸秆、木材废料等可以有效利用,生物质能源的生产效率不断提高,生物质能源设备也越来越先进。

3.能源需求增长:全球能源需求的不断增长是推动生物质能源产业发展的重要因素之一。

随着全球人口的增加和经济的发展,对能源的需求不断上升,生物质能源作为可再生能源的一种,具有较高的替代能力。

4.环境友好型:生物质能源是一种清洁能源,其利用过程中产生的二氧化碳等温室气体相对较低,对环境污染较小。

在应对气候变化和保护生态环境的背景下,生物质能源的发展逐渐受到重视。

二、生物质能源产业发展前景1.市场潜力巨大:生物质能源是可再生能源的重要组成部分,其供给受到地域、季节和气候等因素的制约较少。

未来随着技术的进一步发展和突破,生物质能源供给能力将继续增强,市场潜力巨大。

2.产业链完善:随着生物质能源产业的发展,产业链不断完善。

从原料种植、采集、加工到生物质能源生产和利用,构建了完整的产业链。

这将带动相关行业的发展,形成产业协同效应。

3.经济效益显著:在过去的几年里,生物质能源产业在各国经济中的地位逐渐提升。

生物质能源的生产和利用能够创造就业机会,提高经济效益,对于农村经济发展和增加农民收入具有积极作用。

4.可持续发展:生物质能源是一种可持续发展的能源形式。

相对于石化能源,生物质能源具有更好的环境效益和可再生性。

在实现经济发展的同时,生物质能源也能够保护生态环境,推动经济可持续发展。

生物质能源的现状和发展前景

生物质能源的现状和发展前景

生物质能源得现状与发展前景一、生物质能源概述化石资源得过度消耗引发了能源与环境危机,寻找不可再生资源得替代品成为人类社会生存发展面临得重大问题.生物质能源环境友好,可再生,并且有丰富得存量,且从生物质出发,获得多种形态得能源成为了研究热点与投资热点。

生物质就是指由光合作用产生得各种有机体.生物质能则就是以生物质为载体得、蕴藏在生物质中得能量,即绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部得能量形式。

它除了可以提供燃烧热, 还可以制成种类繁多得重要化工品[1]及气、液、固得能源形态,尤其就是可以作为交通燃料得制备原料[2]。

生物质得研究在推动化学工业与能源燃料可持续发展中已经并将继续发挥重要作用。

生物质资源按其来源分类可分为:一就是木材及森林;二就是农业废弃物; 三就是水生植物;四就是油料植物; 五就是城市与工业有机废弃物; 六就是动物粪便。

生物质得应用与开发在政策层面上引起了各国得重视, 我国在生物能源产业发展十一五规划中,突出了五个方面:1、提高能源植物得数量与质量;2、从原料到技术发展燃料乙醇工业。

3、加快生物柴油产业化得步伐.4、推进生物质发电与供热。

5、促进生物质转化为致密成型燃料。

利用生物质能方式主要有:一就是热化学转换技术,获得木炭焦油与可燃气体等高品位得能源产品,分为高温干馏、热解、生物质液化等方法;二就是生物化学转换法, 主要指生物质在微生物得发酵作用下, 生成沼气、酒精等能源产品;三就是利用油料植物所产生得生物油;四就是直接燃烧技术,包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术与垃圾焚烧技术等。

二、生物质资源量1、全球得生物质资源生物质能仅次于三大化石能源位列第四,存量丰富且可再生,具备很大得发展前景。

全球每年经光合作用产生得生物质约1700亿吨, 其能量相当于全球能量年消耗总量得10 倍, 而作为能源得利用量还不到总量得1%,开发潜力巨大.目前来自生物质得能量约占全球消耗能量得14%.其中发达国家每年3%左右得能源来自生物质能,发展中国家生物质利用约占这些国家能源消耗得35%.按照一些国际能源组织测算,随着化石能源得枯竭与价格得增长, 到2015年,全球总能耗将有40%来自生物质能源.2、我国得生物质资源据估计, 我国每年产生得生物质总量有50多亿吨(干重),相当于20多亿吨油当量, 约为我国目前一次能源总消耗量得3倍,目前我国商品化得生物质能源仅占一次能源消费得0、5%左右。

生物质发电发展现状及前景

生物质发电发展现状及前景

谢谢观看
3、潜在风险和挑战及其应对措 施
Hale Waihona Puke 生物质发电在发展过程中也面临着一些潜在风险和挑战。首先,生物质资源 的收集、储存和运输成本较高,需要进一步完善相关基础设施。其次,生物质发 电的部分设备依赖于进口,国内制造能力仍有待提高。针对这些问题,政府和企 业应加大投入,完善生物质资源收集体系,提高设备国产化率,同时加强技术创 新,降低生产成本。
生物质发电发展现状及前景
目录
01 生物质发电:现状与 前景
02
一、生物质发电的现 状
03
二、生物质发电的前 景
04 三、结论
05 参考内容
生物质发电:现状与前景
随着环境保护和可再生能源受到全球范围内的高度重视,生物质发电作为一 种清洁、可再生的能源形式,逐渐引起人们的。本次演示将对生物质发电的发展 现状及前景进行深入探讨。
此外,生物质发电的环境影响也是需要注意的问题。虽然相较于传统化石能 源发电,生物质发电的环保性能较好,但在燃烧过程中仍可能产生污染物。因此, 未来发展应注重提高生物质发电的技术水平,减少对环境的影响。
三、结论
生物质发电作为一种可再生、清洁的能源形式,具有巨大的发展潜力和前景。 然而,要实现其可持续发展,还需要政府、企业和科研机构共同努力,加大政策 支持力度,提高技术创新能力,完善产业链条,降低生产成本,并积极应对潜在 的风险和挑战。只有这样,生物质发电才能在能源领域发挥更大的作用,为推动 全球可持续发展作出贡献。
参考内容
一、引言
随着社会经济的发展和人民生活水平的提高,我国对能源的需求量越来越大。 然而,传统的化石能源的供应压力日益增大,且其燃烧产生的环境污染问题也日 益严重。因此,发展可再生能源成为了我国能源战略的重要方向。生物质发电作 为一种重要的可再生能源,其在我国的发展现状及前景值得。

生物质能源技术的发展现状及未来趋势

生物质能源技术的发展现状及未来趋势

生物质能源技术的发展现状及未来趋势随着全球能源危机日益突显,生物质能源成为近年来备受关注的能源领域之一。

生物质能源技术作为一种新型的清洁能源,其总体优势显著,符合可持续发展的绿色经济类需求,备受人们青睐。

随着科技的发展,生物质能源技术的研究取得了不少的进展,其未来发展前景值得关注。

一、生物质能源技术的发展现状生物质能源技术是利用可再生生物质资源进行能源转换的过程,其形成的主要原因是能源环境的负担和环境污染的减少。

生物质能得以大规模开发和利用,主要因为能够弥补传统能源的不足,逐渐成为新兴的可再生能源。

目前,生物质能源技术的发展形态多样,包括生物质燃料、生物质电力、生物质液体燃料和生物质气体燃料等,以及生物质能和新能源复合利用等。

其中,生物质电力技术的应用十分广泛,其装机容量和电量不断增加。

生物质能源技术的发展主要受以下因素的影响:早期的技术投资、技术成本、生物质供应成本、生物质能源市场化等。

在能源产业链中,生物质资源往往被视为燃料和生产原料的替代品,我国也大力推行生物质资源开发,鼓励技术创新,发掘生物质资源的潜力。

二、未来生物质能源技术的趋势未来的生物质能源技术发展将体现出以下趋势:1. 生物质供给链的改善生物质资源供应是生物质能源链中非常重要的环节,如果不能保障现有的生物质来源或者生物质来源无法持续,生物质能源未来的发展将面临巨大的挑战。

因此,在保障生物质供应可持续的前提下,制定合理的生物质供应计划,调整机制和价格政策,保障全球生物质供应链的稳定性,实现生态和经济双重效益。

2. 技术创新与产业化技术创新是生物质能源技术发展的核心,包括能源利用办法、生产技术和综合利用技术。

生物质能源技术的产业化是重要的技术创新成果之一,在产业化进程中,将生物质能源技术的具体实施与市场需求结合起来,促进生物质能源技术的发展,推动生物质能源技术逐步进入市场。

3. 协同创新和分享协同创新和分享是未来生物质能源技术发展的重要走向,各国在生物质能源技术研发中应加强协同创新和分享全球技术资源和专业人才,推动生物质能源技术的共同发展。

生物质能源利用技术的现状和发展趋势

生物质能源利用技术的现状和发展趋势

生物质能源利用技术的现状和发展趋势随着环境污染的日益严重和非可再生能源逐渐减少,人们开始寻找新的能源来源。

其中生物质能源逐渐成为一个备受关注的领域。

生物质能源指的是能够从动植物的有机体中提取的能源,包括生物质燃料、生物质气体、生物质液体和生物质固体等。

这其中最常见的是木材、农作物秸秆、生活废弃物等。

生物质能源还可以通过生物反应器等途径生产生物发酵制品,如乙醇和丙酮等。

一、生物质能源利用技术的现状生物质能源利用技术主要包括发酵、燃气化和燃烧三种形式。

在燃气化方面,包括间接燃气化和直接燃气化两种形式。

其中,直接液化和乙醇制氢等技术被广泛使用。

1. 燃气化技术燃气化利用生物质来生成可燃性气体,如甲烷、氢气和一氧化碳。

这种技术通常使用高温和高压的气化反应器,将生物质和其它氧化剂引入反应器,并加热至高温,生物质随后形成气体并产生可燃性气体。

这种技术可以用于发电和供暖以及工业生产。

2. 燃烧技术燃烧技术是将生物质直接燃烧成热和电能,可分为露天燃烧和配有炉窑设备的控制燃烧两种形式。

燃烧生物质可以用于发电、供暖、制造热水和生产化学品等。

3. 发酵技术发酵技术主要是利用微生物的代谢酸进行生物质发酵,这种反应生成了用于工业和家庭的燃料和化学品。

如乙醇燃料、丙酮燃料、乙酸和醋酸等。

二、生物质能源利用技术的发展趋势1. 升级现有技术随着环保方向主流趋势的发展,人们开始更加注重生物质能源技术的升级,以减少空气污染。

因此,目前的燃气化和燃烧技术正在不断改进中,以减少或消除气溶胶和NOX的排放量。

2. 开发新型技术生物质能源领域还存在许多未解决的问题,比如如何有效地合理生产、储存和运输。

针对这些问题,人们开始开发新型技术以提高效率和解决问题。

如微生境反应器生产生物液体、生物气体技术等。

3. 与其它领域的结合生物质能源技术还可以和其它领域结合,如通过与诸如植物培育和界面科学等领域的结合,开发高效的生态系统。

还可以研究、利用和改进微生物以提高生物质制备的效率和产品质量。

生物质能源利用现状及前景

生物质能源利用现状及前景

生物质能源利用现状及前景随着全球能源需求的不断增长和对传统能源的限制,利用生物质能源已成为一种重要的选择。

生物质能源利用不仅符合可持续发展的原则,而且对大气环境和气候变化具有显著的减排效果。

本文将介绍生物质能源的利用现状以及未来的发展前景。

一、生物质能源的利用现状生物质能源是指利用植物、动物和微生物等有机物质转化而得到的可再生能源。

目前,生物质能源的利用已经涵盖了多个领域,包括能源生产、农业生产和废弃物处理等。

1. 能源生产生物质能源被广泛用于能源生产,特别是燃烧领域。

生物质燃料如木质颗粒、秸秆等成为了许多国家的重要能源补充,用于发电和供暖。

此外,生物质燃料还可以替代传统石油、天然气和煤炭,减少对化石燃料的依赖。

2. 农业生产生物质能源在农业生产中发挥了重要作用。

农业废弃物、剩余物和能源作物等可以被用作生物质能源的原料。

例如,废弃的农作物秸秆可以通过生物质发电厂进行燃烧,产生电力和热能。

此外,能源作物的种植也可以为生物质能源的生产提供更多的原料。

3. 废弃物处理生物质能源的利用还解决了废弃物处理的问题。

例如,城市生活垃圾可以通过生物质气化技术转化为生物质能源。

这种方法不仅可以减少废弃物的排放,还能够产生可再生能源。

二、生物质能源利用的前景生物质能源利用的前景非常广阔,具有以下几个方面的发展趋势:1. 技术创新生物质能源利用的前景在于不断的技术创新。

随着技术的进步,生物质能源的生产效率将会得到提高,生产成本也会降低。

同时,新型的生物质能源技术将会不断涌现,为生物质能源的利用带来更多的可能性。

2. 跨界合作随着全球对可再生能源的需求增加,各国之间的合作将变得更加重要。

跨界合作能够促进生物质能源的研究和开发,推动行业的进一步发展。

国际合作还可以促进技术和经验的共享,加速生物质能源利用的推广。

3. 政策支持政府的政策支持对于生物质能源的发展至关重要。

各国政府应该出台相关的政策,鼓励生物质能源的利用和开发。

农业生产中生物质能利用的现状与前景

农业生产中生物质能利用的现状与前景

农业生产中生物质能利用的现状与前景在当今全球农业发展的进程中,生物质能作为一种可再生能源,正逐渐展现出其巨大的潜力和价值。

生物质能的有效利用不仅有助于解决能源短缺问题,还能为农业生产带来诸多效益,促进农业的可持续发展。

一、生物质能的定义及来源生物质能,简单来说,就是由生物质转化而来的能源。

生物质包括农业废弃物(如秸秆、稻壳、畜禽粪便等)、林业废弃物(如树枝、木屑等)、能源作物(如甘蔗、玉米、油料作物等)以及有机垃圾等。

这些生物质资源丰富多样,且在农业生产中大量产生。

二、农业生产中生物质能利用的现状1、生物质发电在一些地区,利用农业废弃物进行发电已经成为现实。

例如,将秸秆收集起来用于燃烧发电,不仅减少了废弃物的堆积和环境污染,还为当地提供了一定的电力供应。

但目前,生物质发电在总体电力供应中所占比例仍然较小,面临着成本较高、技术有待完善等问题。

2、生物质燃气通过厌氧发酵等技术,将畜禽粪便等转化为沼气,为农村居民提供生活用气。

这种方式在一些农村地区得到了一定程度的推广和应用,改善了农村能源结构,减少了对传统化石能源的依赖。

然而,沼气的生产和使用还存在着规模较小、供气不稳定等局限性。

3、生物质成型燃料将秸秆、木屑等压缩成固体成型燃料,可用于供暖、工业锅炉等领域。

这种燃料具有较高的能量密度和燃烧效率,但在市场推广方面仍面临着成本和认知度的挑战。

4、生物液体燃料以农作物为原料生产生物乙醇和生物柴油,是生物质能利用的一个重要方向。

然而,目前生物液体燃料的生产受到原料供应、生产成本和政策等因素的制约,尚未实现大规模商业化应用。

三、农业生产中生物质能利用存在的问题1、收集和运输难题农业废弃物通常分散在广大的农村地区,收集和运输成本较高,这在一定程度上限制了其大规模利用。

2、技术水平有待提高虽然相关技术在不断发展,但在转化效率、设备稳定性等方面仍存在不足,导致生物质能的利用成本较高。

3、政策支持不够完善尽管政府出台了一些鼓励生物质能发展的政策,但在实际操作中,政策的落实和扶持力度还需要进一步加强。

生物质能源发展现状及前景

生物质能源发展现状及前景

生物质能源发展现状及前景一、引言生物质能源是指从天然生物体中得到的能源,如植物油、动物油、木材、秸秆等可再生的有机物质。

随着能源问题日益凸显,生物质能源作为新兴绿色能源备受关注。

本文将从现状和前景两个方面进行探讨。

二、生物质能源发展现状1.国内外生物质能源发展现状在全球范围内,生物质能源得到了广泛应用。

欧洲国家已经制定了生物质能源发展计划,且成为全球生物质能源消费的最大市场,其中以德国、英国、瑞典、奥地利等国为代表。

美国也将生物质能源列为能源战略重点发展领域之一,大力发展市场。

国内生物质能源行业也发展迅猛,如利用农林废弃物制成的生物质颗粒,已经成为重要的生物质能源品种之一,可以广泛应用于家居暖气、热水供应等领域。

2.生物质颗粒在发展现状生物质颗粒是由薪柴、秸秆和木质废料经过打碎、压缩等工艺处理而成的颗粒状物质,具有环保、经济、高效的特点。

目前,全球生物质颗粒市场有三个重要市场,即欧洲、美国和加拿大,市场占有率分别为48%、38%和5%。

生物质颗粒在国内市场上的应用也日趋广泛,可以 applied在能源领域、农业领域、工业领域等各个领域,具有巨大的开发和应用潜力。

三、生物质能源未来发展前景1.政策和补贴支持全球范围内,生物质能源发展都得到了良好的政策和补贴支持,国际上已有多个国家制定了生物质能源补贴政策,为生物质能源的发展创造了良好的环境。

国内目前也在积极推动相关政策和措施,如制定生物质能源补贴政策、推广生物质颗粒等,为生物质能源的未来发展奠定了坚实基础。

2.应用领域广泛生物质能源的应用领域非常广泛,不仅可以用于环保、清洁能源领域,也可以应用于农业、工业、家居等领域。

随着技术的进步和生产成本的下降,生物质能源将在更广泛的领域中有所应用,且用途也将越来越丰富。

3.开发潜力被认可生物质能源的开发潜力正在逐步被认可,未来已经成为清洁能源的重要补充。

与其它可再生能源相比,生物质能源代表着当前可持续性发展的最大希望之一,并可以为全球的能源供应和环境保护做出贡献。

生物质能源利用现状与发展

生物质能源利用现状与发展

生物质能源利用现状与发展随着人们对环境保护意识的增强,生物质能源作为替代传统化石能源的一种可再生绿色能源备受关注。

那么,生物质能源的利用现状与发展前景究竟如何呢?一、生物质能源的定义生物质能源是指以植物、动物、微生物以及其代谢物为原料制造的可再生能源,包括生物质固体燃料、液体燃料、气体燃料等。

二、生物质能源的利用现状1.生物质能源的发展历程生物质能源由于其可再生性、低碳排放等优点,吸引了政府和企业的关注和投入,随着技术和政策的发展,生物质能源产业得到了迅速的发展。

如今,生物质能源已广泛应用于发电、加热、工业燃料、交通燃料等领域。

2.生物质发电生物质发电是利用生物质固体燃料,如木屑、秸秆、稻壳等进行热解或氧化反应以产生电能。

该技术已广泛应用于欧洲和北美等地。

中国也在积极推进生物质发电,目前已有一些生物质电厂投入运行。

3.生物质燃料乙醇生物质燃料乙醇是由淀粉类或纤维素类生物质发酵而成的可以与汽油混合使用的清洁能源。

近年来,生物乙醇燃料已被广泛应用于汽车、船舶、飞机等交通运输领域。

4.生物质柴油生物质柴油是一种由植物油、动物脂肪、微生物油等为原料生产的可替代石油柴油,其优点是低碳排放、环保、可再生。

目前,国内已经有一些生物质柴油工程在建设和运行中。

三、生物质能源的发展前景1.生物质能源将成为主要能源来源随着全球生态环境日益恶化,人们对可再生、绿色能源的需求日益增加。

生物质能源作为替代化石能源的一种可再生能源,将在未来成为主要能源来源。

2.产业链不断完善随着技术的不断进步和政策的不断引导,生物质能源的产业链将不断完善。

此外,生物质能源的规模化运营和经济效益的提高,也将推动生物质能源行业的发展。

3.技术的进一步创新生物质能源行业是一个技术密集型行业,随着技术的不断创新,生物质能源的利用效率将不断提高,其应用领域也将得到扩展。

综上所述,生物质能源是可持续、绿色、环保的能源形式,其利用现状良好,未来发展前景广阔。

生物质能源的开发与利用现状与前景

生物质能源的开发与利用现状与前景

生物质能源的开发与利用现状与前景随着全球能源需求的不断增长,化石能源日益稀缺,相应的环境污染和碳排放问题也越来越严重。

因此,寻找替代能源已经成为全球发展的必然趋势。

作为一种环境友好、可再生的能源,生物质能源备受关注。

然而,生物质能源的开发与利用仍然面临着一系列的挑战和困难。

本文将就生物质能源的现状与前景进行探讨。

一、生物质能源的定义和种类生物质是指由生物体制造出来的有机物质,如林木和枝叶、农作物废弃物、城市固体废弃物、海藻等。

生物质能源是指利用生物质作为原料,提取出来的可用于能源的物质,其中主要包括:(一) 生物质直接燃烧发电:利用木材、秸秆等物质进行直接燃烧,产生蒸汽,驱动涡轮机,发电。

(二) 生物质液体燃料:生产多种液体燃料,如生物柴油、生物乙醇等。

(三) 生物质气体燃料:利用生物质制备天然气、沼气等,用于燃料电池等应用。

(四) 生物质化学品:生产生物质炭、木质素、生物质气化产物等,用于肥料、化工、医药等领域。

二、生物质能源的发展与利用现状随着环保意识的日益提高以及全球能源需求的增加,生物质能源的开发已经成为许多国家的重点发展方向。

在全球范围内,生物质能源产业正在快速增长,其中包括以下几种类型:(一) 生物质能源在欧洲和北美的发展欧洲和北美地区是生物质能源的主要发展地区之一。

这些地区的政府和产业界一直致力于生物质能源的研究和开发,以应对其不断增长的能源需求。

在欧洲,生物质能源已成为主要的可再生能源之一,2019年,欧盟可再生能源中,生物质能源产量占比达到了50%以上。

(二) 中国生物质能源的发展作为一个发展中国家,中国正致力于实现可持续发展,并逐步加强生物质能源的开发和利用,加强生物质能源技术水平的提升。

2019年,中国仅木质颗粒存在2.4亿吨的需求,在国家政策及多方推动下,生物质颗粒能产业迎来快速发展。

(三) 生物质能源在其他国家的发展除欧洲、北美和中国外,许多其他国家也在积极发展生物质能源产业。

生物质能源的应用现状与发展趋势

生物质能源的应用现状与发展趋势

生物质能源的应用现状与发展趋势生物质能源是指利用植物、动物、微生物等生物质材料,通过化学或生物学反应转化成能源形式的一类能源。

相对于化石能源,生物质能源具有可再生性、低碳排放等优势,于是在全球范围内得到了广泛的重视和应用。

本文将介绍生物质能源的应用现状与发展趋势。

1. 生物质能源的应用现状1.1 生物质发电生物质发电是利用生物质能转化为电能的一种方式。

现阶段主要应用的技术有生物质燃烧发电和生物质气化发电。

在我国,生物质电力发电装机容量已接近10GW,主要利用的是秸秆、木材和生活垃圾等生物质资源。

1.2 生物质热电联产生物质热电联产是一种高效的利用生物质能的方式。

通过生物质燃烧或气化的方式,发电的同时产生余热,用于供暖、生活热水等热能需求。

这种方式的应用较为普遍,特别是在农村地区,采用小型的生物质热电联产设备,满足了当地的电和热需求。

1.3 生物质液态燃料生物质液态燃料主要是指生物柴油和生物乙醇。

生物柴油是通过生物质转化得到的一种可替代石油柴油的燃料,主要应用于交通领域。

生物乙醇则是以生物质为原料,通过发酵和蒸馏等过程制得的一种可替代汽油的燃料,主要应用于汽车和工业领域。

2. 生物质能源的发展趋势2.1 增加生物质资源利用生物质能源的发展取决于可利用的生物质资源。

因此,未来发展需要加大生物质资源的建设和维护。

在我国,要加强对农作物秸秆等生物质资源的统一收储和利用,提高生物质能源的可持续利用水平。

同时,研究新型的生物质能够提高生物质的利用效率。

2.2 推广生物质液态燃料生物质液态燃料是未来生物质能源应用的重要方向之一。

近年来,我国生物柴油和生物乙醇产量逐年上升,生物液态燃料市场潜力不断增大。

未来可采用多种手段,如加大政策扶持力度等,加速生物液态燃料的推广应用。

2.3 提高生物质发电效率生物质发电是生物质能源的重要应用方式之一。

提高生物质发电的效率可以降低发电成本和提高电能利用率。

未来可采用多种技术手段,如利用高效燃烧技术等,增加生物质发电的效率。

生物质能源的现状和发展前景

生物质能源的现状和发展前景

生物质能源的现状和发展前景其次,生物质能源的发展前景主要包括技术创新和政策支持。

技术创新是实现生物质能源大规模应用的关键。

目前,生物质能源的主要应用领域是热能利用和电力生产,以及生物质燃料的生产和利用。

未来,需要不断改进生物质能源的生产和利用技术,提高能源转化效率和资源利用率。

例如,发展新型的生物质能源生产装备,提高生物质的能量密度和稳定性,减少生产过程中的废弃物和排放物。

此外,生物质能源还可以用于生物化工和生物材料的生产,可以进一步拓展其应用领域。

政策支持是推动生物质能源发展的另一个重要因素。

许多国家已经制定了相关的政策和法规来促进生物质能源的发展和利用。

这些政策包括提供财政补贴和优惠税收,建立生物质能源发电价格补贴机制,鼓励研发和推广生物质能源技术等。

政府和企业还可以加强国际合作,共享技术和经验,促进生物质能源的国际贸易和技术交流。

然而,生物质能源的发展也面临着一些挑战。

首先,生物质能源的成本仍然较高,需要进一步降低生产成本,提高竞争力。

其次,生物质能源的生产和利用过程需要消耗大量的土地和水资源,可能导致资源竞争和环境问题。

第三,生物质能源的市场需求和消费者接受度仍然较低,需要加强宣传和教育,提高公众对生物质能源的认知和认可度。

综上所述,生物质能源在全球范围内的应用已经取得了显著的进展,但仍面临着许多挑战和发展前景。

通过技术创新和政策支持,可以进一步提高生物质能源的可持续性和环境友好性,推动其在能源领域的广泛应用。

同时,需要克服生物质能源的成本和资源竞争问题,提高市场需求和消费者接受度,实现生物质能源的可持续发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质能源的发展现状与前景综述曾令谦(江西师范大学生命科学学院江西南昌 330022)摘要生物质能源是倍受世界各国重视的可再生能源。

文中介绍了生物质能源的优越性、多种类别及性能。

本文综述了发展生物质能源的战略意义以及发展前景。

文中列举了世界某些代表性国家或区域发展生物质能取得的成就,以及对比了我国对生物质能的发展及研究。

与传统能源相比较,突出了发展生物质能能源的重要意义,以及广阔的市场前景。

21世纪生物质能源必定成为世界各国争相开发利用,生物技术将有重大的进展和突破。

关键词:生物质能源 , 优越性 , 前景 , 战略意义Abstract biomass energy is highly valued around the world renewable energy sources. This paper introduces the advantages of biomass energy, a variety of categories and performance. This paper reviews the development of biomass energy strategic significance and development prospect. This paper enumerates some typical countries in the world or the achievement of regional development of biomass energy, and compared the biomass can development and research of our country. Compared with the traditional energy, highlights the importance of developing biomass energy, and broad market prospect. Biomass energy in the 21st century must be rushed to the development and utilization of countries around the world, biotechnology will have significant progress and breakthrough.Keywords: biomass energy ,the superiority ,prospect ,strategic significance1生物质能的优越性:在包括太阳能、地热、风能、水能(水流、潮汐、热对流等)和生物质能的各种可再生能源中,相对来讲生物质能源的地区性限制和可控制性均比其他种类的再生能源有更多优势。

凡是有阳光和水的地方均可通过人工集约培植获得生物质,并以多种形式将其转化成清洁、便于贮藏、运输的可再生能源。

由于其比较优势较多,生产成本又低,所以近数十年来倍受世界各国重视。

我国在2005年2月28日颁布了中国可再生能源法,其中第4条规定:国家将可再生能源的开发利用列为能源发展的优先领域。

第12条又说:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域。

这充分体现了可再生能源的开发将成为我国基本能源国策。

生物质能源比其他几种再生能源有更大的群众参与性、多形式的可转换性和相对较少的开发投入性,这是在多种形式的再生能源中生物质能源被国家优先给予考虑的原因。

从全世界范围看,生物质能源利用在各种形式的可再生能源利用的总份额中所占比重也最大,北欧一些国家已有大范围把生物能源转化成电力的经验[1]。

2发展生物质能源目前的类别及性能:粗略地依能源主体特性把现在已研究利用的生物质能源原料分成:(1)草本植物——低密度营养体的利用。

(2)木本植物——木质营养体的利用。

(3)富含油脂植物——种子或营养体中富含油脂物质的利用。

(4)富含糖植物——种子或营养体中富含淀粉、糖类的利用。

(5)动物(家畜、家禽)粪便——消化后的残存体,成分因动物而异。

[2-4]这5种生物质能源原料中所含成分,基本上可分成如下几类:它们对能的转化技术有不同的相宜性,因而主体转化产品也有不同。

(1)灰分:由矿物元素组成,但不同植物的组成元素可有较大不同,如禾本科草类不仅含灰分比木本植物高,且其中SiO2更多。

(2)多种挥发物质:各种芳香族挥发油、萜烯类。

(3)木素:主要为碳氢化合物,属聚酚类三维网状高分子聚合物。

苯丙烷为其基本结构单元,又分3种基本结构,即愈创木基(针叶树木素的主要组成)、紫丁香基(阔叶树木素的主要组成)和对羟苯基(禾草类)。

木素本身属难热解物质,热解时得炭率高,它又影响纤维素的水解。

(4)碳水化合物为基础的纤维素:纤维素为不溶于水的均一聚糖,其基本结构单元为D-吡喃式葡萄糖基(脱水葡萄糖),由成百成千这种葡萄糖基聚合而成。

分子式为(C6H10O5)n,与木素比,它更适合水解发酵生产酒精,直接燃烧时热值低。

(5)半纤维素:是植物质原料中除木素、纤维素、果胶以外含量较高的一种不均匀聚糖,由2种或2种以上的单糖结合而成,以聚戊糖为代表。

主要结构单元有LD-木糖基、D-甘露糖基、D-葡萄糖基、D-半乳糖基和L-阿拉伯糖基等,一般阔叶材和草本植物中的半纤维素高于针叶材,针叶材叶的木素含量又高于前者,故针、阔叶材的能转化产品不同,最适合的转化技术方法也不相同。

在热解中纤维素和半纤维素的得炭率低于木素,而溶解焦油得率却高些[1]。

3发展与利用生物质能源的战略意义:在面临矿产资源枯竭的背景下,全世界都在谋求以循环经济、生态经济为指导,坚持可持续发展战略,从保护人类自然资源、生态环境出发,充分有效地利用可再生的、巨大的生物质资源。

生物质能源和生物质利用的战略意义在于生物质具有多功能、多效益的特点以及在满足国家重大战略需求方面的重要作用[3]。

3.1有利于解决“三农”问题。

“三农”问题是关系我国经济发展和全面建设小康社会的关键性问题,关系着8亿农村居民和1 亿农民工的发展需要和切身利益。

生物质产业是多元化的新兴产业,开始向食品、生物质能源、生物质材料、林产化工、医药等众多领域扩展,未来农民将不仅要生产食物和饲料,而且要生产能源、材料、化学制品等。

结合我国农村人口多,生物质资源分散的特点,就地取材,大力发展沼气池、生物质压块炭化燃料、生物质户用气化炉等生物质能技术,在燃料方面实现生活小康,有利于改善农村环境卫生和居住区生活条件,全面提升农民生活质量,全面加快社会主义新农村建设步伐。

未来能源林业和能源农业的大规模发展,还将增加农村就业机会,提高农民收入,推动农村城镇化建设,振兴农村经济[3]。

3.2有利于保证国家能源安全能源安全不仅包括能源供应的安全,也包括由于能源生产与使用所致的生态环境安全。

我国是一个能源生产和消费大国,又是以煤为主要能源消费的国家,煤炭消费量占我国一次能源消费总量的75%以上,接近世界同类国家平均值3倍;我国人均能源资源占有量却不到世界平均水平的一半。

据估计,我国煤炭资源最多可利用150年;已探明的石油资源为32亿 t,石油总储量为300-600亿t。

以目前的消费速度粗略估算,到2030年石油资源将只剩下 18%到 2037年将可能全部耗尽。

石油进口依赖度逐年上升2004年原油生产量1.747亿t,而消费量猛增到3.0亿t,净进口原油达到 1.17亿t。

近年来,多个省市拉闸限电,预示着国家电力供应告急。

中国的能源储量与未来几十年的发展需求之间已经存在巨大的缺口,从长远发展的角度来看,将经济发展建立在石油、煤炭等不可再生能源的基础上是不适宜的。

只有通过节约能源、开发新的可替代能源才能解决这一问题。

我国传统的生物质资源为6.5亿 t,发展能源农业和能源林业还至少可提供相当于10亿 t 标准煤的能源资源,发展生物质产业是解决能源安全的重要选择之一[5]。

3.3有利于改善生态环境我国的煤炭消费量的80%是直接燃烧,造成环境污染问题严重,除城市烟尘污染外,酸雨现象也频频发生。

在没有切实可行办法控制矿物燃料使用过程中产生的生态环境污染的情况下,减少使用量,开发洁净可替代能源是唯一的解决办法。

我国尚有近1亿hm2宜农、宜林荒山荒地,可用于发展能源农业和能源林业,是发展洁净可替代能源的重要资源。

农业废弃物对环境形成了越来越大的面源污染压力,通过实施生物质能源利用技术,使生活垃圾和各种农业废弃物转化成为清洁能源和有机肥,变“废”为“宝”,从根本上解决农村普遍存在的“畜牧公害”和“秸秆问题”[6]。

3.4有利于发展新型材料和原料人们日用材料很大一部分是石油副产品,一旦石油出现短缺,必然引发石油相关产品(石化材料、工程塑料、电子原器件)等短缺的连锁效应,将严重影响到人们的日常生活。

高分子材料是材料工业的重要支柱,现有的高分子材料基本上以石化资源为原料。

我国年产1500 万t 各类塑料制品,要消耗数以千万t 的宝贵的轻油资源和大量天然气;还要形成约500万t 的难以降解的塑料垃圾。

尤其是农用塑料薄膜,每年生产、使用150 万 t,基本上不能回收,大部分残留于农田。

因此,开发可替代能源的新材料是关系到国计民生的头等大事,生物质材料的应用将形成一场新的减少资源利用的工业革命,引领出一批新的产业[7]。

4国内外生物质能源与生物质利用研究及其进度:生物质是人类利用最早的能源,包括所有动植物和微生物以及由这些生命体排泄和代谢的所有有机物质.由于生物质的可持续利用,不会增加二氧化碳的净排放,因此全球气候将受益于生物质的广泛应用,符合能源需求和环境保护的要求.生物质能源的开发利用早已引起世界各国政府和科学家的关注,许多国家都制定和实施了相应的开发研究计划,如美国的能源农场、巴西的酒精能源、日本的阳光计划等等.我国政府及有关部门对生物质能源利用也极为重视,开展了如薪炭林、沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等各类生物质能利用技术的研究与开发,为生物质能发展奠定了坚实的基础[8]。

4.1 国外发展现状:生物质的转化可以分为物理方法,热化学转化方法,生物转化方法.物理方法只是改变生物质的形状、致密度,以便于应用和储藏;热化学转化法是通过热化学将生物质转化制备得到一氧化碳、氢气、小分子烃或生物质油等物质;而生物转化是通过微生物或酶把生物质进行生化反应的过程。

4.1.1 美国生物质发电技术:美国目前生物质发电的总装机容量达到104MW,单机容量达10-25MW,生物质能利用占一次能源消耗总量的4%左右。

其在沼气发电领域处于世界领先水平,总容量已达340MW。

相关文档
最新文档